基于Visual Lisp的直齿锥齿轮参数化设计及优化系统开发
- 格式:pdf
- 大小:273.48 KB
- 文档页数:3
基于SolidWorks的修形直齿锥齿轮设计系统刘太冉;崔焕勇;王海燕;田希杰【摘要】以直齿锥齿轮为研究对象,结合直齿锥齿轮修形理论,在集成开发环境Visual Studio 2008中,基于三维机械CAD软件SolidWorks 2010平台,运用C#语言和SolidWorks中的API程序接口,开发修形直齿锥齿轮CAD设计系统.该设计系统可完成锥齿轮的参数化建模、齿轮对的自动装配以及锥齿轮的快速修形,大大提高了直齿锥齿轮的建模效率和齿轮修形效率,还可为CAM、CAE以及运动仿真分析提供精确的齿轮及齿轮对模型.【期刊名称】《济南大学学报(自然科学版)》【年(卷),期】2014(028)006【总页数】6页(P446-451)【关键词】直齿锥齿轮;齿形修形;SolidWorks;C#;二次开发;CAD【作者】刘太冉;崔焕勇;王海燕;田希杰【作者单位】济南大学机械工程学院,山东济南250022;济南大学机械工程学院,山东济南250022;济南大学机械工程学院,山东济南250022;济南大学机械工程学院,山东济南250022【正文语种】中文【中图分类】TP391.72;TH132.421直齿锥齿轮用于圆周速度v<5 m/s的低速相交轴传动,在各种车辆的差速器中,采用直齿锥齿轮作为行星齿和半轴齿[1]。
为了降低齿轮对在啮合过程中的振动、噪声以及载荷分布不均等问题,需要对直齿锥齿轮进行齿形修形[2]。
结合渐开线直齿锥齿轮的修形理论[3-5],在前期开发的直齿锥齿轮设计系统的基础上对修形直齿锥齿轮设计系统进行开发,该设计系统可以辅助快速完成直齿锥齿轮的建模、装配以及修形,大大提高了直齿锥齿轮修形效率,减少了重复劳动,同时为CAM、CAE以及运动仿真分析提供了精确的齿轮和齿轮对模型。
在直齿锥齿轮设计系统的基础上,添加装配和修形2个功能模块,基于三维软件SolidWorks 2010,在集成开发环境Visual Studio 2008中,运用C#语言对设计系统进行开发。
引言计算机的进步与制造业的发展总是相辅共荣。
越来越多的应用软件被推广与普及,如CAD/CAM、UG等一些辅助设计软件的广泛应用,就大大加快了机械零件的设计过程,缩短了产品的设计和制造周期。
UG是一个在二维和三维空间无结构网格上使用自适应多重网格方法开发的一个灵活的数值求解偏微分方程的软件工具。
其设计思想足够灵活地支持多种离散方案。
因此软件可对许多不同的用途进行再利用。
Unigraphics(简称UG)是当前世界上最先进和紧密集成、面向制造业的CAID/CAD/CAE/CAM高端软件。
它为制造行业产品开发的全过程提供解决方案,功能包括:概念设计、工程设计、性能分析和制造。
它实现了设计优化技术与基于产品和过程的知识工程的组合,显著地改进了如汽车、航天航空、机械、消费产品、医疗仪器和工具等工业的生产效率。
随着计算机性能的提高,现在在微机上就可以使用UG,这样UG的适用范围更加广阔,三维设计已经不是人们的奢侈品,会越来越多成为设计工程师的首选。
而在面对零部件批量设计的需要时,UG就不仅仅停留在制图、建模、装配、出图等基本功能的运用上。
而应实现可编辑、参数驱动等功能。
本文的设计是采用CAD数字化的思想,运用电子表格与UG的智能化接口,抽取相关零部件的参数信息,再被用来更新零部件前做手工处理。
再结合电子表格的目标搜索功能,可以对设计进行进一步的优化。
使用电子表格的前提是模型必须是参数化的,参数之间必须是相关的。
通过抽取并编辑表达式中的参数达到控制模型的目的,而其中实用的内部函数为工程计算提供了强大的引擎。
完整使用电子表格技术,则需要依赖表达式、内部函数和用户自定义函数三者的有机结合,其工作的实质就是对模型参数的驱动以更新模型。
本文以一对啮合的直齿锥齿轮在UG中的参数化、可视化设计为例。
第一章绪论1.1课题研究的目的和意义1.1.1课题研究的目的齿轮作为最重要的基础传动部件被广泛地应用于机械、冶金、石化、煤炭、水电等行业。
基于AutoLISP的正交斜齿锥齿轮模块化设计及参数绘图金莹张小粉淮妮咸阳职业技术学院, 机电工程系咸阳,712000摘要:斜齿锥齿轮广泛应用于大型机械传动装置中,其设计是一项繁琐、重复性大的工作。
本文以模块化设计思想为指导,用AutoLISP开发工具,在AutoCAD平台上开发用户友好的正交斜齿锥齿轮的设计系统,实现了正交斜齿锥齿轮设计、校核、参数化绘图,提高了设计质量和效率。
关键词:斜齿锥齿轮,AutoLISP,模块化设计,参数化绘图1 引言正交斜齿锥齿轮是一种应用极为广泛的重要机械部件,其传统设计是一项繁琐、重复性大的工作。
AutoCAD是一种通用计算机辅助设计、绘图软件,其二维图形设计功能非常强大,AutoLISP语言嵌套于AutoCAD内部,它是LISP语言和AutoCAD有机结合的产物。
使用AutoLISP可直接调用几乎全部AutoCAD命令、系统变量和对话框。
参数化设计与绘图是AutoCAD应用与开发中的重要组成和关键技术,是实现设计过程自动化的一种有效手段[1]。
为了提高正交斜齿锥齿轮的设计效率,缩短设计时间,本文使用AutoLISP开发工具,在AutoCAD平台上开发用户友好的正交斜齿锥齿轮的设计系统,实现正交斜齿锥齿轮设计、校核、参数化绘图,提高了设计质量和效率。
2 AutoLISP语言及程序特点AutoLISP程序一般是由一个或一系列的标准表所组成。
AutoLISP语言中加入了与图形处理有关的语句,可通过程序对AutoCAD当前图形、数据库直接访问以及对屏幕图形修改。
AutoLISP程序的主要特点如下[2]:(1) 函数必须放在第一个元素的位置,如赋值函数setq、算术运算函数+、*等应为表中的第一个元素,表中的函数与参数,各参数之间均至少要一个空格分开。
(2) AutoLISP程序中可以使用分号对程序解释。
AutoLISP求值器总是忽略每一行中分号以后的部分。
(3) AutoLISP程序一般是以扩展名为“.lsp”的ASCⅡ码文本文件的形式表达。
设计直齿圆锥齿轮的SolidWorks 二次开发*王 霞 张耀宗 李占君摘要 介绍以SolidWorks 为开发平台,以VB 为编程语言,开发直齿圆锥齿轮三维实体参数化造型系统的方法。
关键词:Visual basic SolidWorks 参数化 实体造型中图分类号:TP391 文献标识码:A 文章编号:1671 3133(2004)09 0040 03The design of straight bevel gear and developing of SolidWorksW ang Xia,Zhang Yaozong,Li ZhanjunAbstract Introduces a method of developi ng straight bevel gear three di mensions body parametric system based on SolidWorks and VB language as program language.Its purpose is to provide a new method.Key words:Visual basic SolidWorks Parametric Body modeling一、圆锥齿轮三维造型系统简介SolidWorks 的二次开发为实现圆锥齿轮实体参数化设计提供了有力的手段。
渐开线直齿圆锥齿轮三维造型系统的流程如图1所示,各模块及其功能如下。
1 系统界面模块该模块的功能是采集直齿圆锥齿轮实体造型所要的具体参数,从而利用该系统生成标准齿形、压力角为20!的齿轮。
2 SolidWorks 软件的OLE 技术* 河南省自然科学基金资助项目(0111040900),河南科技大学基金资助项目(200113) hres=pFrame->AddM enuIte m(auT(∀3DCAD(&G)#),auT(∀垫套(&D)∃#),s wLastPosition, auT(∀3D CAD@MyFunction #),&bres);图3 定制菜单、工具栏及程序运行的界面2)定制SolidWorks 的工具栏用户可先绘制出自定义工具栏按钮的图标,然后在C3DC ADApp::docCreateMenu 函数中添加以下代码,加载并显示自定义工具栏。
收稿日期:2018-04-12摘要:针对锥齿轮系统,采用模块化设计思路,以VisualBasic6.0为编程工具,对三维造型软件SolidWorks 进行了二次开发,采用参数化特征造型的方法来实现锥齿轮的参数化建模,实现了从界面输入参数,以参数驱动模型,自动生成传动系统的三维模型。
关键词:锥齿轮传动系统;参数化;三维模型中图分类号:TP391.72文献标识码:A文章编号:1009-9492(2018)10-0118-04Parametric Modeling of Bevel Gear Drive Transmission System Basedon SolidworksXUE Cheng ,LUO Xia(Lianshui Secondary Vocational School of Jiangsu Province ,Huaian223400,China )Abstract:According to the bevel gear drive system ,based on the modular design idea ,the secondary development of the 3D modelingsoftware Solidworks is studied by using Visual Basic 6.0as the development tool.The parametric modeling of the bevel gear drive system has been realized by using parameterized design method.The parameterized modeling software including design parameters input interface ,function of parameters driving model ,function of generating automatically 3D modeling of drive system.Key words:drive system ;parameterized design ;3D model基于SolidWorks 的锥齿轮传动系统参数化建模薛成,罗霞(江苏省涟水中等专业学校,江苏淮安223400)DOI:10.3969/j.issn.1009-9492.2018.10.036齿轮传动是一种传统的运动与动力传递方法,已历经数百年的发展,应用十分广泛,在日常生活中随处可见,负责将动力装置的运动或动力经过一定的变换后传递给执行装置,使二者之间实现合理匹配,可实现增速、减速、变速、改变运动形式、分配运动和动力以及某些操纵控制功能。
Parametric Design of Straight Bevel Gears Based on SolidworksShan YuxiaCollege of Mechanical and Electronic Engineering, Nanjing Forestry UniversityNanjing,China ,210037Zhang WeiCollege of Mechanical and Electronic Engineering, Nanjing Forestry UniversityNanjing,China ,210037Abstract—The Visual Basic program of standard straight bevel gear’s parametric design based on Solidworks software was completed. The geometric features of bevel gears were analyzed, parametric design variables were defined, each control point was determined in Cartesian Coordinate System.In development of the system, the API functions such as CreatLine, FeatureRevolve,FeatureCut, CreatePlaneAtAngle3, InsertCutBlend and FeatureCircularPattern were used; the involute profiles of bevel gear at large end were fit by splines. The parametric design of bevel gears may provide a basis for further finite element stress analysis or assembly.Keywords- Bevelgears; Solidworks, API; Parametric DesignI.I NTRODUCTIONA bevel gear is one of the most fundamental types of gear,it is widely used in power transmission systems of aircrafts, automobiles and engineering machines, etc..Bevel gears are cut on conical blanks to be used to transmit motion between intersecting shafts. Straight bevel gears are the most economical of the various bevel gears, owing to their ease of manufacture.Accurate 3D modeling of gears are critically important to their FEM analysis, motion or dynamic simulation and CNC production. Developing program module for parametric modeling of gear in 3D design software would make the design more efficient and quality.As a 3D mechanical design software, SolidWorks has been extensively used due to its Windows-native design environment, powerful assembly capabilities, ease-of-use, and affordable price[1]. Moreover, Solidworks can be further developed conveniently by its API(Application Programming Interface) and VBA(Visual Basic for Applications) or VC++, Visual Basic, etc..The API is an OLE programming interface to SolidWorks, it contains hundreds of functions that can be called from VBA, , Visual C++ 6.0 , and VisualC++, etc.. These functions provide direct access to SolidWorks functionality such as creating a line, cutting a hole, or verifying the parameters of a surface[2].Many researches on cylindrical gear’s parametric design have been done based on Solidworks[3-5], but there is few research on bevel gear’s parametric design, because of its special geometric structure. Although the study have been done by LI Jun-wei and PAN Yu-tian, but some mistakes were found from its running results, such as the value of the pitch cone angle and the teeth profiles[6]. In this paper, a parametric design system for straight bevel gears was developed based on Solidworks 2008 by use of Visual Basic language and the API, which provides designers with an interactive computer-aided design environment, it will make the straight bevel gear’s 3D design easier, faster and more accurate.II.G EOMETRY O F S TRAIGHT B EVEL G EARS The geometry of bevel gears is shown in Fig.1.They have teeth that are straight and tapered, if extended inward, the teeth would intersect at a common point O[7]. The shaft angle is 900, which is the sum of the pitch cone angle of gear 2 δ2 and pinion 1 δ1. In order to secure uniform bearing along the tooth, the face width b is generally not made longer than one-third of the pitch cone length R, usually b=ϕR.R, ϕR=0.25~0.3, the gear ratio is given as follows:1212cottanδδ===zzi(1)Figure 1. The geometry of bevel gearsAs shown in Fig.1 and Fig.2, the size and shape of the straight bevel gear’s teeth are defined at the large end, on the back cone, which have standard involute profiles. The length of back cone r e has relationship with the pitch diameter d as equation (2); it is equal to the pitch circle radius of bevel gear’s virtual spur gear.δcos2dre=(2)(a) Back cone (b) Involute profiles of teeth Figure 2.Back cone and shape of teeth on itFigure 3. Generation of an involute curveAn involute curve is the locus of a point on the generating line, as the line rolls without slipping along a base circle[8], see Fig.3. Gear teeth are cut in the shape of an involute curve between the base and the addendum circles, while the part of the tooth between the base and dedendum circles is generally a radial line[9]. In Cartesian Coordinate System, the involute curve is expressed as follows:⎩⎨⎧−=+=)cos (sin )sin (cos θθθθθθb b r y r x (3)Where r b is radius of the base circle, θ is the spread angle, θ=tg αk . Referring to Fig.3, for gear tooth profile the definition interval of θ is 1)/(02−≤≤b a d d θ.Note especially that when determine the involute tooth profile of bevel gear at large end, the geometric parameters of its virtual spur gear at large end should be substituted.III. A CHI E VEMENT O F S TRAIGHT B EVEL G EAR ’SP ARAMETRIC D ESIGN A. Determination of design variablesAccording to geometric features of straight bevel gears stated above, and design equations for bevel gears which are detailed in Mechanical Design Manual[10], the module m at large end, tooth number z 1 of pinion, face width factor ϕR and gear ratio i are determined as parametric design variables. The pressure angle α, addendum height factor h a * and tip clearance factor c * is set as the standard value of 200, 1 and0.2, respectively.The interactive interface was designed as Fig.4, where the standard values of module m in accord with GB12368-90 can be selected directly by the popup-list tile.Figure 4. Parameters entering interfaceB. Coordinates determination of control pointsBefore implementing parametric design by Visual Basic codes and API functions, some coordinates of control points must be determined, according to the design variables stated above and the topological properties of bevel gears. Thus, a Cartesian Coordinate System was set up, as shown in Fig.5, whose origin is at the apex of the back cone. In this coordinate system all the control points were determined, referring to Fig.5 and Tab.1.Figure 5. Coordinate frame for cross section of a bevel gear TABLE I. C OORDINATES DETERMINATION OF CONTROL POINTSC. Procedures of bevel gear’s parametric designAccording to the study results above, parametric design system for straight bevel gears were achieved by use of API functions based on Solidworks 2008.The flow chart of this work is shown as Fig.6.Figure 6. Flow chart of parametric designFirstly, a two-dimensional cross section graph of cone blank(see Fig.5) was sketched, CreatLine function was applied according to coordinates of control points in tab.1; Secondly, the sketch was revolved by FeatureRevolve function to generate a cone blank; and a datum plane was created by CreatePlaneAtAngle3 function,which is tangential to the back cone, as shown in Fig.8(a).Thirdly, two involute curves for toothspace profile were fitted by splines on the datum plane, enclosed by arcs, seeFig.7.Figure 7. Involute toothspace profileFurther, a point was created at apex O of the pitch coneby CreatPoint function, together with the toothspace curves, a toothspace was generated by function of InsertCutBlend, see Fig.8(a).Lastly, the toothspace was arrayed by FeatureCircularPattern2 function, so far the modeling isalmost finished; basing on it, some holes and key slot can beeasily cut by FeatureCut function, see Fig.8(b).(a) Cutting toothspace (b) Completed bevel gear modelFigure 8. Modeling of straight bevel gearD. Usage and resultsRun the macros programmed by Visual Basic codes and API functions in Solidworks part environment, a standard straight bevel gear model would be automatically and quickly generated after interactive operation. A pair of bevel gears created by running the macros was assembled, it showed that they fit well, see Fig.9.Figure 9. Assembled bevel gearsIV. S UMMARIESIn this study, structural features of straight bevel gear were analyzed; design variables were specified, and then the interactive interface was designed; Further, a Cartesian Coordinate System was set up and coordinates of control points were determined according to its geometric relationship. Through Visual Basic language and Solidworks API functions, parametric design of straight bevel gear has been implemented, running results showed that the parametric modeling of bevel gear was speedy and accurate, which will facilitate the 3D modeling of straight bevel gears in Solidworks.However, the methodology proposed in this paper is mainly addressed for straight bevel gears which intersect at right angle, but it provides references for straight bevel gears at other angles and spiral bevel gears. Based on it, the next work is to study the parametric design of them in Solidworks.R EFERENCES[1] L. Kong; J.Y.H. Fuh; K.S. Lee, etc.. A Windows-native 3D Plastic Injection Mold Design System. Journal of Materials Processing Technology[J], 2003.139, PP81-89.[2] Solidworks Corporation. Solidworks Advanced Training:Further Development & API[M]. Beijing:China Machine Press,2009,PP1-121. [3] ZHANG Yan-fu; XIA Chun. A Method of Involute Gear 3d Mode1 With SolidWorks. Machinery Design & Manufacture[J], 2005.11, PP61-62.[4]XUE Chen.Study of gear 3D Design Method Based on Solidworks.Development and Innovation of Machinery & Electrical Products[J], 2010.5, PP88-90.[5]XU Jie.Research on Gear’s 3D Parametrical Design Based on Solidworks.Machinery & Electricity Messages[J] ,2010.30, PP130-131.[6]LI Jun-wei, PAN Yu-tian. Parametric Design and Finite Element Analysis of Straight Bevel Gear Based on SolidWorks[J].Modern Production Engineering,2009.12,PP52-55.[7] M.F.Spotts; T.E.Shoup. Design of Machine Elements[M]. Beijing:China Machine Press,2003,PP596-600.[8]Mathematic Manual Compiling Group. Mathematic Manual[M]. Beijing:Higher Education Press,1979,PP380-381.[9]Ansel C.Ugural.Mechanical Design(An Integrated Approach)[M].Chongqing:Chongqing University Press,2005.1,PP110-111. [10]WU Zong-ze.Mechanical Elements Design Manual[M].Beijing:China Machine Press,2004,PP703-707.。
Visual LISP导航模式的奥利康锥齿轮OBGD-CAD系统姚慧;周强;曲欣;曹岩
【期刊名称】《西安工业大学学报》
【年(卷),期】2012(032)006
【摘要】针对机械制造领域中的奥利康锥齿轮传动设计问题,提出以Visual LISP 为开发环境,采用导航模式及模块化设计方法,实现奥利康锥齿轮OBGD-CAD系统的开发.利用对话框控制语言构建符合工程操作习惯的人机界面,采用Visual LISP 开发传动设计流程控制、设计算法和参数化绘图等模块,采用数字化方式处理设计参数形成参数库,并实现AutoCAD环境下系统对参数库的调用.该系统界面操作简捷,逐步引导设计人员完成奥利康锥齿轮的设计、计算、校核和参数化绘图,有助于形成奥利康锥齿轮传动的标准设计流程及符合国家制图标准的齿轮结构图.
【总页数】5页(P460-464)
【作者】姚慧;周强;曲欣;曹岩
【作者单位】西安工业大学机电工程学院,西安710032;国家知识产权局专利局专利审查协作北京中心,北京100190;国家知识产权局专利局专利审查协作北京中心,北京100190;西安工业大学机电工程学院,西安710032
【正文语种】中文
【中图分类】TP391.72
【相关文献】
1.基于奥利康锥齿轮理论模型的齿形误差分析 [J], 苏建新;聂少武
2.基于Visual Lisp的直齿锥齿轮参数化设计及优化系统开发 [J], 白瑀n;张小粉;曹岩
3.奥利康制锥齿轮铣刀盘调整方法探讨 [J], 张艺
4.奥利康制锥齿轮铣刀盘调整方法探讨 [J], 张艺;;
5.奥利康摆线齿锥齿轮铣刀盘刀齿刃磨方法及加工仿真 [J], 续鲁宁;郭晓东;张立银;侯文军;李宣秋
因版权原因,仅展示原文概要,查看原文内容请购买。
基于VB的汽车圆锥齿轮式差速器齿轮设计计算苏仕见;徐元利【摘要】为了提高汽车圆锥齿轮式差速器的设计效率和确保圆锥齿轮参数计算的准确性,基于VB程序语言设计了差速器圆锥齿轮的计算软件.将某轿车的已知参数输入软件中进行验算,结果表明:该软件计算结果与手算结果基本一致,而且计算所需时间大大缩短.该软件的开发不仅使工程技术人员快速精确地获得差速器圆锥齿轮的相应参数,同时也提高了汽车差速器的研发效率.【期刊名称】《汽车工程师》【年(卷),期】2018(000)008【总页数】5页(P33-36,43)【关键词】差速器;圆锥齿轮;VB;设计计算【作者】苏仕见;徐元利【作者单位】天津科技大学机械工程学院;中国汽车技术研究中心汽车工程研究院;天津科技大学机械工程学院【正文语种】中文轮间差速器是汽车传动系的重要组成部分,其作用是在汽车转弯行驶或不平整路面上行驶时,将驱动力合理分配给左右车轮,以使各车轮以不同的转速转动,即保证两侧车轮作纯滚动,从而减少轮胎磨损和功率损失,满足汽车通过性和燃油经济性的要求。
文章研究的是汽车上广泛使用的普通对称式圆锥齿轮差速器,由行星齿轮、半轴齿轮、十字轴和差速器壳等组成。
行星齿轮和半轴齿轮属于圆锥齿轮,由于其齿形的复杂性和计算过程的独特性,通过参考资料[1-2]手工计算其齿形参数的方法工作量比较大,而且很容易出错。
因此,开发一款针对汽车圆锥齿轮式差速器齿轮设计的软件很有必要。
对于提高汽车的研发效率和降低研发成本具有重要的意义。
1 行星齿轮和半轴齿轮的设计计算设计前的已知参数为汽车的满载质量、发动机的额定功率、最大转矩、最高时速、变速器的传动比和主减速器的传动比等。
根据已知参数依次代入各计算公式分别求出行星齿轮和半轴齿轮的齿轮参数(工作齿高、全齿高、模数、节锥距、齿面宽及外圆直径等)。
1.1 差速器齿轮基本参数的选择1.1.1 行星齿轮数目行星齿轮的数目按照承载状况来选择,在承载不大的情况下取2个,反之则取4个。