2014年高考理科数学总复习试卷第65卷题目及其答案
- 格式:doc
- 大小:1.05 MB
- 文档页数:10
2014年浙江省普通高等学校招生统一考试数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,] .【分析】画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设B P′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,,∴q>0,∴q=2.由题意知a n>0∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
2014年普通高等学校招生全国统一考试〔浙江卷〕数学〔理科〕一.选择题:本大题共10小题,每一小题5分,共50分. 在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,如此=A C U 〔 〕A. ∅B. }2{C. }5{D. }5,2{ 【答案】B 【解析】.},2{},4,,3{},4,3,2{B A C A U u 选=∴==(2)i 是虚数单位,R b a ∈,,如此“1==b a 〞是“i bi a 2)(2=+〞的〔 〕 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】..∴.1-,1∴,2),2),1.1-,1.22,0-∴22-)2222222A b a b a i bi a i bi a b a b a b a ab b a i abi b a bi a 选件综上,是充分不必要条不是必要条件,或(是充分条件,(或(=====+=+∴======∴===+=+〔3〕某几何体的三视图〔单位:cm 〕如下列图,如此此几何体的外表积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】D 【解析】.138.93*3.186*3.363*4*3.935*34*6363*4*3D S S S S S S S S S S S 。
选几何体表面面积左面面积右面面积前后面面积,上底面面积几何体下底面面积右右前后上下左右前后上下=++++=∴=======+===4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像〔 〕A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】C 【解析】.12π6π(3sin 22π3sin(23cos 2∴)12π(3sin 2)4π3sin(23cos 3sin C x x x y x x x x y 可以得到。
14年高考真题——理科数学(江苏卷)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(14年高考真题——理科数学(江苏卷)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为14年高考真题——理科数学(江苏卷)(word版可编辑修改)的全部内容。
2014年普通高等学校招生全国统一考试(江苏)卷数学(理科)一.填空题(本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应位置上)1.已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B = 。
为 。
2.已知复数()252z i =+(i 为虚数单位),则z 的实部 3.右图是一个算法流程图,则输出的n 的值是 。
数的乘积为64.从1,2,3,6这4个数中一次随机地取2个数,则所取2个的概率是 。
象有一个横5.已知函数cos y x =与()()sin 20y x ϕϕπ=+≤<,它们的图坐标为3π的交点,则ϕ的值是 。
6.设抽测的树木的底部周长均在区间[]80,130,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm 。
7.在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 .体积分别为8.设甲、乙两个圆柱的底面分别为1S ,2S ,1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 . 9.在平面直角坐标系xOy 中,直线032=-+y x 被圆()()22214x y -++=截得的弦长为 。
10.已知函数()21f x x mx =+-,若对于任意[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是 。
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5 C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.54.(5分)钝角三角形ABC 的面积是,AB=1,BC=,则AC=()A.5 B .C.2 D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()1A .B .C .D .7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()2A.0 B.1 C.2 D.39.(5分)设x,y 满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A .B .C .D .11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A .B .C .D .12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.315.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:4年份2007200820092010201120122013年份代号t12345672.93.3 3.64.4 4.85.2 5.9人均纯收入y(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C :+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN 的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).5请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)624.设函数f(x)=|x +|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.72014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5 C.﹣4+i D.﹣4﹣i【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),8∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.5【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.94.(5分)钝角三角形ABC 的面积是,AB=1,BC=,则AC=()A.5 B .C.2 D.1【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC 的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.105.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()11A .B .C .D .【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.127.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.138.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y 满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.2【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).14由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()1516A .B .C .D .【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A ,B 两点的直线方程,和抛物线方程联立后化为关于y 的一元二次方程,由根与系数关系得到A ,B 两点纵坐标的和与积,把△OAB 的面积表示为两个小三角形AOF 与BOF 的面积和得答案.【解答】解:由y 2=2px ,得2p=3,p=,则F (,0).∴过A ,B 的直线方程为y=(x ﹣),即x=y +.联立 ,得4y 2﹣12y ﹣9=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=3,y 1y 2=﹣.∴S △OAB =S △OAF +S △OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A .B .C .D .【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题17的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.18二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x +a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ19=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.2016.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.21三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n +}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n +}是以首项为,公比为3的等比数列;∴a n +==,即;(Ⅱ)由(Ⅰ)知,22当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.23【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB ∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,24∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD 的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:25年份2007200820092010201120122013年份代号t12345672.93.3 3.64.4 4.85.2 5.9人均纯收入y(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴==26=0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t 的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C :+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN 的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【分析】(1)根据条件求出M的坐标,利用直线MN 的斜率为,建立关于a,27c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c ,),若直线MN 的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,28设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a 代入得,解得a=7,b=.29【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.30(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln 即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,31从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.32【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E 是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E 是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,33∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.34【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C 的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D 的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x +|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.35【分析】(Ⅰ)由a>0,f(x)=|x +|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x +|+|x﹣a|≥|(x +)﹣(x﹣a)|=|a +|=a +≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a +<5,即a2﹣5a+1<0,解得3<a <.当0<a≤3时,不等式即6﹣a +<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a 的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.36。
2014年普通高等学校招生全国统一考试理科参考答案(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a bd c->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = A.{1,0,1}- B.{1,0,1,2}- C.{1,0,2}- D.{0,1}2.已知复数Z 满足(34)25i z +=,则Z=A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130小学 初中高中 年级 O二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年高考复习理科数学试题(65)本试卷共4页,共21小题,满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上. 用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上. 在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式:h S V ⋅⋅=31,其中S 是底面面积,h 是高 柱体的体积公式:h S V ⋅=,其中S 是底面面积,h 是高一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知i 是虚数单位,则ii 13+=A .i 2-B .i 2C .i -D .i2. 命题2,0x R x x ∀∈-≥的否定是 A .2,0x R x x ∀∈-≥ B .2,0x R x x ∃∈-≥C .0,2<-∈∀x x R xD .0,2<-∈∃x x R x3. 已知向量()1,1=a ,b ),2(y =,若| a +b |=a ·b ,则=y A .3- B .1-C .1D .34. 等差数列{}n a 前17项和1751S =,则5791113a a a a a -+-+= A. 3 B. 6C. 17D. 515. 设随机变量ξ服从正态分布(0,1)N ,若p P =>)3.1(ξ,则=<<-)03.1(ξP A.12p + B.1p - C.12p -D.12p - 6. 设0>a ,若不等式|||1|1x a x -+-≥对于任意R x ∈恒成立,则a 的最小值是 A.1 B.1-C.0D. 27. 如图,在一个正方体内放入两个半径不相等的球1O 、2O , 这两个球相外切,且球1O 与正方体共顶点A 的三个面相切, 球2O 与正方体共顶点1B 的三个面相切,则两球在正方体的 面C C AA 11上的正投影是A B C D8. 对于任意实数a 、b ,当0>b 时,定义运算2log (01)2(01)ba b a a a a b b ab a a a ⎧+>≠⎪*=⎨+-=⎪⎩且或≤,则满足方程x x *-=*)2(2的实数x 所在的区间为A.(0,1)B.(1,2)C.(2,3)D.(3,4)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.双曲线3322=-y x 的离心率为 . 10.62()x x-展开式中,常数项的值为 .11.设函数xk x x x f tan ))(2()(++=为奇函数,则=k .12.命题:“若空间两条直线a ,b 分别垂直平面α,则b a //”学生小夏这样证明:设a ,b 与面α分别相交于A 、B ,连结A 、B ,αα⊥⊥b a , ,α⊂AB …①∴AB b AB a ⊥⊥, …………② ∴b a // ………………………③ 这里的证明有两个推理,即: ①⇒②和②⇒③. 老师评改认为 小夏的证明推理不正确,这两个 推理中不正确的是 . 13.运行右图的流程图,输出的=n .1AA1B1O 2O1CCm =2,n =0,a =4,b =5开始否输出nm=m +1 结束 m <9 ? 以a,b,m 为三边的三角形是锐角三角形?是 n=n+1是否(二)选做题(14、15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)已知圆的极坐标方程为)4cos(2πθρ+=,则该圆的半径是 .15.(几何证明选讲选做题)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且PB PA 3=,则=BCPB. 三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数x x x x f 22cos 2)cos (sin )(-+=. (1)求函数)(x f 的最小正周期; (2)试比较)12(π-f 与)6(πf 的大小.17.(本小题满分12分)设函数b ax x x f +-=3)(3(0≠a ).(1)若曲线)(x f y =在点(1,)1(f )处与直线2=y 相切,求a 、b 的值; (2)求)(x f 的单调区间. 18.(本小题满分14分)如图,1AA 、1BB 为圆柱1OO 的母线,BC 是 底面圆O 的直径,D 、E 分别是1AA 、1CB 的中 点,1DE CBB ⊥面. (1)证明://DE ABC 面;(2)求四棱锥11A ABB C -与圆柱1OO 的体积比; (3)若BC BB =1,求1CA 与面C BB 1所成角的正弦值.19.(本小题满分14分)已知数列{}n a 满足:111(,)1,22(,)n n na n n n N a a a n n n N *+*⎧+∈⎪==⎨⎪-∈⎩为奇数为偶数. (1)求32,a a ;.PBAC1A O1OABCDE1B(2)设*∈-=N n a b n n ,22,求证:数列{}n b 是等比数列,并求其通项公式; (3)已知n n b c 21log =,求证:111113221<+++-nn c c c c c c . 20.(本小题满分14分)某工厂生产A 、B 两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品. 为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数. 现随机抽取了5组的质检记录,其一等品数如下面的茎叶图所示:(1)试根据茎叶图所提供的数据,分别计算A 、B 两种产品为一等品的概率P A 、P B ;(2)已知每件产品的利润如表一所示,用ξ、η分别 表示一件A 、B 型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)ξE 、ηE ;(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x 、y 分别表示生产A 、B 两种产品的数量,在(2)的条件下,求x 、y 为何值时,ηξyE xE z +=最大?最大值是多少?(解答时须给出图示)21.(本小题满分14分)如图,在x 轴上方有一段曲线弧Γ,其端点A 、B 在x 轴上(但不属于Γ),对Γ上任一点P 及点)0,1(1-F ,)0,1(2F ,满足:22||||21=+PF PF .直线AP ,BP 分别交直线)2(:>=a a x l 于R ,T 两点.(1)求曲线弧Γ的方程;(2)求||RT 的最小值(用a 表示); (3)曲线Γ上是否存点P ,使PRT ∆为正三角形?若存在,求a 的取 值范围;若不存在,说明理由.A 型号B 型号9 0 82 02 3 7 7 1 6 4 3等级 利润 产品 一等品 二等品 A 型 4(万元) 3(万元)B 型 3(万元) 2(万元)表一 项目 用量 产品 配件(件) 资金(万元) A 型 6 4 B 型 2 8 表二 A BPRTl xy O○.F 1. F 2○数学(理科)参考答案及评分意见一、选择题:本大题共8小题,每小题5分,共40分.1.A2.D3.D4.A5.D6.D7.B8. B二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.9.332 10.60 11.2- 12.②⇒③ 13.3 14. 1; 15.21.三、解答题:本大题共6小题,共80分.16.(本小题满分12分)解:(1)x x x x f 22cos 2)cos (sin )(-+=x x x 2cos 2cos sin 21-+= ………………………………………………2分 x x 2cos 2sin -= …………………………………………………………3分 )2cos 222sin 22(2x x -=……………………………………………4分 )42sin(2π-=x .…………………………………………………………5分∴函数)(x f 的最小正周期ππ==22T . ………………………………………6分 (2)由222242k x k πππππ--+≤≤可得:388k x k ππππ-+≤≤. ………………………………………………………8分∴函数)(x f 在区间388x ππ-≤≤上单调递增. ……………………………10分又]83,8[6,12ππππ-∈- , ∴)6()12(ππf f <-. ……………………………………………………………12分17.(本小题满分12分)解:(1)a x x f 33)(2-=',…………………………………………………………………2分∵曲线在点(1,)1(f )处与直线2=y 相切,∴⎩⎨⎧=='2)1(0)1(f f 即 ⎩⎨⎧=+-=-231033b a a , ……………………………………………4分解得 ⎩⎨⎧==41b a . ……………………………………………………………………5分(2)∵)(333)(22a x a x x f -=-='(0≠a ) …………………………………7分 (i )当0<a 时,0)(>'x f 恒成立,)(x f 在(∞-,∞+)上单调递增;……9分 (ii )当0>a 时,由0)(>'x f ,得a x >或a x -<,………………………10分∴函数)(x f 的单调增区间为(∞-,a -)和(a ,∞+); 单调减区间为(a -,a ). ………………………………………………12分18.(本小题满分14分) 解:(1)证明:连结EO ,OA .O E , 分别为BC C B ,1的中点,∴1//BB EO .…………………………………2分 又1//BB DA ,且121BB EO DA ==. ∴四边形AOED 是平行四边形,即ABC DE OA DE 面⊄,//. ………………3分 ∴ABC DE 面//. ………………………4分 (2)由题1CBB DE 面⊥,且由(1)知OA DE //.∴1CBB AO 面⊥,∴ BC AO ⊥,∴AB AC =. …………………………………………………………………………6分 因BC 是底面圆O 的直径,得AB CA ⊥,且CA AA ⊥1,∴B B AA CA 11面⊥,即CA 为四棱锥的高.………………………………………7分设圆柱高为h ,底半径为r ,则h r V 2π=柱,232)2()2(31hr r r h V =⋅=锥 ∴锥V :=柱V π32. …………………………………………………………………9分 (3)解一:由(1)(2)可知,可分别以1,,AA AC AB 为坐标轴建立空间直角标系,如图设21==BC BB ,则)2,0,0(1A ,)0,2,0(C ,1A O1OABCDE1B)0,22,22(O ,从而)0,22,22(=AO , )2,2,0(1-=CA ,由题,AO 是面1CBB的法向量,设所求的角为θ.…………………12分则111||6sin |cos ,|6||||AO CA AO CA AO CA θ⋅=<>==. ………………………………14分解二:作过C 的母线1CC ,连结11C B ,则11C B 是上底面圆1O 的直径,连结11O A ,得 11O A AO //,又11C CBB AO 面⊥,∴1111C CBB O A 面⊥,连结1CO , 则11CO A ∠为1CA 与面C BB 1所成的角, 设21==BC BB ,则6)2(2221=+=C A ,111=O A .……12分在C O A Rt 11∆中,66sin 11111==∠C A O A CO A .………………14分19.(本小题满分14分) 解:(1)由数列{}n a 的递推关系易知:25,2332-==a a .…………………………………………………………………2分 (2)2)12(21212221-++=-=+++n a a b n n n)12()4(21)12(21212-+-=-+=+n n a n a n nn n n b a a 21)2(2112122=-=-=. ……………………………6分 又21,0,212121=∴≠∴-=-=+n n n b b b a b , 1CO1OABCDE 1B1A 1A O1OABCDE 1Bxyz即数列{}n b 是公比为21,首项为21-的等比数列, n n n b )21()21(211-=-=-. ………………………………………………………7分(3)由(2)有n b c nn n =⎪⎭⎫⎝⎛==21log log 2121.………………………………………8分nn n n 111)1(1--=-. ……………………………………………………10分∴n n c c c c c c n n 111312121111113221--++-+-=+++- 111<-=n. ………………………………………………………………14分 20.(本小题满分14分) 解:(1) 由茎叶图知 68.0100171713129=++++=A P ;……………………………2分71.0100201314168=++++=B P . ……………………………4分 (2)随机变量ξ、η的分布列是……………6分∴ 68.332.0368.04=⨯+⨯=ξE ,71.229.0271.03=⨯+⨯=ηE . ………8分(3)由题设知6230484000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,目标函数为y x yE xE z 71.268.3+=+=ηξ,………………………10分作出可行域如图所示…………………12分 作直线l :071.268.3=+y x ,将向l 右上方平移至l 1位置时,即直线经过可行域上的点M 时,y x z 71.268.3+=取最大值.ξ4 3 P 0.680.32η3 2 P0.710.294x +8y =406x +2y =30Oll 1 y M x510 515解方程组⎩⎨⎧=+=+40843026y x y x ,得4=x ,3=y ,即4=x ,3=y 时,z 取最大值,最大值是22.85. …………………………14分 21.(本小题满分14分)解:(1)由椭圆的定义,曲线Γ是以)0,1(1-F ,)0,1(2F 为焦点的半椭圆,1,2,1222=-===c a b a c . ……………………………………………1分∴Γ的方程为)0(1222>=+y y x . ……………………………………………3分 (注:不写区间“0>y ”扣1分)(2)解法1:由(1)知,曲线Γ的方程为)0(1222>=+y y x ,设),(00y x P , 则有222020=+y x , 即 2122020-=-x y ……① ………………………………4分又)0,2(-A ,)0,2(B ,从而直线BP AP ,的方程为 AP :)2(200++=x x y y ; BP :)2(200--=x x y y ……………5分令a x =得R ,T 的纵坐标分别为 )2(200++=a x y y R ; )2(200--=a x y y T .∴ )2(222020--=⋅a x y y y T R ……② ………………………………………7分将①代入②, 得 )2(212a y y T R -=. ∴ 222||||22||22(2)R T R T R T R T R T RT y y y y y y y y y y a =-=+--=-≥.当且仅当T R y y =,即T R y y -=时,取等号.即||RT 的最小值是)2(22-a . ……………………………………………9分解法2:设),(),,(),,(21y a T y a R n m P ,则由R P A ,,三点共线,得221+=+m n a y ..①同理,由T P B ,,三点共线得:222-=-m n a y …② …………………5分由①×②得:2222221-=-m n a y y .由21122222m n n m -=⇒=+,代入上式,21221222221-=--=-m m a y y . 即)2(21221a y y -=. …………………………………………………………7分 2221212121212||||22||22(2)RT y y y y y y y y y y a =-=+--=-≥,当且仅当21y y =,即21y y -=时,取等号.即||RT 的最小值是)2(22-a . ………………………………………………9分(3)设),(00y x P ,依题设,直线l ∥y 轴,若PRT ∆为正三角形,则必有30180=∠-=∠PBx PAB ,…………………………………………………10分从而直线BP AP ,的斜率存在,分别设为1k 、2k ,由(2)的解法1知, 332001=+=x y k ; 332002-=-=x y k , ……………………………11分 于是有 312202021-=-=⋅x y k k , 而2122020-=-x y ,矛盾.………………………13分∴不存在点P,使PRT ∆为正三角形. ……………………………………………14分。
绝密★考试结束前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =ð( )(A )∅ (B ){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2(i)2i a b +=”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )(A )902cm (B )1292cm(C )1322cm (D )1382cm 【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(4)为了得到函数sin3cos3y x x =+的图像,可以将函数2cos3y x =的图像( ) (A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移12π个单位 (D )向左平移12π个单位【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.(5)在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( )(A )45(B )60(C )120(D )210【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C . 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( )(A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c > 【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C .【点评】本题考查方程组的解法及不等式的解法,属于基础题.(7)在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键. (8)记,max{,},x x y x y y x y≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b r r 为平面向量,则( )(A )min{||,||}min{||,||}a b a b a b +-≤r r r r r r (B )min{||,||}min{||,||}a b a b a b +-≥r r r r r r(C )2222max{||,||}||||a b a b a b +-≤+r r r r r r (D )2222max{||,||}||||a b a b a b +-≥+r r r r r r 【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-r r r r 与min{||,||}a b r r的大小不确定,平行四边形法可知max{||,||}a b a b +-r r r r所对的角大于或等于90︒ ,由余弦定理知 2222max{||,||}||||a b a b a b +-≥+r r r r r r,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+r r r r r rr r r r r r ),故选D . 【点评】本题在处理时要结合着向量加减法的几何意义,将a r ,b r ,a b +r r ,a b -r r放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.(9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A 【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m n C C C C p C C C +++=++g g =223323()(1)m m mn n n m n m n -++-++-, ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >.又∴1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m n E m n m n m nξ+=⨯+⨯=+++, 又222(1)(1)n m n C n n P ξ+-===,11222(2)n m m n C C mnP ξ+===,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mnm n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++-,所以21()()E E ξξ>,故选A . 解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99L ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k =,则( )(A )123I I I << (B )213I I I << (C )132I I I << (D )321I I I << 【答案】B 【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭g,故2111352991199()199999999999999I ⨯-=++++==L g , 由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯g , 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-g g g g L g g=12574[2sin(2)2sin(2)]139999ππ->g g ,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= . 【答案】25【解析】设1ξ=时的概率为p ,ξ的分布列为:由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 __.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩ 解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值, 故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.ξ 0 1 2P15 p 115p --ξ 0 1 2P15 35 15(14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60 【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =, 二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 . 【答案】5【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a=-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bm B a b a b-++, 设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b mQ a b a b ----,PQ 与已知直线垂直, ∴1PQ l k k =-g ,即222222319139b ma b a m m a b --=----g , 即得2228a b =,即22228()a c a =-,即2254c a =,所以5c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b my b =-……① ,又003x y m =-,由1PQ l k k =-g 得00113y x m =--g , 即得0011323y y m =--g 得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以5c =,得5c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角). 【答案】539【解析】解法一:∴15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ', 1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-, (020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP x AP x θ-==+g ,令220225xy x-=+,则函数在 []0,20x ∈单调递减, ∴0x =时,tan θ取得最大值为232002034334592250-==+g2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=, 设BP x '=,则20CP x '=+,(0x >) 由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+, 在直角ABP ∆'中,2'225AP x =+, ∴2'320tan '3225PP xAP x θ+==+g ,令220225x y x+=+,则2222520'(225x )225x y x-=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+, 此时454x =时,tan θ取得最大值为3553339=g , 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∴15cm AB =,25cm AC =,90ABC ∠=︒, ∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A , 所以2223(20)'3203tan '315225x PP x AP x xθ--===++g, 设2320(x)tan 3225x f x θ-==+g (20x ≤), 22322520'(x)3(225)225x f x x +=-++g , 所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <, 所以当454x =-时max 24520453534()()43945225()4f x f +=-==+g ,所以tan θ取得最大值为539. 解法三:分析知,当tan θ取得最大时,即θ最大, 最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D , 过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===g g ,203tan303DB BC =︒=g , 所以max203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A =,求ABC ∆的面积.解:(1)由题得1cos21cos233sin 2sin 22222A B A B ++-=-,即3131sin 2cos2sin 2cos22222A AB B -=-,sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=,即23A B π+=,所以3C π=. (2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =,故sin sin()B A C =+=433sinAcosC cosAsinC ++=, 所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题. (19)已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈L .若{}n a 为等比数列,且1322,6a b b ==+. (1)求n a 与n b ; (2)设11(*)n n nc n N a b =-∈.记数列{}n c 的前n 项和为n S . (∴)求n S ;(∴)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∴123(2)(*)n b n a a a a n N =∈L ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=L ②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=, ∴326b b =+,∴38a =.∴{}n a 为等比数列,且12a =, ∴{}n a 的公比为q ,则2324a q a ==,由题意知0n a >,∴0q >, ∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈L ,得:1232222(2)n b n ⨯⨯⨯⨯=L , 即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(∴)∴1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++L =2111111111()()()21222321n n n --+--++--+L =21111(1)2221n n +++--+L =111121n n --++=1112n n -+.(∴)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+, 而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<g ,所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD .(2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角,在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥, 又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =; 在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =, 得233BF =,23AF AD =,从而 23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==g , 所以,6BFG π∠=,即二面角B AD E --的大小为6π. 解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -, 如图所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B .设平面ADE 的法向量为111(,,)m x y z =u r,平面ABD 的法向量为222(,,)n x y z =r,可算得:(0,2,2)AD =--u u u r,(1,2,2)AE =--u u u r ,(1,1,0)DB =u u u r , 由00m AD m AE ⎧=⎪⎨=⎪⎩u r u u u rg u r u u u r g ,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩, 可取(0,1,2)m =-u r ,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即22222200y z x y ⎧--=⎪⎨+=⎪⎩ 可取(0,1,2)n =-r ,于是||3|cos ,|||||32m n m n m n ⋅<>===⋅⋅u r ru r r u r r .由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C 只有一个公共点P , 且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=, 由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222(,)a km b mP b a k b a k -++,又点P 在第一象限, 故点P 的坐标为22222222(,)a k b P b a kb a k-++.解法二:作变换''x x ay y b⎧=⎪⎪⎨⎪=⎪⎩,则椭圆C :22221(0)x y a b a b +=>> 变为圆'C :22''1x y +=,切点00(,)P x y 变为点00'(',')P x y ,切线00:()l y y k x x -=-(0)k <,变为00':'y (')l by k ax x -=-.在圆'C 中设直线''O P 的方程为''y mx =(0m >), 由22''''1y mx x y =⎧⎨+=⎩,解得02021'1'1x m m y m ⎧=⎪+⎪⎨⎪=⎪+⎩, 即221'(,)11m P mm++,由于'''O P l ⊥,所以'''1O P l k k =-g ,得1ak m b ⋅=-,即bm ak=-, 代入得22221'(,)11()()bak P b bak ak -++,即222222'(,)ak b P a k b a k b -++, 利用逆变换''x x ay y b ⎧=⎪⎪⎨⎪=⎪⎩,代入即得:22222222(,)a k b P a k b a k b -++. (2)由于直线1l 过原点O 且与直线l 垂直,故直线1l 的方程为0x ky +=, 所以点P 到直线1l 的距离222222222||1a kb kb a k b a kd k -+++=+,整理得:22222222a b d b b a a k k-=+++,因为22222b a k ab k+≥,所以2222222222222a b a b d a b b b a abb a a k k --=≤=-+++++,当且仅当2bk a=时等号成立. 所以,点P 到直线1l 的距离的最大值为a b -.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.(22)已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设,b R ∈若()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,求3a b +的取值范围.解:(1)∴33333,()3||33,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,∴2233,'()33,x x af x x x a ⎧+≥⎪=⎨-<⎪⎩,由于11x -≤≤,(∴)当1a ≤-时,有x a ≥,故3()33f x x x a =+-,所以,()f x 在(1,1)-上是增函数,因此()(1)43M a f a ==-,()(1)43m a f a =-=--, 故()()(43)(43)8M a m a a a -=----=.(∴)当11a -<<时,若(),1x a ∈,3()33f x x x a =+-,在(),1a 上是增函数;若()1,x a ∈-,3()33f x x x a =--,在()1,a -上是减函数, ∴()max{(1),(1)}M a f f =-,3()()a m a f a ==, 由于(1)(1)62f f a --=-+,因此当113a -<≤时,3()()34M a m a a a -=--+; 当113a << 时,3()()32M a m a a a -=-++; (∴)当1a ≥时,有x a ≤,故3()33f x x x a =-+,此时()f x 在(1,1)-上是减函数,因此()(1)23M a f a =-=+,()(1)23m a f a ==-+,故()()4M a m a -=;综上,338,1134,13()()132,134,1a a a a M a m a a a a a ≤-⎧⎪⎪--+-<≤⎪-=⎨⎪-++<<⎪⎪≥⎩.(2)令()()h x f x b =+,则3333,()33,x x a b x a h x x x a b x a ⎧+-+≥⎪=⎨-++<⎪⎩,2233,'()33,x x ah x x x a⎧+≥⎪=⎨-<⎪⎩,因为()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,即2()2h x -≤≤对[]1,1x ∈-恒成立,所以由(1)知, (∴)当1a ≤-时,()h x 在(1,1)-上是增函数,()h x 在[1,1]-上的最大值是(1)43h a b =-+,最小值(1)43h a b -=--+,则432a b --+≥-且432a b -+≤矛盾;(∴)当113a -<≤时,()h x 在[1,1]-上的最小值是3()h a a b =+, 最大值是(1)43h a b =-+,所以32a b +≥-且432a b -+≤, 从而323362a a a b a --+≤+≤- 且103a ≤≤, 令3()23t a a a =--+,则2'()330t a a =->,∴()t a 在1(0,)3上是增函数,故()(0)2t a t >=-,因此230a b -≤+≤;(∴)当113a <<时,()h x 在[1,1]-上的最小值是3()h a ab =+,最大值是(1)32h a b -=++,所以由32a b +≥-且322a b ++≤,解得283027a b -<+≤ (∴)当1a ≥时,()h x 在[1,1]-上的最大值是(1)32h a b -=++,最小值是(1)3a b 2h =+-,所以由322a b +-≥-且322a b ++≤,解得30a b +=.综上,3a b +的取值范围是230a b -≤+≤.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
2014年高考理科数学总复习试卷第65卷题目及其答案注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班别、姓名、考号填 写在答题卡的密封线内.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.参考公式:1、锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高。
2、22⨯列联表随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=)(2k K P ≥与k 对应值表:)(2k K P ≥0.10 0.05 0.025 0.010 0.005 0.001 k2.7063.8415.0246.6357.87910.828一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z 满足(1)1i z i +=-,则复数z 的共轭复数z =( ) A .i - B .i C.1i + D .1i - 2. 已知集合2{|230}M x x x =--=,{|24}N x x =-<≤,则MN =A.{|13}x x -<≤B.{|14}x x -<≤C. {3,1}-D.{1,3}- 3. 命题“(,),,,2330x y x y R x y ∃∈++<”的否定是A.(,),,,2330x y x y R x y ∃∈++<B.(,),,,2330x y x y RR x y ∃∈++≥C.(,),,,2330x y x R y R x y ∀∈∈++≥D.(,),,,2330x y x R y R x y ∀∈∈++>4.若向量,a b 满足2==a b ,a 与b 的夹角为60°,则|+=a b | A. 223+B. 23C. 4D.125. 若实数x y ,满足1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,,,则23z x y =+的最大值是A. 0B.21 C.2 D. 36.函数1()f x x x=+的单调递减区间是 A.(1,1)- B.(1,0)-(0,1) C.(1,0)-,(0,1) D.(,1)-∞-,(1,)+∞7.从点(,3)P m 向圆C:22(2)(2)1x y +++=引切线,则切线长的最小值为( ) A.62 B.26 C.24+D.58.对任意实数y x ,,定义运算x y ax by cxy ⊗=++,其中c b a ,,是常数,等式右边的运算是通常的加法和乘法运算.已知123⊗=,234⊗=,并且有一个非零常数m ,使得x R ∀∈,都有x m x =*,则34⊗的值是( )A. 4-B. 4C.3-D.3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式344x -≤的解集是10.图1是一个质点做直线运动的V t -图象,则质点在前6 s 内的位移为 m 11.图2-1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为1212A A A ,,…,.图2-2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 .12. 在△ABC 中,AB =3,BC =13,AC =4,则△ABC 的面积等于13.若函数()() y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-;函数x x g lg )(= ,则函数()y f x =与()y g x =的图象在区间[]5,5-内的交点个数共有 个.(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,PAB 、PCD 为⊙O 的两条割线,若PA=5,AB=7,CD=11,2AC =,则BD 等于15.(坐标系与参数方程选做题)在极坐标系),(θρ)20(πθ≤≤中,点 5(2,)4P π到直线cos()24πρθ-=的距离等于三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)设函数()sin 23f x A x π⎛⎫=+⎪⎝⎭(x R ∈)的图象过点7,212P π⎛⎫-⎪⎝⎭. (Ⅰ)求()f x 的解析式;(Ⅱ)已知1021213f απ⎛⎫+= ⎪⎝⎭,02πα-<<,求3cos 4πα⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)频数 5 10 15 10 5 5 赞成人数 4812521(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;月收入不低于55百元的人数 月收入低于55百元的人数 合计 赞成 a =c =不赞成 b =d =合计(Ⅱ)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ξ,求随机变量ξ的分布列及数学期望。
18. (本题满分14分)如图4,已知平面11BCC B 是圆柱的轴截面(经过圆柱的轴的截面),BC 是圆柱底面的直径,O 为底面圆心,E 为母线1CC 的中点,已知14AB AC AA === (I ))求证:1B O ⊥平面AEO ; (II )求二面角1B AE O --的余弦值. (Ⅲ)求三棱锥1A B OE -的体积.19.(本小题满分14分)一动圆与圆221:(2)3O x y ++=外切,与圆222:(2)27O x y -+=内切.(I)求动圆圆心M 的轨迹方程.(II)试探究圆心M 的轨迹上是否存在点P ,使直线1PO 与2PO 的斜率121PO PO k k ⋅=?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).20. (本小题满分14分)设集合W 是满足下列两个条件的无穷数列{a n }的集合:①212n n n a a a +++≤, ②n a M ≤.其中n N *∈,M 是与n 无关的常数.(Ⅰ)若{n a }是等差数列,n S 是其前n 项的和,42a =,420S =,证明:{}n S W ∈; (Ⅱ)设数列{n b }的通项为52n n b n =-,且{}n b W ∈,求M 的取值范围; (Ⅲ)设数列{n c }的各项均为正整数,且{}n c W ∈.证明1n n c c +≤. 21.(本小题满分14分) 已知函数21()ln ,()(1)2f x xg x ax a x ==--,(a R ∈). (Ⅰ)已知函数()y g x =的零点至少有一个在原点右侧,求实数a 的范围.(Ⅱ)记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点.如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()()()G x f x g x =-(a R ∈且0a ≠)是否存在“中值相依切线”,请说明理由.参考答案一、选择题:1. B 解析:21(1)1(1)(1)i i z i z i i i i --===-⇒=++-2. D 解析:2{|230}{1,3}M x x x =--==-,所以M N ={1,3}-3. C 解:(,)x y ∃的否定是(,)x y ∀,2330x y ++<的否定是2330x y ++≥故选择C 。
4. B 解析:2220|||||2|||cos60+=++a b |a b a b |144222122=++⨯⨯⨯=,|23+=a b |5. D 解析:平面区域如图,三个“角点”坐标分别为11(0,0),(0,1),(,)22-,所以max 3z =6. C 解析:函数1()f x x x =+的定义域为0x ≠的实数,令21()10f x x'=-=解得1x =±,当10x -<<或01x <<时()0f x '<,所以函数()f x 的单调递减区间是(1,0)-,(0,1)7. A 解析:利用切线长与圆半径的关系加以求解.设切点为M ,则CM ⊥MP ,于是切线MP 的长MP =1)23()2(2222-+++=-m MC CP ,显然,当2m =-时,MP 有最小值6224=.8. D 解:依题意得(1)0ax mb cmx x cm a x bm ++=⇒--+=恒成立,因为0m ≠,所以010b cm a =⎧⎨--=⎩,又2236152364221a b c a c a a b c b c c ++==--=⎧⎧⎧⇒⇒⎨⎨⎨++==+=-⎩⎩⎩,所以5x y x xy ⊗=- 故3453343⊗=⨯-⨯=二、填空题:9. 填:8|03x x ⎧⎫≤≤⎨⎬⎩⎭解:由344x -≤得8434403x x -≤-≤⇒≤≤10. 填:9. 解1:由题图易知3, 04,4()39, 4 6.2t t V t t t ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩∴s=⎰⎰⎰-+=604064)239(43)(dt t tdt dt t v =642402)t 43-(9t t 83+=6+3=9.解2:质点在前6s 内的位移为三角形的面积16392s =⨯⨯=11. 填:9. 解析:算法流程图输出的结果是“分数大于或等于90分的次数”,从茎叶图中可知共有9次分数大于或等于90分.12. 填:33. 解:由余弦定理cos A =2222AB AC BC AB AC +-⋅ =43213169⨯⨯-+ =21,∴sin A =23. ∴113sin 3433222ABC S AB AC A ∆=⋅=⨯⨯⨯=13. 填:8.解: 函数()y f x =以2为周期,()y g x =是偶函数,画出图像可知有8个交点.14. 填:6.解析:由割线定理得PA·PB=PC·PD,∴5×(5+7)=PC(PC+11).∴PC=4或PC=-15(舍去). 又∵PA·PB=PC·PD,PB PC PD PA =,∠P=∠P,∴△PAC ∽△PDB.∴31155===PD PA BD AC . 故36BD AC ==15. 填:22+ 解:点 5(2,)4P π的直角坐标为(2,2)--,直线cos()24πρθ-=的直角坐标方程为20x y +-=,所以|222|222d ---==+三、解答题16. 解(Ⅰ)∵()f x 的图象过点7,212P π⎛⎫-⎪⎝⎭,∴773sin 2sin 2121232f A A ππππ⎛⎫⎛⎫=⨯+==- ⎪ ⎪⎝⎭⎝⎭ ∴2A = (3分) 故()f x 的解析式为()2s i n 23fx x π⎛⎫=+⎪⎝⎭ (5分)(Ⅱ) ∵102sin 22sin 2cos 2122123213f απαπππαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦即5cos 13α=, (7分)∵02πα-<<,∴22512sin 1cos 11313αα⎛⎫=--=--=- ⎪⎝⎭(9分)∴333cos cos cos sin sin 444πππααα⎛⎫-=+ ⎪⎝⎭5212217213213226⎛⎫=⨯--⨯=- ⎪ ⎪⎝⎭(12分)17. 解:(Ⅰ)2乘2列联表月收入不低于55百元人数 月收入低于55百元人数 合计 赞成 3a = 29c = 32 不赞成 7b =11d =18 合计1040502250(311729) 6.27 6.635(37)(2911)(329)(711)K ⨯⨯-⨯=≈<++++.所以没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异. (6分)(Ⅱ)ξ所有可能取值有0,1,2,3,()2284225106288401045225C C P C C ξ==⋅=⨯=,()21112882442222510510428616104110451045225C C C C C P C C C C ξ==⨯+⨯=⨯+⨯=()111228244222225105104166135210451045225C C C C C P C C C C ξ==⨯+⨯=⨯+⨯=()12422251041231045225C C P C C ξ==⋅=⨯=所以ξ的分布列是ξ 0 1 2 3P84225 104225 35225 2225所以ξ的期望值是1047064022********E ξ=+++=。