实验29 铁电性能测量实验讲义
- 格式:doc
- 大小:394.50 KB
- 文档页数:6
铁电测试原理
铁电测试是一种用于测量铁电材料性质的测试方法。
铁电材料具有自发电偶极矩,并且能够在外加电场作用下产生电介质极化。
铁电测试主要通过测量材料的极化行为来评估其铁电性能。
铁电测试的基本原理是利用外加电场对铁电材料产生的极化效应进行检测。
在测试中,首先将待测试的铁电样品放置在测试装置中,并施加一个恒定电场。
然后,通过测量样品中的极化电荷或极化电流来评估铁电材料的性能。
常用的铁电测试方法包括极化-电压(P-V)测试和迭代抗收叠(PUND)测试。
在P-V测试中,通过改变施加在材料上的电
场大小,并测量相应的极化电荷或电流来建立极化-电压曲线。
这个曲线反映了材料的极化-电场关系,并可用于确定铁电材
料的极化特性。
PUND测试是一种动态测量方法,它通过施加一系列周期性电场脉冲来测量材料的极化响应。
在测试过程中,每个脉冲都会产生一个极化响应,而材料的极化水平则是通过不同脉冲之间的极化响应差异来确定的。
PUND测试可以提供更详细的铁电材料性能信息,如退极化电场、饱和极化和铁电畴切换等。
通过铁电测试,可以评估铁电材料的极化特性、响应时间、电介质的稳定性以及疲劳行为等。
这些测试结果对于理解铁电材料的性能、优化材料制备工艺和应用于电子器件中具有重要意义。
物理实验技术中的铁电材料测量与实验方法引言:铁电材料作为一种特殊的功能材料,在电器和电子工业中有着广泛的应用。
为了研究和探索铁电材料的特性,科学家们开展了一系列的物理实验,并借助先进的测量和实验方法来获得准确和可靠的数据。
本文将介绍物理实验技术中常用的铁电材料测量与实验方法,并探讨它们的原理和应用。
一、铁电材料的基本特性和测量铁电材料具有独特的电极化特性,能够在外界电场的作用下发生自发极化。
为了测量铁电材料的电极化行为,通常使用电压-电荷曲线来描述材料的电极化状态。
常用的测量方法包括极化曲线测量和退极化曲线测量。
极化曲线测量是在不同的偏置电压下,测量材料的产生和消除极化的电荷量。
退极化曲线测量则是通过在一个初始电场下测量极化电荷,然后通过改变电场方向来观察电荷的变化。
这些测量方法能够提供有关铁电材料的极化行为和电压响应的重要信息。
二、电容法和介电谱测量电容法是一种常见的测量铁电材料性质的方法。
它通过测量材料的电容来推断材料的电极化状态。
电容法可以分为恒压法和交流法两种。
恒压法是通过在铁电材料上施加一个固定的电压,然后测量电容的变化来推断材料的电极化行为。
交流法则是通过施加交流电压,并测量材料的电容和电导率来得到材料的介电常数和损耗因子。
这些测量方法广泛应用于铁电材料的电容性能和其频率响应的研究中。
三、X射线衍射测量与结构分析X射线衍射是一种常用的分析方法,可以用于表征铁电材料的晶体结构和晶格参数。
这种方法可以通过材料对入射X射线的散射进行测量,从而确定材料的晶体结构和晶格常数。
X射线衍射方法常用的设备包括X射线衍射仪和衍射图谱仪。
X射线衍射仪通过测量材料对入射X射线的散射角度和强度来获得样品的衍射图谱。
衍射图谱仪则用于解析和分析衍射图谱,从而确定材料的晶体结构和晶格参数。
四、压电力显微术的应用压电力显微术是一种常用的表征铁电材料性质的方法,可以用于研究材料的电极化状态和压电响应。
这种方法利用原子力显微镜的力传感器,可以测量材料在外界电场或者压力作用下产生的微小位移或变形。
铁电体电滞回线的测量铁电材料是一类具有自发极化,而且其自发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。
铁电材料的主要特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。
电滞回线是铁电体的重要特征和重要判据之一,通过电滞回线的测量可以得到自发极化强度P s、剩余极化强度P r、矫顽场E c等重要铁电参数,理解铁电畴极化翻转的动力学过程。
【实验目的】1.了解铁电测试仪的工作原理和使用方法。
2.掌握电滞回线的测量及分析方法。
3.理解铁电材料物理特性及其产生机理。
【实验仪器】本实验采用美国Radiant Technology公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。
【实验原理】铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。
电滞回线的产生是由于铁电晶体中存在铁电畴。
铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。
当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q(极化强度P)和外电压V(电场强度E)之间构成电滞回线的关系。
另外由于铁电体本身是一种电介质材料,两面涂上电极构成电容器之后还存在着电容效应和电阻效应,因此一个铁电试样的等效电路如图2所示。
其中C F对应于电畴反转的等效电容,C D对应于线性感应极化的等效电容,R C对应于试样的漏电流和感应极化损耗相对应的等效电阻。
实验⼀材料的铁电性能测量实验⼀陶瓷的铁电性能测试1.原理铁电体是在⼀定温度范围内含有能⾃发极化、并且⾃发极化⽅向可随外电场可逆转动的晶体。
在铁电态下,晶体的极化与电场的关系有图1的形状,称为电滞回线。
构成电滞回线的⼏个重要参数饱和极化强度(⾃发极化强度)P s、剩余极化强度P r、矫顽电场E c,是衡量铁电体铁电性能的重要参数。
2.实验仪器设备本实验采⽤美国Radiant公司⽣产的铁电测试系统,该系统由精密⼯作站、⾼压⼯作界⾯(HVI)、10kV⾼压放⼤器(HV A)三部分组成。
3.测量步骤1) 接通测试系统的电源,打开精密⼯作站的电源开关,起动精密⼯作站。
2) 按下Ctrl+Alt+Del,并输⼊密码,登录到WindowsNT,系统会⾃动打开VisionPro 窗⼝(见图1)。
3)把实验样品夹在样品夹上,并确保样品与样品夹接触良好。
4) ⽤⿏标选择“QuikLook”菜单下的“Hysteresis”命令,打开⼀个标题为Hysteresis QuikLook的对话框。
(见图2)5) 在“Hysteresis Task Name”中,写⼊测量任务的名字。
6) 在对话框的右上边的“V oltage Range”选择中,选择“External Amplifier”中的±10000V olts的选项。
图 1图 27) 在“VMax”中,写⼊需要对样品加载的电压值。
8) 在“Hysteresis Period”中,写⼊测量周期。
注:对块状陶瓷样品进⾏⾼压铁电性能测试⼀般需要⼀段较长的持续时间,所以在“Hysteresis Period”中⼀般选择300ms~1000ms。
9) 在“Area”中,写⼊样品的⾯积;在“Thickness”中,写⼊样品的厚度。
10) 在对话框的右下边,取消“Auto Amplification”的选择,在“Amp. Level”的选项中选择×0.001的放⼤倍数,然后在选择“Auto Amplification”。
铁电薄膜的铁电性能测量实验目的一、了解什么是铁电体,什么是电滞回线及其测量原理和方法。
二、了解铁薄膜材料的功能和应用前景。
实验原理一、铁电体的特点1.电滞回线铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图(12.2-1) ,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。
如果趋于饱和后电场减小,极化将循 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr。
将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec。
电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图12.2-1 铁电体的电滞回线V图12.2-2 电滞回线的显示电滞回线可以用图12.22-2的装置显示出来(这就是著名的Sawyer-Tower 电路),以电晶体作介质的电容C x 上的电压V 是加在示波器的水平电极板上,与C x 串联一个恒定电容C y (即普通电容),C y 上的电压V y 加在示波器的垂直电极板上,很容易证明V y 与铁电体的极化强度P 成正比,因而示波器显示的图象,纵坐标反映P 的变化,而横坐标V x 与加在铁电体上外电场强成正比,因而就可直接观测到P-E 的电滞回线。
下面证明V y 和P 的正比关系,因y xxy x y C C C C V V ==ωω11(12.2-1)式中ω为图中电源V 的角频率dSC x 0εε=ε为铁电体的介电常数,0ε 为真空的介电常数,S 为平板电容x C 的面积,d 为平行平板间距离,代入(12.2-1)式得: E C S d V C S V C C V yx y x Y x y 00εεεε===(12.2-2) 根据电磁学E E E P χεεεεε000)1(=≈-= (12.2-3) 对于铁电体>>ε1,固有后一近似等式,代入(12.2-2)式 , P C SV yy =因S 与y C 都是常数,故Vy 与P 成正比。
铁电材料制备与性能表征实验提纲实验目的:制备铁电材料,并进行性能测试。
材料:氧化钛(TiO2)粉末、钛酸四丁酯(TBT)、异丙醇、甲苯、乙醇、铝箔片。
仪器设备:自动定量注液器、恒温培养箱、离心机、扫描电子显微镜(SEM)、X射线衍射仪(XRD)。
实验步骤:1. 安全检查。
2. 准备氧化钛(TiO2)粉末,加入异丙醇,用高速搅拌器超声分散1.5小时,将分散液继续搅拌1小时。
3. 加入TBT预聚液,用自动定量注液器按照一定比例浓度注入分散液中,再用高速搅拌器旋转混合1小时,得到均匀溶胶。
4. 加入甲苯、乙醇,搅拌混合。
5. 将铝箔片严格清洗,放入恒温培养箱中,在160摄氏度下烘烤1小时。
6. 涂覆均匀溶胶于铝箔片上,再在空气中烘烤1小时。
7. 离心分离,用干燥箱干燥。
8. 进行SEM和XRD测试,测量铁电材料的晶体结构和形貌,分析其性能。
实验现象记录:1. 在加入TBT预聚液后,液体黏稠度增加。
2. 在涂覆均匀溶胶于铝箔片上时,需要注意溶液的均匀性和数量。
3. 在离心分离时,需要注意时间和速度的控制,不要将铁电材料分离异常。
4. 在测试时,需要谨慎操作,保证仪器的准确性。
实验问题及解决方案:问题1:加入TBT预聚液后,液体黏稠度增加,如何解决?解决方案:可以在混合液中加入少量甲苯或乙醇溶解。
问题2:涂覆均匀溶胶于铝箔片上时,出现溶液不均匀或溶液不足,如何解决?解决方案:可以按照一定比例,将溶液分别涂抹于多个铝箔片上,避免过多或不足。
问题3:在离心分离时,出现铁电材料分离异常,如何解决?解决方案:可以重新加入适量溶剂,再次混合均匀后进行离心分离。
实验影响因素和实验记录:1. TBT预聚液的比例和浓度会影响溶液的黏稠度和铁电材料的形貌。
2. 涂覆均匀溶胶于铝箔片上的方式和数量会影响铁电材料的均匀度和输出能力。
3. 离心分离的时间和速度会影响铁电材料的形态和质量。
实验规范:1. 进行实验前,需要进行全面的安全检查,确保仪器和材料的安全性。
铁电材料实验报告一、引言铁电材料是一类具有特殊性质的材料,在应用领域具有重要意义。
本次实验旨在了解铁电材料的基本特性以及其在电学和光学领域中的应用。
二、实验目的1. 了解铁电材料的基本特性;2. 掌握铁电材料的制备方法;3. 探究铁电材料在电学和光学领域的应用。
三、实验设备和材料1. 设备:电源,示波器,多用电表;2. 材料:铁电材料A,铁电材料B,导线,光源,反射镜,样品支架。
四、实验步骤1. 铁电材料的基本特性实验1. 将铁电材料A接入电源,通过示波器观察电压-时间曲线;2. 测量铁电材料A的矫顽场和饱和极化强度。
2. 铁电材料的制备方法实验1. 准备铁电材料B的原料,并按照制备工艺将其制备成铁电材料B;2. 对制备的铁电材料B进行物理性质测试。
3. 铁电材料的应用实验1. 将铁电材料A与导线连接,接入电源,测量其导电性能;2. 使用光源和反射镜对铁电材料A进行光学实验,观察其光学性质。
五、实验结果与分析1. 铁电材料的基本特性实验结果分析根据测量结果,铁电材料A在施加电场的情况下会出现极化现象,并且在达到一定的电压时会发生矫顽,这表明铁电材料A具有铁电特性。
2. 铁电材料的制备方法实验结果分析通过制备的铁电材料B的物理性质测试,可以得知其晶体结构和组分成分是否符合要求,并且通过对比实验结果可以评估制备工艺的效果。
3. 铁电材料的应用实验结果分析铁电材料A在导电性能实验中表现出良好的导电性能,在光学实验中显示出对特定波长的光有较好的吸收能力,这表明铁电材料A在电学和光学领域具有潜在的应用前景。
六、实验结论1. 铁电材料具有特殊的铁电特性,能够在电场作用下发生极化和矫顽现象;2. 铁电材料的制备需要严格控制晶体结构和成分组成;3. 铁电材料在电学和光学领域中具有潜在的应用前景。
七、实验总结本次实验通过对铁电材料的基本特性、制备方法和应用领域的研究,深入了解了铁电材料的特性及其在实际应用中的潜力。
铁电体电滞回线的测量铁电材料是一类具有自发极化,而且其自发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。
铁电材料的主要特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。
电滞回线是铁电体的重要特征和重要判据之一,通过电滞回线的测量可以得到自发极化强度P s、剩余极化强度P r、矫顽场E c等重要铁电参数,理解铁电畴极化翻转的动力学过程。
【实验目的】1.了解铁电测试仪的工作原理和使用方法。
2.掌握电滞回线的测量及分析方法。
3.理解铁电材料物理特性及其产生机理。
【实验仪器】本实验采用美国Radiant Technology公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。
【实验原理】铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。
电滞回线的产生是由于铁电晶体中存在铁电畴。
铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。
当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q(极化强度P)和外电压V(电场强度E)之间构成电滞回线的关系。
另外由于铁电体本身是一种电介质材料,两面涂上电极构成电容器之后还存在着电容效应和电阻效应,因此一个铁电试样的等效电路如图2所示。
其中C F对应于电畴反转的等效电容,C D对应于线性感应极化的等效电容,R C对应于试样的漏电流和感应极化损耗相对应的等效电阻。
如果在试样两端加上交变电压,则试样两端的电荷Q将由三部分组成:图2 铁电测试等效电路图O+Ec-PrPE+Pr-EcPS图1 铁电体的电滞回线(1) 铁电效应:铁电体(Ferroelectric)的电畴翻转过程所提供的电荷Q F ,当E <E c 时,铁电畴不发生翻转,电荷Q F 不发生改变;当E >E c 时,铁电畴迅速翻转,电荷Q F 突变。
当铁电畴全部反转之后,继续增大电场强度,电荷Q F 保持不变,所以理想铁电材料的电滞回线为一矩形,如图3 (a)所示。
(2) 电容效应:铁电体属于电介质(Dielectric)材料,上下表面涂上电极之后,相当于一电容器,在外电场作用下会发生感应极化,产生电荷Q D 。
感应极化所提供的电荷Q D 和电压V 成正比,是一条过原点的直线,如图3 (b)所示。
(3) 电阻效应:即电导(Conductive)和感应极化损耗所提供的电荷Q C ,Q C 是材料中电流与时间的积分,其中电流与电压V 成正比。
积分得到的电荷Q C 与电压V 的关系为一椭圆,如图3 (c)所示。
因此试样两端的全电荷Q 是由Q F 、Q D 、Q C 三部分叠加而成的,即Q 和电压V 的关系是图3 (a)、3 (b)、3 (c)三部分的叠加,所以实际测量得到电滞回线如图1所示。
由上述可见,只有电荷Q F 与电压V 的关系才真正反映了铁电体中的电畴翻转过程。
实际测量得到的全电滞回线(图1)包含了与铁电畴极化翻转过程无关的Q D 和Q C 的影响。
由图3可知,电容效应Q D 使得Q F 的饱和支、上升支和下降支发生倾斜,但是从理论上来说对于Q F 和V c 的数值没有影响。
而电阻效应提供的电荷Q C 则不同,Q C 使Q F 的饱和支畸变成一个环状端。
对Q F 和V c 的数值都有影响,使测得的数值偏高,造成误差。
当电容效应和电阻效应很大时,Q 和V 的关系将与Q F 和V 的关系相差很大,以致掩盖了电畴翻转过程的特征,形成一个损耗椭圆,以致一些研究者把一部分并无电畴过程的电介质也认为是铁电体。
所以正确的获得电滞回线和铁电参数是准确表征铁电性能的前提。
测量电滞回线的方法很多,其中应用最广泛的是Sawyer –Tower 方法,它是一种建立较早,已被大家广泛接受的非线性器件的测量方法,目前仍然是大家用来判断测试结果是否可靠的一个对比标准。
图4是改进的Sawyer –Tower 方法的测试原理示意图,它将待测器件与一个标准感应电容串C 0联,测量待测样品上的电压降(V 2-V 1)。
其中标准电容C 0的电容量远大于试样C x ,因此加到示波器x 偏向屏上的电压和加在试样C x 上的电压非常接近;而加到示波管y 偏向屏上的电压则与试样C x 两端的电荷成正比。
因此可以得到铁电样品表面电荷随电压的变化关系,分别除以电极面积和样品厚度即可得到极化强度P 与电场强度E 之间的关系曲线。
图3 电荷Q F 、Q D 、Q C 与电压V 的关系本实验中的铁电性能测试采用美国Radiant Technology 公司生产的RT Premier Ⅱ型标准铁电测试仪。
该仪器采用 Radiant Technologies 公司开发的虚地模式,如图5所示。
待测的样品一个电极接仪器的驱动电压端(Drive),另一个电极接仪器的数据采集端(Return)。
Return 端与集成运算放大器的一个输入端相连,集成运算放大器的另一个输入端接地。
集成运算放大器的特点是输入端的电流几乎为0,并且两个输入端的电位差几乎为0,因此,相当于Return 端接地,称为虚地。
样品极化的改变造成电极上电荷的变化,形成电流。
流过待测样品的电流不能进入集成运算放大器,而是全部流过横跨集成运算放大器输入输出两端的放大电阻。
电流经过放大、积分就还原成样品表面的电荷,而单位面积上的电荷即是极化。
这一虚地模式可以消除Sawyer –Tower 方法中感应电容产生的逆电压和测试电路中的寄生电容对测试信号的影响。
图5 Premier Ⅱ铁电测试仪虚地模式电路示意图电滞回线(Hysteresis loop )的测量图6是测量电滞回线所用的三角波测试脉冲。
第一个负脉冲为预极化脉冲,它只是将待测样品极化到负剩余极化( P r )的状态,并不记录数据。
间隔1s 后,施加一个三角波来测试记录数据,整个三角波实际是由一系列的小电压台阶构成的,每隔一定时间(V oltage step delay ),测试电压上升一定值(V oltage step size ),然后测试一次,并通过积分样品上感应的电流可以算出电极表面的电荷,除以电极面积即可得到此电压下的剩余极化强度值。
图4 Sawyer –Tower 电路 IntegratorVoltage MeasurementReturnTransimpedanceAmplilier Gain Stage Device under testParasiticcapacitance Drive【实验内容及步骤】 主要通过操作铁电测试仪控制软件Vision ,测量铁电材料的电滞回线并从回线上得出剩余极化强度P r ,自发极化强度P s ,以及矫顽场E c 。
调整测试电压强度和频率,得到不同电压强度,不同频率下的电滞回线,研究剩余极化强度P r ,和矫顽场E c 随电压强度和频率的变化关系。
1、启动铁电测试仪,运行铁电测试软件Vision 。
2、将信号输入端(Drive )和接收端(return )通过导线连接到待测铁电材料的上下电极。
3、运行电滞回线测量程序,设定测试电压强度和频率等参数进行测试。
如图7所示。
图7 电滞回线测量设置界面4、执行程序得到电滞回线,如图8所示,可以得到该测试条件下的自发极图6 电滞回线测试脉冲化强度P、剩余极化强度P r和矫顽场E c,导出数据,。
图8 电滞回线测试结果5、分别改变测试的电场强度和频率测量一系列电滞回线。
【数据处理】将测试数据导出为text格式文件,用Origin或其他作图软件打开,并画出电滞回线图。
测量不同条件下的剩余极化强度P r和矫顽场E c,填入下表。
分别以电场强度E和电场频率f为横坐标,以P r和E c为纵坐标画图,观察P r和E c随E和f 的变化规律。
表1 不同电场强度下的P r和E c值电场强度( E )剩余极化强度( P r )矫顽场强度( E c )表2 不同电场频率下的P r和E c值电场频率( f )剩余极化强度( P r )矫顽场强度( E c )【注意事项】根据所测材料的不同选择不同的电压,薄膜一般比较薄(约几百nm),所需电压较低(约几十伏),一般选内置低压电源(Internal V oltage Source),测量范围为0-100 V。
陶瓷一般选用经过放大器输出的外部高电压(External High V oltage ),测量范围为0-9999 V。
高压测试时务必小心,用耐高压硅油掩盖待测样品,高压输出灯亮时,切勿碰触样品、探针和机箱,以免触电。
高压测试时请将低压测试线从主机面板插孔拔出。
测试时先从低压测起,逐步提高电压,以防样品被击穿。
【思考问题】1.如何从电滞回线得出剩余极化强度、饱和极化强度和矫顽场的大小?2.电滞回线的形状与哪些因数相关,如何判断其铁电性能的好坏?3. 电滞回线的面积具有什么物理意义?4. 如何建立铁电材料性能和应用之间的联系?。