机械优化设计课后习题答案
- 格式:docx
- 大小:22.44 KB
- 文档页数:3
机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。
[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ设可靠度为90%,可靠性系数 868.0=r k ; 工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328dD F ka πτα=式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328dD F k m sm πτ=式中s k ――应力修正系数,计算公式为dD C k s /615.01615.012+=+= m F ――平均载荷,其值为N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为 计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D dD F ka a =⋅==ππτα328 计算平均应力幅m τ:21312246.74512.1212615.01x x x d D F Dd dD F k m m sm +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :mms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002从而得到弹簧的疲劳强度约束条件为012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g3)根据对弹簧中径的要求,得到约束条件50222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算:mm N h F F K /2.4016.1027268012=-=-=0H ――弹簧的自由高度,按下式计算: 当mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-=于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。
第一章思考练习1-1、 优化设计问题的数学模型是由哪几部分组成的?其一般表达形式是什么?答:优化设计数学模型是优化设计的数学描述,它由三部分组成:设计变量、约束条件和目标函数。
设计变量是可供调整变化以改进设计的设计参数。
N 个设计变量构成一个N 维设计向量:[]TN x x x X ,,,21K K =约束条件是优化设计中为取得可行设计,须根据实际要求、客观条件对设计加的种种限制。
一般表达式:0),,,()(21==N j j x x x h X h K K )~1(D J j =0),,,()(21≤=N j j x x x g X g K K )~1(J j =目标函数是衡量设计方案X 优劣程度的数值指标,一般使设计变量的某种性态函数。
一般表达式:),,,()(21n x x x f X f K K = 它的数学模型一般表达式为:Find []N TN R x x x X ∈=,,,21K KMin )(X f s.t. 0)(=X hj )~1(D J j =0)(=≤X g j )~1(J j =1-2、 建立优化设计问题数学模型的一半步骤及其需要注意的问题是什么? 答:一、选取设计变量 需要注意的问题:(1)设计变量必须是独立变量,有明显依赖关系得变量仅取其一。
(2)设计变量的选取与优化层次及优化问题的提法有关。
(3)设计变量的数目要适当,过多会使问题变得复杂,求解困难;过少则优化效果差。
应选取确有显著影响且能直接调整控制的参数为设计变量。
二、建立目标函数 需要注意的问题:(1)可能是:重量、体积、效益、承载能力、安全度、可靠性、寿命、精度、误差、振动基频、运动误差、速度、加速度、效率等。
具体选取哪个取决于对设计的具体要求和客观条件。
(2)根据工程实际情况定:选最重要的为优化目标。
(3)有当前设计方案的实际情况确定。
(4)应考虑指标是否容易给出数学表达。
(5)要可解析、可数值、可经验、可近似。
机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
机械优化设计课后答案【篇一:机械优化设计第5章习题参考答案】?4000.333?时, f(x*)??cjxj??5.567。
t第2题答案:x??2024840 0?,z??428。
*t第3题提示:求解方法可参考第四节中的应用实例。
第4题提示:如果设x1、x2、x3、x4、x5分别以Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五种下料方式所用钢材的件数,则此问题的数学模型是:求一组xj(j?1,2,?,5)的值,满足下列限制条件x1?2x2 ?x4 ?100?2x3?2x4?x5 ?100???3x1?x2?2x3 ?3x5?100?xj?0 (j?1,2,?,5)??使总的尾料z?0.1x2?0.2x3?0.3x4?0.8x5 达到最小。
【篇二:《机械优化设计》复习题答案】xt>一、填空题1、用最速下降法求f(x)=100(x2- x12) 2+(1- x1) 2的最优解时,设x(0)=[-0.5,0.5]t,第一步迭代的搜索方向为 [-47,-50]t。
2、机械优化设计采用数学规划法,其核心一是,二是。
3、当优化问题是的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。
5、包含n个设计变量的优化问题,称为维优化问题。
6、函数 1txhx?btx?c的梯度为。
28模型的基本要素。
9、对于无约束二元函数f(x1,x2),若在x0(x10,x20)点处取得极小值,其必要条件是10约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f(x)?x2?10x?36的极小点,初始搜索区间[a,b]?[?10,10],经第一次区间消去后得到的新区间为12、优化设计问题的数学模型的基本要素有、。
?1?h13、牛顿法的搜索方向dkkgk,其计算量且要求初始点在极小点置。
14、将函数f(x)=x12+x22-x1x2-10x1-4x2+60表示成1txhx?btx?c 的形式215、存在矩阵h,向量 d1,向量 d2,当满足t d1和向量 d2是关于h共轭。
机械优化设计试题及答案一、单项选择题(每题2分,共20分)1. 在机械优化设计中,目标函数通常代表的是()。
A. 设计变量B. 约束条件C. 优化目标D. 优化方法答案:C2. 以下哪一项不是机械优化设计的约束条件?()A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:A3. 机械优化设计中,常用的优化算法有()。
A. 梯度法B. 遗传算法C. 牛顿法D. 所有选项答案:D4. 在进行机械优化设计时,下列哪个因素不是设计者需要考虑的?()A. 材料成本B. 制造工艺C. 产品重量D. 产品颜色答案:D5. 机械优化设计中,目标函数的最小化问题通常指的是()。
A. 成本最小化B. 重量最小化C. 体积最小化D. 所有选项答案:D6. 以下哪个不是机械优化设计中常用的优化目标?()A. 最小化成本B. 最大化寿命C. 最小化尺寸D. 最大化速度答案:D7. 在机械优化设计中,下列哪一项不是常用的设计变量?()A. 尺寸B. 形状C. 材料D. 颜色答案:D8. 机械优化设计中,以下哪一项不是常用的优化方法?()A. 线性规划B. 非线性规划C. 动态规划D. 静态规划答案:D9. 在机械优化设计中,以下哪一项不是常用的优化算法?()A. 模拟退火B. 遗传算法C. 粒子群优化D. 牛顿迭代法答案:D10. 机械优化设计中,以下哪一项不是常用的约束条件?()A. 强度约束B. 刚度约束C. 稳定性约束D. 颜色约束答案:D二、多项选择题(每题3分,共15分)1. 机械优化设计中,常用的设计变量包括()。
A. 尺寸B. 形状C. 材料D. 颜色答案:ABC2. 机械优化设计中,常用的优化目标包括()。
A. 成本最小化B. 重量最小化C. 寿命最大化D. 速度最大化答案:ABC3. 机械优化设计中,常用的约束条件包括()。
A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:ABCD4. 机械优化设计中,常用的优化方法包括()。
机械优化设计习题答案机械优化设计习题答案在机械设计中,优化设计是一项重要的任务。
通过优化设计,可以提高机械产品的性能和效率,降低成本和能耗。
然而,在实际的设计过程中,我们常常会遇到各种各样的问题和难题。
下面,将针对一些常见的机械优化设计习题,提供一些解答和思路。
一、最小重量设计问题最小重量设计问题是机械设计中的一个经典问题。
在这类问题中,我们需要在满足一定的约束条件下,找到一个最轻的设计方案。
通常,这类问题可以通过数学建模和优化算法来求解。
首先,我们需要明确设计的约束条件和目标函数。
约束条件可以包括强制性要求和可选的要求,如尺寸限制、强度要求等。
目标函数可以是重量、成本、能耗等。
然后,我们可以利用数学建模的方法将问题转化为一个数学优化问题。
最常用的方法是使用拉格朗日乘子法或者KKT条件来求解。
二、最大刚度设计问题最大刚度设计问题是另一个常见的机械设计问题。
在这类问题中,我们需要在给定的约束条件下,找到一个刚度最大的设计方案。
刚度是指物体对外力的抵抗能力,通常是通过刚度矩阵来描述的。
在解决最大刚度设计问题时,我们需要首先建立物体的刚度矩阵。
然后,通过求解特征值问题,得到刚度矩阵的特征值和特征向量。
特征值表示物体的刚度,特征向量表示物体的振动模态。
接下来,我们可以通过调整设计参数来改变刚度矩阵,从而实现最大刚度的设计。
三、流体优化设计问题流体优化设计问题是机械设计中的一个重要领域。
在这类问题中,我们需要通过优化设计来改善流体的流动性能。
例如,我们可以通过改变流道的形状和尺寸,来减小流体的阻力和压降。
在解决流体优化设计问题时,我们可以利用计算流体力学(CFD)方法来模拟流体的流动。
首先,我们需要建立流体的数学模型,包括流动方程和边界条件。
然后,通过数值方法求解这个数学模型,得到流体的流动状态。
接下来,我们可以通过改变设计参数,如流道的形状和尺寸,来优化流体的流动性能。
总结起来,机械优化设计是机械设计中的一个重要任务。
机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。
A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。
A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。
A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。
答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。
答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。
答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。
2. 描述机械优化设计中约束条件的分类及其意义。
答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。
等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。
这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。
3. 举例说明机械优化设计中设计变量的选择原则。
答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。
机械优化设计试题及答案一、选择题1. 机械优化设计中的“优化”指的是:A. 最小化成本B. 最大化效益B. 达到设计目标D. 以上都是答案:D2. 以下哪项不是机械优化设计的基本步骤?A. 确定设计变量B. 确定目标函数C. 确定约束条件D. 进行材料选择答案:D3. 在机械优化设计中,目标函数通常是用来衡量:A. 设计的可行性B. 设计的安全性C. 设计的经济性D. 设计的最优性答案:D二、填空题4. 机械优化设计通常采用的数学方法包括_______、_______和_______。
答案:线性规划;非线性规划;动态规划5. 机械优化设计中,约束条件可以是等式约束也可以是_______。
答案:不等式约束三、简答题6. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是量化设计目标,为设计提供评价标准,指导设计过程朝着最优解方向进行。
7. 描述机械优化设计中设计变量、目标函数和约束条件之间的关系。
答案:设计变量是优化设计中可以调整的参数;目标函数是设计过程中需要优化或最小化/最大化的量;约束条件是设计过程中必须满足的限制,它们共同定义了优化问题的边界和可行性。
四、计算题8. 假设有一个机械部件的重量W与其尺寸L和宽度H的关系为W = 2LH,成本C与重量W和材料单价P的关系为C = 10W + P。
若L和H 的取值范围均为[1,5],材料单价P为常数,求在满足强度要求的前提下,如何确定L和H的值以最小化成本C。
答案:首先,根据题目给出的关系式,我们可以将成本C表示为C = 10 * 2LH + P = 20LH + P。
由于P为常数,我们只需考虑如何最小化20LH。
由于L和H的取值范围相同,我们可以令L = H,此时C = 20L^2。
在[1,5]的范围内,当L = 1时,C达到最小值,即C_min = 20。
五、论述题9. 论述机械优化设计在现代机械工程中的重要性及其应用前景。
机械优化设计试题及答案试题一:1. 请简述机械优化设计的定义及重要性。
答案:机械优化设计是通过数学模型和计算机仿真技术,以最优化的方式对机械结构进行设计和改进的过程。
机械优化设计的重要性在于能够提高机械产品的性能和效率,降低成本和能源消耗,并且缩短产品开发周期。
2. 请阐述机械优化设计的基本步骤及流程。
答案:机械优化设计的基本步骤包括:问题定义、数学建模、解的搜索、结果评价和优化、最优解验证等。
具体流程如下:(1) 问题定义:明确机械优化设计的目标和约束条件,例如提高某项指标、降低成本等。
(2) 数学建模:通过将机械系统抽象为数学模型,建立与优化目标和约束条件相关的函数关系。
(3) 解的搜索:采用合适的搜索算法,寻找函数的最优解或近似最优解。
(4) 结果评价和优化:对搜索得到的解进行评价和分析,进一步进行调整和改进,以得到更好的解。
(5) 最优解验证:通过实验或仿真验证最优解的可行性和有效性。
试题二:1. 请简述梯度下降法在机械优化设计中的应用原理。
答案:梯度下降法是一种常用的优化算法,其原理是通过求解函数的梯度向量,并采取沿着梯度方向逐步迭代优化的方法。
在机械优化设计中,可以将需要优化的机械结构的性能指标作为目标函数,通过梯度下降法不断调整结构参数,以寻找最优解。
2. 请列举至少三种机械优化设计的常用方法。
答案:常见的机械优化设计方法包括:遗传算法、粒子群优化算法、模拟退火算法等。
其中:(1) 遗传算法通过模拟生物进化过程,通过选择、交叉和变异等操作,逐渐优化机械结构,以达到最优解。
(2) 粒子群优化算法模拟鸟群或鱼群的行为,通过不断迭代更新粒子的位置和速度,最终找到最优解。
(3) 模拟退火算法基于金属退火的原理,随机选择新解,并通过一定的准则接受或拒绝新解,以便在解空间中发现更优解。
试题三:1. 请解释有限元分析在机械优化设计中的作用。
答案:有限元分析是一种基于数值计算的方法,通过将复杂的结构划分成有限个单元,建立结构的有限元模型,并对其进行离散化求解,用于分析机械结构的应力、振动、热传导等特性。
第一章习题答案
1-1 某厂每日(8h 制)产量不低于 1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为件/h,正确率为98%,计时工资为 4元/ h;二级检验员标准为:速度为元/h。
检验员每错检一件,工厂损失 2元。
现有可供聘请检验人数为:
省,该厂应聘请一级、二级检验员各多少人?解:(1 )确定设计变量;
g2( X) = X1 -8 w 0 g3( X) = X2-10 w 0
g4( X) = -X1 w 0
g5( X) = - X2 w 0
X3 (2)建立数学模型的目标函数;
取弹簧重量为目标函数,即:
2
2
f(X)=——rx1 X2X3
4
(3)本问题的最优化设计数学模型:
2
2
min f (X) = —rx1 X2X3
4
25 15件/h,正确率为95%,计时工资 3 —级8人和二级
10人。
为使总检验费用最
根据该优化问题给定的条件与要求,取设计变量为X=
X1
X2 一级检验员二级检验员
(2)建立数学模型的目标函数;取检
验费用为目标函数,即:
f(X) = 8*4* X1+ 8*3* X2 +
2
=40x1+ 36x2
( 8*25*0.02x1 +8*15*0.05 X2)
s.t. min f (X) = 40X1+ 36X2
g i(X) =1800-8*25
3’
X € R
X i+8*15X2< 0
1-2已知一拉伸弹簧受拉力选择一组设计变量X [X1 X2F,剪切弹性模量G,材料重度
X3]T[d D2 n]T使弹簧重量最轻,同时满足下列限制条件:弹簧圈数
r,许用剪切应力[],许用最大变形量[]。
欲
簧丝直径d 0.5,弹簧中径10 D2 50。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下
ks^ , k s 1 ±
d 2c D2 (旋绕
比),
8F n D
Gd4
解:(1)确定设计变量;
X1
根据该优化问题给定的条件与要求,取设计变量为X2 D2
3 •
X€ R
g 2( X) =10- x 2 < 0 g 3( X) = X 2-50 W 0 g 4( X) =3- X 3 W 0
表面积为目标函数,即:
T 2
X=[ X 1, X 2] € R
g 2( X) = - X 2 w 0
解:(1)确定设计变量;
X 1 X 3
建立数学模型的目标函数; 取总价格为目标函数,即:
f(X) = 8(X 1 X 3 + X 2 X 3) + 6 X 1 X 2 + 12 X 1 X 2
建立数学模型的约束函数;
仓库的容积为1500 m 3。
即:
1500- X 1 X 2 X 3 =0
X 1 > 0, X 2 .> 0.,
贝U
本问题的最优化设计数学模型:
min f (X) = 8(X 1 X 3 + X 2 X 3) + 18 X 1 X 2 X € R
g 5
(x)= (1
X i . 8F X 2
2X 2
3
X 1
CL 3
8F X 2 X 3
g(X)
= GX 14
1-3某厂生产一个容积为 优化问题的数学模型。
8000 cm 3
的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这
解:根据该优化问题给定的条件与要求,取设计变量为 X i X 2
底面半径r 高
考虑题示的约束条件之后, 该优化问题数学模型为:
mn f(X)=
in f(X)=
X 12
+ 2
X 12
X 1 X 2
X 1 X 2
S.t .
g 1(X) =
-X 1 w 0
h 1(X) = 8000 -
X 12
X 2 = 0
1500 m 3
的长方形仓库,已知每平方米墙壁、屋顶和地面的造价分别为 元。
基于美学的考虑,其宽度应为高度的两倍。
现欲使其造价最低,
1-4要建造一个容积为
4元、6元和12
试导出相应优化问题的数学模型。
根据该优化问题给定的条件与要求,取设计变量为
X 2
(3) 仓库宽度为高度的两倍。
X 2 -2 X 3 = 0 即:
各变量取值应大于
0, 即:
-X 1 W 0, -X 2 W 0
g2( X) =10- x2 < 0
s.t . g
1( X) = - X1 W 0。