动力型锂离子电池研发进展
- 格式:pdf
- 大小:642.19 KB
- 文档页数:18
动力电池的研究现状及发展趋势随着全球焦点的逐渐转移,动力电池逐渐成为重要的研究方向和应用领域。
动力电池的研究现状和发展趋势对于推动能源领域的发展和应用尤为重要。
一、研究现状当前,全球能源危机日益加剧,化石燃料资源的消耗导致能源消耗比例的偏高,环境问题也日渐显著。
为了解决能源问题,动力电池的研究发展愈趋迫切。
目前,国内外在动力电池功能材料、结构设计、制备工艺、测试评价等方面取得了较大的进展。
动力电池的基本结构体系由正极、负极、电解液和隔膜四部分组成。
其中,正负极材料是动力电池的核心组成部分。
在正极材料选择方面,目前最常用的是锂离子电池和钴酸锂正极材料,具有高能量密度和较高的运行电压。
此外,镍钴酸锂、锰酸锂等也在逐渐应用中。
负极材料主要有石墨和硅等,硅作为负极材料有高容量特点,但是还需解决其易膨胀等问题。
电解液部分主要有无机电解液和有机电解液两种。
目前,无机电解液的主要成分为LiPF6,但其毒性和热稳定性较差;有机电解液主要成份为碳酸二甲酯、碳酸叔丁酯等。
另外,隔膜材料也是影响电池性能的关键因素之一。
目前研究的隔膜材料主要有聚烯烃、聚酰亚胺、聚合物等。
二、发展趋势未来动力电池的发展趋势主要有以下几个方面:1、提高储能密度提高储能密度是未来发展动力电池的一个重要方向。
目前动力电池的能量密度已达到250Wh/kg,未来有望提高至400Wh/kg以上。
提升储能密度可以减小电池体积,增加储能容量。
2、提高安全性能提高动力电池的安全性能也是未来发展的一个重要方向。
目前,动力电池的温度容忍度、自发燃烧点等都面临一定的风险。
未来需要通过研究制备新型电解液、隔膜材料等来提高其安全性能。
3、推广应用动力电池的推广应用是未来发展的重点。
目前,动力电池已广泛应用于电动汽车、无人机、船舶等领域。
未来,还有望推广到更广泛的场合,如家庭储能、通讯设施等。
4、生产降低成本未来的关键是生产降低成本。
降低成本可以使得动力电池得到更广泛的应用,并且更好地满足社会需求。
锂离子动力电池的发展历程锂离子动力电池是目前最为先进和广泛应用的电池类型之一。
它由原始的充电电化学反应发展到现在的充电-放电循环反应,具有不同重量和体积、能量效率高、循环寿命长、环境友好等优点。
以下是锂离子动力电池的发展历程。
20世纪70年代初,锂离子电池只处于起步阶段,研发人员们尚未取得显著进展。
直到1980年代中期,日本的造纸生产厂商日本电气公司(日立公司的前身)利用钴酸锂作为正极材料开发出了第一款市场化的锂离子电池。
1991年,索尼株式会社生产出了中型的可充电锂离子电池,提高了电池的能量密度和寿命。
这种电池具有了一种更高的能量密度、更快的充电时间和更低的自放电率。
同年,瑞典的化学家阿贝林成功将锂离子电池应用于便携式电话上,让这种新型电池开始在通信领域得到广泛应用。
在随后的20多年里,锂离子电池得到了广泛应用,笔记本电脑、智能手机等电子产品的广泛普及使得锂离子电池的市场不断扩大。
为了节省成本,很多厂家先后出现在全球各地,同时也会出现安全问题。
2006年,索尼公司宣布召回其生产的180万颗锂离子电池,这是由于电池在过热情况下容易产生过热点和自燃。
随着锂离子电池技术的不断改进,其能量密度、安全性、循环寿命等方面都得到了极大的提高。
现在,大型电动汽车也开始采用锂离子电池,可以更好地解决绿色环保问题。
此外,固体电解质技术的发展可能会完全改变锂离子电池的产品结构和生产技术,更加环保而且性能更高的电池即将进入市场。
总之,锂离子动力电池是人类电力需求和环保要求不断提高的动力电池之一,其发展历程也是人类对新技术源追求的历程。
相信在未来,锂离子动力电池的性能和应用还会有更多的进展和发展。
电动汽车用锂离子电池技术的国内外进展简析1、电动汽车电池技术获得突破性发展蓄电池及其管理系统是电动汽车的关键技术之一。
在以往几年中,大部分企业在电动汽车研制中曾遭遇尴尬,主要是因为采用了铅酸、镍镉、镍氢电池(Ni-MH)等。
现在,经过研制与实验比较,采用能量密度更高的锂离子电池取代铅和镍氢电池,运用于汽车领域正成为一项核心技术,它具有重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应范围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用蓄电池。
缺点是价格较贵、安全性较差。
不过现在已有技术开发锰酸锂、磷酸铁锂、磷酸钒锂等新型材料,大大提高了锂离子电池的安全性,而且降低了成本。
2、锂离子电池产业化动态随着成本的急剧降低和性能的大幅度提高,已有许多汽车生产厂家开始投入使用锂离子电池。
下表是主要锂离子电池厂商研发与生产概要。
截至2006年10月为止,全球主要国家已有20余家车厂进行锂离子电池研发。
如富士重工与NEC 合作开发廉价的单体(Cell)锰系锂离子电池(即锰酸锂电池),具有高安全性、低制造成本特点,在车载环境下的寿命高达12年、10万公里,与纯电动汽车的整车寿命相当。
东芝开发的可急速充电锂离子蓄电池组,除了小型、大容量的特点之外,采用了能使纳米级微粒均一化固定技术,可使锂离子均匀地吸附在蓄电池负极上,能在一分钟之内充电至其容量的80%,再经6分钟便可充满电。
美国的主要电池厂Johnson Controls针对电动车需求特性的锂离子电池于2005年9月在威斯康星州Milwaukee设立研发地点,2006年1月另出资50%与法国电池厂Saft共同成立Johnson Controls-Saft Advanced Power Solution (JCS)。
JCS 于2006年8月承接了美国能源部(DOE)所主导2年USABC(United States Advanced BatteryConsortium)纯电动车锂离子电池研发计划合约,另外亦与车厂签约提供高功率锂离子电池。
锂离子电池技术的研究进展锂离子电池是一种经典的可充电电池,其具有体积小、重量轻、能量密度高等优势,在移动通信、电动车、储能、航空航天等领域得到广泛应用。
随着科技的发展和需求的不断增加,锂离子电池技术在结构设计、电极材料、电解液等方面都得到了很大的改进和创新。
本文将介绍锂离子电池技术的研究进展,从多个角度探究其发展趋势和前景。
一、锂离子电池的结构设计电池的结构设计是决定其性能和循环寿命的关键。
一般来说,锂离子电池的结构主要包括正极、负极、电解质等组件。
近年来,随着材料科学的不断进步,锂离子电池结构设计也得到了极大的发展。
在正极材料方面,过渡金属氧化物正极材料(例如LiCoO2、LiMn2O4、LiFePO4等)是锂离子电池的主流正极材料,其中LiFePO4正极材料具有很好的安全性和较高的电化学性能,正在成为锂离子电池领域的一个新兴研究方向。
在负极材料方面,将碳材料的石墨化应用于锂离子电池负极材料是减轻电池重量和提高电池能量密度的有效途径。
最近,为了提高电池的性能,石墨化碳材料的晶体结构进行了改进,例如采用硬碳、微米纤维等材料来改善石墨化碳的性能。
电解质是电池中的重要组成部分,一般使用电解液来实现离子的传导。
新型电解液材料的出现,能够提高电池的韧性、抗干扰性、安全性和电化学性能。
现在,固态电解质被认为是提高电池的稳定性和循环寿命的最有前途的电解质方向之一。
二、锂离子电池的电极材料电极材料是锂离子电池中起到媒介传导作用的关键组成部分。
近年来,针对锂离子电池中的电极材料进行了很多研究。
正极材料方面,磷酸铁锂是新兴的正极材料,具有较高的比容量(170mAh/g)、较高的放电平台电压3.45V(vs Li/Li+)以及优良的循环寿命。
二氧化钛正极材料则是另一种热门材料,其通过改变二氧化钛的结构和化学组成来增加其电容量,进一步提高了电量的密度。
负极材料方面,石墨负极材料是目前应用最广泛的负极材料。
近年来,人们通过增加石墨负极材料的粗度和孔隙度来提高电池的效率和循环寿命。
电动汽车动力电池及电池材料国内外发展现状和趋势随着环保意识的增强和汽车行业的发展,电动汽车作为一种新兴的交通工具正在逐渐流行起来。
而动力电池作为电动汽车的核心组件,其发展情况和电池材料的选择对电动汽车的性能和市场竞争力起到重要作用。
本文将介绍电动汽车动力电池及电池材料的国内外发展现状和趋势。
动力电池国内外发展现状动力电池是电动汽车的储能装置,用于提供车辆行驶所需的能量。
国内外在动力电池技术方面都取得了重要进展。
国内主要动力电池厂商包括宁德时代、比亚迪、上海电气等,它们在锂离子电池技术方面处于领先地位。
国外主要动力电池企业有特斯拉、LG化学、日本电池等,它们的动力电池产品在市场上取得了广泛认可。
动力电池国内外发展趋势随着电动汽车市场的快速增长,动力电池技术和材料的发展也呈现出一些趋势。
以下是一些主要的发展趋势:1. 锂离子电池仍是主流:目前,锂离子电池是动力电池的主要类型,其具有高能量密度、长寿命和良好的充电性能等优点。
因此,未来一段时间内,锂离子电池仍将是主流技术。
2. 电池能量密度提升:为了增加电动汽车的续航里程,动力电池的能量密度需要不断提升。
通过使用新型材料、优化电池结构和提高生产工艺等手段,提高电池的能量密度是一个重要的发展方向。
3. 快速充电技术:充电时间是电动汽车普及的一个关键因素。
目前,快速充电技术正在不断发展,可使电动汽车在短时间内充满电。
这将极大地提升电动汽车的使用便利性和用户体验。
4. 电池回收和再利用:随着动力电池的大规模应用,回收和再利用废旧电池的问题也逐渐凸显。
发展有效的电池回收和再利用技术,实现电池资源的可循环利用,是可持续发展的重要方向。
电池材料国内外发展现状和趋势作为动力电池的核心组成部分,电池材料的选择对电池性能至关重要。
目前,电池材料的研发主要集中在以下几个方面:1. 正负极材料:正负极材料是影响电池性能的关键因素。
目前,锂离子电池的正极材料主要有钴酸锂、三元材料等,而负极材料主要是石墨。
动力电池技术的研究进展及其应用前景动力电池技术是新能源汽车发展的关键技术之一,其研究进展和应用前景备受关注。
在过去几年里,随着国内汽车产业的不断发展和对环保、节能技术的需求增加,动力电池技术已成为重要的研究领域。
在本文中,本人将会介绍一些动力电池技术的研究进展和应用前景,从而展示其在未来汽车工业发展中的大好前景。
一、研究进展动力电池技术的研究进展主要包括以下几个方面。
1. 锂离子电池技术随着锂离子电池技术的成熟和应用,其在新能源汽车领域也越来越受关注。
与传统的铅酸电池和镍氢电池相比,锂离子电池具有更高的能量密度、更长的寿命和更小的体积重量比。
目前,国内外众多企业都在该技术领域展开了卓有成效的研究。
2. 固态电池技术固态电池是一种新型电池技术,相较于传统的电解液电池,其可以更好的满足高能量密度、低内电阻、高循环寿命等新能源汽车动力需求。
在过去的几年里,国内外众多企业都在该技术领域进行了相关研究,一些新型材料和工艺技术已经实现了商业化生产。
3. 金属空气电池技术金属空气电池属于一种新型的电池技术,由于其具有高能量密度、长寿命和简洁结构等优点,正逐渐成为新能源汽车领域的热门研发方向。
目前,国内外众多企业都在该技术领域进行了相关研究,实现商业化生产的例子也不断涌现。
二、应用前景动力电池技术的不断发展和进步,为新能源汽车的发展打下了坚实的基础。
以下是动力电池技术的应用前景。
1. 电动汽车随着环保理念的推广,电动汽车的应用越来越广泛。
锂离子电池被广泛应用于电动汽车领域,其使用寿命和安全性能得到了大幅提升,成为电动汽车超长续航、安全可靠的保障。
2. 能源存储动力电池技术还可以应用于电网能源存储,为电力系统的平衡提供可靠、安全的备用电源。
固态电池和金属空气电池技术由于具有高能量密度、低内阻和长寿命等优点,成为能源存储领域的热点研发方向。
3. 智慧城市动力电池技术还可以应用于智慧城市建设,为城市的交通运输、环境保护和能源消耗提供可靠的技术保障。
新能源汽车的电池技术研究与进展随着环境保护意识的不断增强和对传统燃油汽车的限制,新能源汽车成为了未来汽车行业的重要发展方向。
而新能源汽车的核心技术之一,就是电池技术。
本文将探讨新能源汽车电池技术的研究与进展。
一、锂离子电池技术的突破锂离子电池是目前新能源汽车中最常用的电池技术之一。
近年来,锂离子电池技术取得了一系列突破。
首先是电池容量的提升。
随着正极材料的不断改良,锂离子电池的容量得到了大幅度提高,使得新能源汽车的续航里程得到了显著提升。
其次是充电速度的提升。
通过改进电池结构和材料,锂离子电池的充电速度得到了明显提高,缩短了充电时间,提高了用户的使用便利性。
此外,锂离子电池的寿命也得到了一定程度的延长,降低了电池更换的频率和成本。
二、固态电池技术的前景固态电池被认为是新能源汽车电池技术的未来发展方向。
相比于传统的液态电池,固态电池具有更高的安全性、更高的能量密度和更长的寿命。
固态电池的安全性得到了极大的提升,因为固态电池不需要液体电解质,避免了液体电解质的泄漏和燃烧等安全隐患。
同时,固态电池的能量密度更高,可以提供更长的续航里程,满足用户对于长途驾驶的需求。
此外,固态电池的寿命也更长,减少了更换电池的频率和成本。
虽然固态电池技术还面临一些挑战,如制造成本高、循环性能不稳定等问题,但随着技术的进步,固态电池有望成为新能源汽车电池技术的主流。
三、其他新型电池技术的探索除了锂离子电池和固态电池,还有一些其他新型电池技术正在被探索和研究。
例如,钠离子电池被认为是一种潜在的替代锂离子电池的技术。
钠资源丰富,价格低廉,可以降低电池制造成本。
虽然钠离子电池在能量密度和循环性能方面还存在一些问题,但研究人员正在不断改进材料和结构,提高钠离子电池的性能。
此外,氢燃料电池也是一种备受关注的新型电池技术。
氢燃料电池具有快速充电、长续航里程和零排放等优势,但目前还存在氢气储存和供应等技术难题。
总结起来,新能源汽车电池技术的研究与进展是推动新能源汽车发展的重要驱动力。
锂离子电池的研究进展综述锂离子电池的研究进展刘文 2015200807近十年以来,通过对新电极材料和新存储机理的开发研究,基于锂的可重复充电电池技术得到了飞跃发展,电池性能不断提高。
得益于纳米技术的不断探索发现,传统电池材料存在的许多重难点基础问题极有希望得到解决。
一、纳米技术致力于解决传统电池领域的哪些重大问题?1. 体积变化导致活性颗粒和电极的开裂与破碎传统嵌入式电极材料在充放电过程中的体积变化较小。
而对于新型的高容量电极材料而言,由于充放电过程中,大量Li物种嵌入和脱嵌,发生巨大的体积变化。
经过多次循环之后,活性颗粒和电极材料会开裂和破碎,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命。
据报道,合金型负极材料的体积膨胀率中,Si为420%,Ge和Sn为260%,P为300%。
而传统的石墨负极只有10%。
图1. 活性颗粒和电极材料在充放电过程中开裂和破碎的过程硅极负极的解决方案纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。
高容量电极材料有一个基本参数,叫做临界破碎尺寸。
这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。
而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。
当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。
研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。
晶化Si纳米颗粒的临界尺寸大约是150 nm。
图2. Si纳米线负极材料可以适应应力的影响因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。
至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。
动力锂电池行业百科发展历程工艺流程商业模式及PEST分析一、发展历程:1.初期阶段:动力锂电池的研发起源于20世纪80年代,当时以美国为主导,在镍氢电池的基础上发展出了锂离子电池。
然而,由于其高成本、低能量密度等问题,限制了其应用广泛度。
2.电动汽车崛起:随着环保意识的增强和电动汽车技术的不断进步,锂电池作为电动汽车的主要动力源开始受到关注。
2024年,特斯拉公司推出了第一款基于锂电池动力的电动车型,标志着锂电池在电动汽车领域的得到认可。
3.大规模应用:随着技术进步和成本降低,动力锂电池开始在电动汽车、储能系统等领域得到大规模应用。
不仅在特斯拉等电动汽车生产商中广泛使用,还在家用储能设备、光伏储能等领域中得到应用。
4.创新技术突破:近年来,动力锂电池行业不断进行创新,涌现出新的技术突破。
例如,固态锂电池、硅负极材料等的研发,进一步提升了电池的性能和安全性。
二、工艺流程:1.材料准备:包括正负极活性材料的制备和材料混合、锂盐溶液的制备等。
2.正负极制备:正、负极的制备包括电极材料的涂布、干燥、切割、滚压等工艺步骤。
3.电池组装:正、负极材料按照一定的规格和顺序叠放,通过隔膜将正负极隔开,并注入相应的电解液。
4.成型:成型是将组装好的电池进行密封封装,通常采用铝塑包装。
5.测试:测试包括电池容量、内阻、循环寿命等指标的测试,以确保产品质量。
三、商业模式:1.垂直一体化模式:由于锂电池制造过程中的各个环节高度关联,一些大型企业往往采用垂直一体化的商业模式,即从原材料采购到电池组装、销售都由企业自身完成。
2.拆分模式:另一种商业模式是将锂电池产业链的各个环节进行拆分,由不同的企业专注于一些环节的生产和销售。
例如,电池材料生产商专注于材料的研发和生产,电池组装厂专注于组装和销售。
3.新能源综合服务模式:一些企业通过提供新能源综合服务来建立商业模式。
例如,特斯拉通过提供电动车、电池储能系统和充电设施等一揽子解决方案,为客户提供全方位的新能源服务。
我国动力锂电池行业的发展现状摘要:目前,美国、日本、韩国等国家和地区出于抢占清洁能源领域制高点的战略考虑,都特别重视锂离子动力电池产业的发展,纷纷出台各种政策支持鼓励本国发展相关产业。
全球大汽车企业积极研发锂电池,但是大多数企业面临被迫从组或破产的困境,文章将对此行业现状提出建议。
关键词:锂电安全;电动汽车厂商;亏损与破产;美国;日本新能源汽车对动力电池要求很高,必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低、使用寿尽量长。
越来越多的汽车厂家选择采用锂电池作为新能源汽车的动力电池。
1 国内外动力锂电池政策1.1 美国2008年9月,美国设立了一个“先进汽车技术贷款项目”以拯救身陷金融危机之中的美国汽车制造业,项目是为了促进汽车制造商改造生产线,生产先进技术汽车而设立的,旨在支持混合动力车、插电式混合动力车和柴油车,并将燃料效率提高25%。
2013年3月,美国能源部部长朱棣文宣布启动“工作场所充电计划(workplace charging challenge)”,鼓励企业在工作场所建设电动汽车充电设施。
借此推动电动汽车在美的普及,并为电动汽车在全球的推广树立样板。
目前,已有13家大型企业和8家协会加入了该计划,其中包括通用汽车、福特、尼桑、克莱斯勒等汽车制造企业,西门子、通用电器、3m、杜克能源等制造和能源企业,还有谷歌、verizon等高技术企业。
美国总统奥巴马于2011年3月30日表示,到2015年美国政府将只采购混合动力和电动汽车等新能源汽车。
1.2 日本日本经济产业省将扩大2010年01月推出的“低碳型创造就业产业补助金”制度,把补助总额从 2009年度第二次补充预算的每年300 亿日元,扩大到每年1,000 亿日元。
经济产业省之所以紧急推出该计划,是为了防止日本具有优势的低碳产业流出日本,到别国投资建厂。
据了解,之前在电动汽车和动力锂电池领域,已有日产汽车和户田工业获得了美国政府的资助,携带核心技术到美国投资建厂。