风电机组结构及选型
- 格式:docx
- 大小:747.35 KB
- 文档页数:22
风电场最佳风力发电机组选型的探讨风电机组的选型在风电场可研设计中具有至关重要的作用,直接影响风电场的风能利用率及其经济效益。
风电场最佳机型选择应考虑适合风电场场址的风资源条件,有利于提高风电场的发电效率。
而最终型号的选择须经多方技术经济条件比较后确定最优方案。
本文结合作者实际工作经历,从风力发电机的类型介绍入手,详细论述选择风力发电机应考虑的原则和几个重要因素,已达到充分利用风能资源,提高风能利用率的目的。
标签:风力发电机;风速;容量系数;功率曲线引言:分析风力发电机组选型的原则有四个方面:a.对质量认证体系的要求,风力发电机组选型中最重要的一个方面是质量认证;这是保证风电场机组正常运行及维护最根本的保障体系;风电机组制造必须具备IS09000系列的质量保障体系的认证;b.对机组功率曲线的要求,功率曲线是反映风力发电机组发电输出性能好坏的最主要曲线之一;c.对机组制造厂家业绩考查,业绩是评判一个风电制造企业水平的重要指标之一;d.对特定环境要求;如台风、低温等。
风力机型的选择,受气候和地形影响,各地、个高度风力资源分布极不均匀,风力资源的状况相差很大,风力机的输出功率既与所在点的风速分布特性有关,又与所选用的风力机型有关,世界各国现在己开发和使用的风力机容量从1000kW到5000kW,各参数和技术指标相差很大。
对于特定的场点特别是并网运行的大型风电场来讲,选择与该点风速分布特性最相匹配的风力发电机组以最大限度地利用风能,和产生最好的经济效益是风电场设计中首要解决的。
1.风力发电机的分类按风轮轴安装形式可分为水平轴风力发电机和垂直轴风力发电机(1)水平轴风力发电机水平轴风力发电机是目前国内外广泛采用的一种结构型式。
主它的主要机械部件都在机舱中,如主轴、齿轮箱、发电机、液压系统及调向装置等。
对于水平轴风力发电机来说,需要风轮始终保持面向风吹来的方向。
有些水平轴风力发电机组的风轮在塔架的前面迎风旋转,称为上风向风力发电机组;而风轮在塔架后面的,则称为下风向风力发电机组。
风力发电机组选型、布置及风电场发电量估算(切吉二期)7 风电机组选型、布置及风电场发电量估算7 风电机组选型、布置及风电场发电量估算7.1 风力发电机组选型在风电场的建设中,风力发电机组的选择受到风电场自然环境、交通运输、吊装等条件制约。
在技术先进、运行可靠、满足国产化的前提下,应根据风电场风况特征和风电机组的参数,计算风电场的年发电量,选择综合指标最佳的风力发电机组。
7.1.1 建设条件切吉风电场二期工程场址海拔高度在3150m~3260m之间,属高海拔地区,空气稀薄,多年平均空气密度为0.885kg/m3,应选择适合高海拔地区的风机;该风电场场址地处柴达木盆地东北边缘,地貌类型以山前倾斜平原的戈壁滩为主,地形平坦,地势开阔,便于风机安装;场址北距青藏公路(109国道)3.2km,交通便利,施工条件较好,可通过简易道路运输大型设备。
根据0622#测风塔 2006.11.1~2008.10.31 测风数据计算得到风电场场址80m高度风功率密度分布如图7.1所示。
图中用颜色深浅表示风能指标高低,颜色越深风能指标越好,颜色越浅风能指标越差。
由图7.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。
根据0622#测风塔风能资源计算结果,本风电场主风向和主风能方向基本一致,以西西北(WNW)和西(W)风的风速、风能最大和频次最高。
80m高度风速频率主要集中在1.0 m/s~9.0m/s ,无破坏性风速,全年均可发电。
80m高度年平均风速为6.54m/s,年平均风功率密度为309.0W/m2,年有效风速(3.0m/s~20.0m/s)利用时数分别为6900h。
用WASP9.0程序进行曲线拟合计算,得到0622#测风塔80m高度年平均风速为6.65m/s,平均风功率密度为319W/m2;50m高度年平均风速为6.31m/s,平均风功率密度为275W/m2;30m高度年平均风速为6.03m/s,平均风功率密度为236W/m2;10m 高度年平均风速为5.27m/s,平均风功率密度为165W/m2。
风力发电机组的结构分析与优化设计一、引言随着国家环保意识的日益增强,新能源的发展越来越受到重视,风力发电作为新能源的重要组成部分,正在得到越来越广泛的应用。
而风力发电机组是其中最主要的发电设备之一。
本文将对风力发电机组的结构进行分析,并提出优化设计方案,以提高其性能和效率。
二、风力发电机组结构分析1.结构组成风力发电机组主要由发电机、叶片、塔架、控制系统等组件组成。
其中,发电机是整个发电系统的核心部件,其通过转速控制器控制转速,转动叶片,通过转子的旋转运动,将风能转化为电能,输出给电网。
叶片的设计直接影响发电机的性能,采用科学合理的设计方案,能使叶片的捕风面积最大,提高了风能的利用率。
塔架的作用是支撑发电机组,防止其在强风天气中倾覆或损坏。
控制系统包括风速传感器、转速传感器、温度传感器等多个传感器,可以实时监测风力、转速等数据,为发电机组的运行提供保障。
2.结构优化在风力发电机组的结构设计中,需要考虑发电机组的安全性、性能和可靠性。
对于叶片来说,需要通过科学的气动分析,确定叶片的形状、数量、长度等参数,以提高叶片在风场中的捕风面积,进而提高风能利用率。
对于塔架来说,需要考虑塔架的高度和直径,以保证塔架的稳定性和抗风能力。
此外,还需要考虑发电机组的重量和启停控制系统的设置等因素。
另外,在风力发电机组的设计过程中,还需要考虑发电机组的整体布局,使得发电机的维护更加简便方便,相关部件的更换更加方便,进而提高整个系统的可靠性和耐久性。
三、优化设计方案1.叶片设计优化在叶片的设计中,需要选择恰当的材料,并进行空气动力学仿真分析,确定叶片的最佳形状、数量、长度等参数,以提高叶片的捕风面积,减小风阻力,提高风能利用效率。
同时,还可以通过调整叶片的角度和形状,最大限度地降低发电机组的噪音。
2.塔架设计优化在塔架的设计中,需要选择强度高、抗风能力强的材料,以提高塔架的耐久性和稳定性,从而确保发电机组的安全性。
同时,还需要考虑塔架的高度和直径,以提高发电机组的接收风能能力。
风力发电机的结构与组成风力发电机是一种利用风能转化为电能的装置,它由多个部件组成。
本文将介绍风力发电机的结构与组成。
一、塔架风力发电机的塔架是支撑整个设备的基础结构,通常由钢铁或混凝土建造而成。
塔架的高度往往决定了风力发电机的发电效率,因为高度可以使其处于更高的风速区域。
二、风轮风轮是风力发电机的核心部件,也被称为风力涡轮机。
它由多个叶片组成,通常为三片或更多片。
叶片的材料通常是复合材料,如玻璃纤维和碳纤维。
风轮的主要作用是捕捉风能并转化为旋转动能。
三、发电机发电机是将旋转的机械能转化为电能的设备。
在风力发电机中,发电机通常位于塔架的顶部,与风轮相连。
它通过叶片的旋转运动产生电流,将机械能转化为电能。
四、变速器变速器是控制风轮旋转速度的装置。
由于风速的不稳定性,风力发电机需要根据风速的变化来调整旋转速度,以保持发电效率。
变速器可以根据需要调整风轮旋转的速度,使其始终在最佳工作状态。
五、控制系统风力发电机的控制系统负责监测和控制整个发电过程。
它可以实时监测风速、风向、温度等参数,并根据这些参数来调整发电机的工作状态。
控制系统还可以进行故障检测和保护,确保风力发电机的安全运行。
六、电力传输系统电力传输系统将发电机产生的电能传输到电网中。
它包括变压器、电缆和开关装置等设备。
变压器用于提高或降低电压,以适应电网的要求。
电缆用于连接发电机和电网,将电能传输到用户。
七、基础设施除了上述主要部件外,风力发电机还需要一些基础设施来支持其正常运行。
例如,风力发电机需要道路或平台来进行维护和保养。
此外,还需要配套的风能资源评估系统和监测系统,以提高发电效率和安全性。
总结起来,风力发电机的结构与组成主要包括塔架、风轮、发电机、变速器、控制系统、电力传输系统和基础设施。
这些部件相互协作,将风能转化为电能,实现可持续发展的清洁能源。
风力发电机的不断发展和推广将对环境保护和能源安全产生积极影响。
第四讲风力发电机的结构与分类风力发电机是一种将风能转化为电能的设备。
其结构主要包括风轮、传动系统和发电机组成。
根据风轮的类型和形状不同,风力发电机可分为垂直轴风力发电机和水平轴风力发电机两大类。
垂直轴风力发电机一般由多个垂直排列的叶片组成,风轮呈直立状态,因此也被称为直立式风力发电机。
其特点是风向变化时,无需对风轮进行调整,能够自动跟踪风向。
垂直轴风力发电机的结构相对简单,容易安装和维护,适用于各种风向的地区。
但由于叶片受风阻力较大,垂直轴风力发电机的效率相对较低,发电能力也较小。
水平轴风力发电机是目前应用较广泛的一种风力发电机。
其风轮呈水平放置状态,由三个或更多的叶片组成。
风向变化时,需要通过转动整个风力发电机来调整风轮朝向。
水平轴风力发电机的结构复杂,需要配备风向传感器和伺服系统来实现风向调整。
但由于叶片在运动过程中受风力影响较小,水平轴风力发电机具有较高的效率和发电能力。
根据风力发电机的功率大小,还可以将其分为小型风力发电机和大型风力发电机。
小型风力发电机一般功率在几千瓦到几十千瓦之间,适用于家庭、农村、岛屿等地区的独立供电。
大型风力发电机功率通常在数百千瓦到数百兆瓦之间,主要用于商业发电和集中式电网供电。
除了以上常见的结构和分类外,风力发电机还可以根据其叶片形状、叶片材料等因素进行细分。
例如,叶片形状可以分为直线型、弯曲型、扇形等。
不同的叶片形状对风力发电机的效率和风能捕捉能力有着重要影响。
叶片材料通常选用玻璃纤维增强塑料、复合材料等,以提高叶片的强度和耐腐蚀能力。
总而言之,风力发电机是一种将风能转化为电能的设备,其结构主要包括风轮、传动系统和发电机。
根据风轮的类型和形状不同,风力发电机可分为垂直轴风力发电机和水平轴风力发电机。
根据功率大小,可将其分为小型风力发电机和大型风力发电机。
此外,还可以根据叶片形状、材料等因素进行进一步细分。
风力发电机的分类和结构多样化,能够适应不同环境和需求。
风力发电机组类型选择1.风力发电机组类型选择根据目前世界风力发电机组的发展状况了解到,目前各种机型风力发电机组均采用了上风向、水平轴、三叶片结构,该种类型的机组其技术成熟,可靠性较高,在世界各地得到了广泛的运用。
为适应各种风况条件,在机型方面又划分为中低风速区型、内陆型和高风速区型机组以及变桨、变速、变桨变速等不同类型,其单机容量范围从几十千瓦到数兆瓦,选择范围较大。
根据风电场的风能资源状况,地区属于m级风场,70米高度年平均风速7.2米/秒,适宜选择中低风速区型风电机组;根据推算的风场不同高度实测年历时风速资料,按不同风电机组功率曲线,对各类机组的理论发电量和理论利用小时数进行了初步估算,推荐选择叶轮直径较大的风电机组。
2.风力发电机组单机容量选择目前风电机组单机容量最大已可达到3兆瓦以上,如东特许权项目要求设备国产化率达到50% ,在与各设备供应商咨询了解后,初步确定4种可满足国产化率要求的风电机组,其单机容量分别为850千瓦、1000千瓦、1250千瓦和2000千瓦,在选定风场场址内进行排列布置。
根据初步布局结果和招标文件提供的资料,从风电机组布置角度,在如东风电场单机容量在600千瓦以上的机组均可实现理想布置。
其中选择较大机组容量时,机组布置更为灵活,占地面积小,配套工程(基础、塔架、输电电缆)少。
3.风力发电机组的对比选择经过初步选择,从多种侯选机型中初步选择出三种机型进行详细的技术指标比较,三种机型的主要参数的对比(仅列出四者之间的主要区别)见表6-l o表6-1 :侯选风力发电机组技术指标对比表名称WTG1 型WTG2 型WTG3 型WTG4额定功率(千瓦)850100012502000功率调节速变桨变定桨距变桨距变桨变速叶轮直径(米)5254.26680额定风速(米/ 秒)15151215停机风速(米/ 秒)25252525叶轮额定转速(转14. 6-15/2213. 9/20. 89-19/分)30.8运行温(℃)度范围-20〜+50-30〜+25-20〜+50-20-+50机舱重量(吨)23304461叶轮重量(吨)1016.519.834塔架高度(米)65656560塔架重量(吨)1068598100从上表中可以看出,WTG1与WTG3、WTG4型机组均采用变桨功率调节方式,在高风速区段,叶轮保持较高的效率,对风能资源的利用效率高,WTG4机组采用全变速运行,为目前较新发展的技术。
第一节风电机组结构1.外部条件根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。
根据IEC61400设计标准,共分为4级。
一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为52.5m/s;二类风场II:参考风速为42.5m/s,年平均风速为8.5m/s,50年一遇极限风速为59.5m/s,一年一遇极限风速为44.6m/s;三类风场III:参考风速为37.5m/s,年平均风速为7.5m/s,50年一遇极限风速为52.5m/s,一年一遇极限风速为39.4m/s;四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。
对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。
2.机械结构2.1总体描述整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。
发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。
偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。
机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。
产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。
内层设置消音海绵,以降低主机噪声。
机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。
2.2载荷情况- 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。
- 发电:风电机组处于运行状态,有电负荷。
- 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。
- 紧急关机:突发事件(如故障、电网波动等),引起的停机。
- 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。
- 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。
2.3叶片叶片根部是一个法兰,与回转轴承连接,实现变桨过程。
叶尖配有防雷电系统。
2.4变桨轴承/机构目前,国际上常见的有两种类型,一种是液压驱动联杆机构,推动轴承,实现变桨;一种是电机经减速驱动轴承,实现变桨;由于高压油的传递需要通过静止部件向旋转部件(轮毂)传递,难以很好地实现,易发生漏油;电信号的传递较易实现,兆瓦级风电机组多采用电机驱动变桨。
出于安全考虑,配置蓄电池,防止电网突然掉电或电信号突然中断,使得风电机组能够安全平稳地顺桨实现制动。
变桨机构组成:轴承,驱动装置(电机+减速器),蓄电池,逆变器,变桨速度16°/秒左右。
2.5轮毂轮毂为球铁件,直接安装在主轴上,叶根法兰有腰形空,用于在特定的风场调整叶片初始安装角。
2.6主轴/主轴承座/轴承主轴的作用在于将转子叶片上的旋转力矩传到齿轮箱上,主轴与齿轮箱的连接大多采用胀紧式联轴器,这样可保证主轴与齿轮箱同心,在运行中免于维护。
主轴上坚固的三点悬挂支撑,能够很好地吸收弯矩,降低齿轮箱输入轴的径向负载。
也有些风电机组采用双轴承的结构设计,目的在于减少由于风作用于叶片而引起的轴向推力,以及消除风电机组运行时齿轮箱低速轴侧的俯仰力矩,改善齿轮箱运行环境,避免近年来,世界范围出现的齿轮箱行星轮系轴断裂问题。
两个主轴承选用双列向心推力滚子轴承,还可以吸收大部分的来自风轮的轴向推力,进而,降低齿轮箱输入轴的轴向负载。
2.7齿轮箱600kW以下风电机组多为平行轴结构,大于600kW的风电机组基本是采用行星轮结构或行星轮加平行轴结构。
齿轮箱体采用球铁铸造而成,齿轮箱的负荷及压力通过齿轮箱两侧的支撑传到塔架和基础,该支撑为强力橡胶结构,可以降低风电机组的噪音和震动。
在齿轮箱后部的高速轴上安装有刹车盘,其连接方式是采用胀紧式联轴器;液压制动器通过螺栓紧固在齿轮箱体上;齿轮箱高速轴通过柔性连接与发电机轴连接。
2.8发电机系统发电机通过四个橡胶减震器与机舱底盘连接,这种结构对于降低发电机噪音有很强的消减作用;柔性联轴器连接齿轮箱高速轴和发电机轴。
风电机组要求发电机在负荷相对较低的情况下,仍保持有较高的效率,因为风电机组运行的绝大多数时间都发生在较低风速下。
发电机系统组成:发电机、循环变流器、水循环装置(电机、水泵、水箱等)或空冷装置。
2.9偏航系统偏航系统要求简单而坚固,机舱的偏航是由电动偏航齿轮自动执行的,它是根据风向仪提供的风向信号,由控制系统控制,通过驱、传动机构,实现风电机组叶轮与风向保持一致,最大效率地吸收风能。
偏航时间的长短,是由计算机控制的,一旦风向仪出现故障,自动偏航操作将中止,仅可以从控制柜或机舱顶部控制盒上人工方式操作偏航。
内齿型回转支承结构,所有部件都置于内部,不会受雨水、砂尘影响,服务和维护均可非常容易地进行,而不会受天气的影响。
偏航的控制:在风速低于3或3.5m/s下,自动偏航不会工作,风电机组将不会偏航到与风向一致。
只有风速大于该值后,风电机组才自动扑捉风向,这样,可以避免不必要的偏航和电能消耗。
现代风电机组多采用阻尼型偏航系统,偏航刹车系统已经很少使用了。
2.10机械制动/液压系统(高速轴)制动系统为故障安全系统,要求动态液压保证风电机组制动为静态,当风电机组的控制器发送停机命令或供电系统掉落,制动器液压站会立即卸压,使风电机组停机。
变桨变速型风电机组的制动系统包括叶片变桨制动和高速轴机械制动,叶片变桨制动是通过改变叶片功角,减少叶片升力,以达到降低叶片转速直至停机;高速轴机械制动是通过刹车片与刹车盘间磨擦力,实现停机。
在正常停机状态,先启动叶片变桨制动,减速至一定转速或时间后,机械制动动作,停机。
紧急停机状态下,叶片变桨制动和高速轴机械制动同时动作,确保风电机组在短时间内停机。
制动盘通过胀紧式联轴器与齿轮箱高速轴连接,制动器安装在齿轮箱的箱体或机舱底座上。
制动系统的刹车片一般带有温度传感器和磨损自动保护,分别提供刹车过热和刹车片磨损保护。
2.11 机舱底盘机舱底盘用于支承塔架上所有的设备和附属部件,因而,要求有足够的强度和刚度。
风电机组底座是钢板焊接结构件或大型铸铁件,机舱壳体是采用玻璃钢制成,也有采用铁皮铆接形式。
2.12齿轮箱/发电机冷却系统为保证齿轮箱和发电机在正常的工作范围内工作,防止发生过热,需要循环冷却装置。
- 发电机水冷却系统:自发电机壳体水套,经水泵强制循环,通过蓄水箱后,返回发电机壳体水套。
冷却水:防冻液与蒸流水按一定比例混合,调整冰点应满足当地最低气温的要求。
- 齿轮箱油冷却系统:齿轮箱油自箱体底部油嘴,经油泵强制循环,通过过滤器、热交器冷却后,返回齿轮箱。
- 保护系统:齿轮箱油系统中,在过滤器上设有压力继电器,如果齿轮箱齿轮或轴承损坏,则产生的金属铁削会在油循环过程中,堵塞过滤器,当压力超过设定值时,压力继电器动作,油便从旁路直接返回油箱,同时,电控系统报警,提醒运行人员停机检查。
2.13塔架塔架是用钢板焊接成锥筒形,通过螺栓和法兰连接塔筒的各部分。
塔架是支撑机舱的结构部件,承受来自风电机组各部件的所有载荷,不仅要有一定的高度,使风电机组处于较为理想的位置上运转,而且还应有足够的强度和刚度,以保证在极端风况下,不会使风电机组倾倒。
3.控制系统基本技术要求3.1控制系统的功能控制系统利用DSP微处理机,在正常运行状态下,主要通过对运行过程中模拟量和开关量的采集、传输、分析,来控制风电机组的转速和功率;如发生故障能或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态。
3.2控制系统的任务控制系统主要任务就是能自动控制风电机组依照其特性运行,故障的自动检测并根据情况采取相应的措施。
根据风电机组的结构载荷状态、风况、变桨变速风电机组的特点及其它外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。
- 待机状态:- 风轮自由转动,没有发电(风速为0-3m/s),刹车释放;- 发电状态:发电状态Ⅰ:起动后,到额定风速前,刹车释放;发电状态Ⅱ:额定风速到切出风速(风速12-25 m/s),刹车释放;- 故障停机方式故障停机方式划分为:可自启动故障和不可自启动故障。
停机方式为正常刹车程序:即先叶片顺桨,当发电机转速降至设定值后,起动机械刹车。
- 人工停机方式这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后起动机械刹车。
这一停机方式不能自启动,需要人工启动。
- 紧急停机方式紧急停机方式适应于安全保护系统,安全保护系统包括:电网掉电、发电机超速、转子过速、机舱过振动、紧急按钮动作等。
这种状态下风电机组叶片顺桨和机械刹车同时动作,这种状态需要人工进行恢复。
第二节风电场机组的选型问题1.概述风力发电机组是风电场的主要生产设备。
对于一个风电场来说,风电机组选择的正确与否直接影响到风电场的经济效益,其重要性不言而喻。
在经过选址、测风、风电场项目确定之后,首要的问题就是风电机组的选型。
而风电机组的选型,一般要从风电机组的装机场地、安全等级、技术性能、经济效益等方面考虑问题。
由于风电场的情况千变万化,风电机组的选型要根据具体情况,不能一概而论,本文根据过去的工作经验,就一些考虑和分析问题的方法加以讨论,以供解决具体问题时参考。
2.风电机组的技术及性能2.1定桨距失速型风电机组风力资源的特征可以用风速频率来描述,即每一个特定风速在全年出现的时间的概率分布。
以风速为横轴,概率为纵轴,可划出分布曲线。
分布曲线服从威布尔分布,见图1。
我国曾经大量使用的风力发电机组都是定桨距型的,叶片装上以后不能动,额定风速较高。
这种风机的发电特性见图1。
定桨距风机的优缺点如下:优点:1. 机械结构简单,易于制造;2、控制原理简单,易于实施;3、因为简单,不易出故障。
缺点:1、额定风速高,风轮转换效率低;2、转速恒定,机电转换效率低;3、叶片复杂,重量大,制造较难,不宜作大风机。
2.2 变桨距型风电机组变桨距技术主要解决了风能转换效率低的问题。
变桨距技术就是将风机叶片做成可变桨距的,以使三个叶片随着风速的变化而同步变距,始终保持最佳角度,提高风轮转换效率。
图2比较了变桨距和定桨距风机的功率曲线。
变桨距风机的优缺点如下:优点:1.提高了风能转换效率, 更充分利用风能;2.叶片相对简单,重量轻,利于造大型风机。
缺点:1.调桨机构复杂,控制系统也较复杂;2.因复杂而使出现故障的可能性增加;2.3 变速型风电机组变速恒频技术解决机电转换效率低的问题。