变压器空载合闸时的励磁涌流
- 格式:docx
- 大小:15.08 KB
- 文档页数:2
简述变压器的励磁涌流对电网稳定运行的影响摘要:正常运行时,变压器的励磁电流很小,通常只有额定电流的3% ~ 8%,大型变压器甚至不到1%。
但是,当变压器空载合闸时,会产生与电压初始相角和变压器特性有关的涌流。
在最不利的情况下,涌流可以达到额定电流的几倍,其最直接的影响就是变压器保护装置的误动作。
关键词:励磁涌流;变压器;一、励磁涌流导致的破坏性影响第一,引发继电保护误动作。
因为变压器在空载合闸时,会对过流保护产生误动作,从而导致变压器无法成功投运。
此外,由于保护误动被诱发,又将引起变压器各侧负荷电源切断,最终停电[1]。
第二,导致和应涌流现象出现。
由于变压器因短路问题切除时,诱发邻近另外一个或多个变压器(或发电机)出现保护装置误动,进而引发大面积停电。
第三,产生大量的谐波污染。
由于很多高次谐波存在于励磁涌流之中,所以当励磁涌流产生时,必然会伴随大量谐波出现,所以电网电能质量会受到较为严重的谐波污染,所以电能质量也因此下降。
第四,损坏变压器及断路器。
因为励磁涌流过大,会产生较强的电动力,从而引发对系统的强烈冲击,变压器和断路器由于超出承受能力,所以会产生一定的损害。
第五,影响继电保护装置的精度。
由于励磁涌流直流分量的出现必然会导致TA 磁路出现过量磁化,所以 TA 精度受到严重影响,发生骤降,进而导致继电保护装置精度的下降。
二、变压器励磁涌流出现的原因要想明确变压器励磁涌流出现的原因,就要借助磁链守恒定理的作用进行研究。
磁链守恒定律的含义为:用电设备回路中的全体磁链综合在换路的瞬间时刻都是处于不变的[1]。
同时研究发现,变压器出现励磁涌流的问题时,变压器中的磁链仍然是满足磁链守恒定理的,以此为切入点对变压器的投运过程进行分析,变压器由空载运行转为带载运行时,在其接入负载的瞬间,变压器绕组上电压会突然增加,突增的电压将促使变压器内部出现一个的新磁通,与此同时,为了抵消这个突增电压导致的新磁通,变压器的绕组中将会产生一个与其大小相等但是极性相反的磁通,称为偏磁。
变压器空载合闸励磁涌流成因及其抑制措施的实际应用发布时间:2022-02-16T04:05:29.433Z 来源:《中国电业》(发电)》2021年第16期作者:刘强陈江添刘从聪[导读] 当前变压器空载投运过程中,常出现合闸励磁涌流激增,导致变压器保护跳闸,本文分析励磁涌流形成原因及其影响,针对目前抑制涌流的方法,中性点串联阻抗法与选相合闸法两种策略进行说明对比。
通过实际案例对两种方法进行经济和技术方面的优劣分析,论证抑制励磁涌流的可行性,并从中确定最优解。
刘强陈江添刘从聪广东电网有限责任公司东莞供电局广东省东莞市 523530摘要:当前变压器空载投运过程中,常出现合闸励磁涌流激增,导致变压器保护跳闸,本文分析励磁涌流形成原因及其影响,针对目前抑制涌流的方法,中性点串联阻抗法与选相合闸法两种策略进行说明对比。
通过实际案例对两种方法进行经济和技术方面的优劣分析,论证抑制励磁涌流的可行性,并从中确定最优解。
关键词:励磁涌流;选项合闸法;中性点串联阻抗法;合闸初相角;暂态磁0引言变压器在电力网络中处于最重要的一环,其安全程度对整个系统的稳定运行及其关键。
伴随用电剧增,变压器规格与电压等级要求越来越高,投切的励磁涌流也越大[1]。
正常投运时,励磁电流为额定值的3%-5%,但在空载合闸投运或故障切除后恢复投切时,变压器的一次侧常出现较大涌流,其值会达到额定电流的6-8倍[2],超额励磁涌流相应产生过大的电动力,对变压器线圈绕组产生冲击,导致油液面波动,引发瓦斯保护误动作,严重时造成电网区域性电力中断。
励磁涌流对变电站的影响需引起重视,采取合适的措施抑制涌流已成当务之急。
1.变压器涌流成因分析依据磁链守恒定律,在变压器合闸前,剩磁为绕组内的总磁通。
合闸过程中,系统施加电压形成稳态磁通,为阻止磁通突变,回路形成一个与稳态磁通大小一致方向相反的暂态磁通。
两者互相叠加,形成偏磁,偏磁在变压器内将会随着时间振荡衰减。
变压器空投励磁涌流产生的原因当变压器空载合闸时会产生励磁涌流,设系统电压)sin(211a wt U u +=由dtd N ue Φ-==11得: 在合闸瞬间在变压器铁芯中产生的磁通:)]cos([cos a wt a m +-Φ=Φ,其中112wN U m =Φ 1)2,0π==a t 时合闸:wt m sin Φ=Φ,马上进入稳态运行,没有励磁涌流。
2)0,0==a t 时合闸:'''cos ]cos 1[Φ+Φ=Φ-Φ=-Φ=Φwt wt m m m从t=0经过半个周期wt π=,Φ达最大值,m Φ=Φ2max 。
可达稳态量2倍,此时励磁电流f i 可达额定励磁电流100倍,即:Nf f i i 0100=而额定励磁电流约等于额定电流的3%,即: N Nf i i %30=所以:N f i i 3=。
而这是在变压器没有剩磁的理想情况下推出的结论,如果变压器有剩磁时合闸,励磁涌流会更大,可达10倍额定电流。
当空载合闸时励磁涌流只出现在高压侧,这样会产生很大的差动电流,引起差动保护误动。
励磁涌流原理图U1图6-3 图图图图图图图图图图图图tu ϕμI μI rφ(a) 图图图图图图图图图图图图图(b) 图图图图图图图图图图,图图图图图图图图(c) 图图图图图图图图图图(d) 图图图图图图图励磁涌流识别方法二:波形识别在RCS-978微机变压器保护中采用的方法是当+>S K S b 且t S S >时开放保护。
式中S 是差动电流的全周积分值,在每周采样24次的情况下∑∑=-=023m mS I T S 。
+S 是相距半周的差动电流瞬时值之和的全周积分值,∑∑∑+=-=-+023m 12m m S I I T S 。
b K 为大于1的常数。
当差动电流中没有励磁涌流而是短路电流且波形是对称的话,相距半周的差动电流瞬时值之和是零,其全周积分值+S 也为零。
而差动电流的全周积分值S 很大,满足+>S K S b 条件可以开放保护。
双绕组变压器空载合闸的励磁涌流的特点示例文章篇一:哎呀呀,这题目也太难懂啦!啥叫双绕组变压器空载合闸的励磁涌流的特点呀?对于我这个小学生来说,简直像外星人的语言!不过嘛,让我努力想想。
就好像我们跑步比赛,一开始起跑的时候,大家都拼命往前冲,那股劲头可大啦。
双绕组变压器空载合闸的时候,是不是也像这样,突然就有一股很强的力量涌出来呢?老师说,这个励磁涌流啊,它一开始的时候数值特别大!哇塞,这就好像是洪水突然冲出来一样,一下子特别凶猛。
这要是控制不好,会不会像调皮的小朋友捣乱,把整个电路都搞乱套呀?而且哦,这个励磁涌流里面还有很多谐波呢!谐波是啥?嗯,我想想,就好比我们唱歌,本来应该唱得很整齐好听,结果有人跑调了,这跑调的声音就是谐波。
那这么多谐波在里面,是不是就像一群乱哄哄的小鸟,叽叽喳喳叫个不停,让整个电流都变得乱糟糟的?还有还有,这个励磁涌流衰减得还挺快!这是不是有点像我们放烟花,一开始“砰”的一下特别亮,特别好看,但是很快就消失不见了?我觉得吧,搞清楚双绕组变压器空载合闸的励磁涌流的特点真的很重要。
不然的话,电路出了问题,那可就糟糕啦!我们家里的电灯不亮了,电视看不了了,那得多烦人呀!所以科学家们一定要好好研究,让我们能更安全、更稳定地用电!这就是我这个小学生对这个超级难的问题的一点点想法,我也不知道对不对,但是我真的很努力去想啦!示例文章篇二:哎呀呀,这题目也太难了吧!我一个小学生哪里懂什么双绕组变压器空载合闸的励磁涌流的特点呀!这对我来说简直就像天上的星星那么遥远,摸都摸不着。
不过呢,为了完成这个任务,我还是要努力试试看。
我觉得这个双绕组变压器就好像是一个神秘的大盒子,而空载合闸的励磁涌流就像是突然从盒子里冲出来的一群小怪兽。
这些小怪兽可不好对付,它们来势汹汹,一会儿大一会儿小,一点儿规律都没有。
它们就像调皮的小孩子,一会儿跑这儿,一会儿跑那儿。
听说它们出现的时候电流会突然增大很多很多,这难道不可怕吗?就好像平静的小河突然变成了汹涌的大河,一下子能把小船都掀翻!而且啊,这些励磁涌流的大小还跟好多东西有关系呢。
三相变压器空载合闸励磁涌流的大小和波形1. 引言三相变压器是电力系统中常见的设备之一,用于将电能从一个电压等级传输到另一个电压等级。
在变压器启动或切换时,需要进行励磁操作,以产生磁场并建立变压器的工作状态。
励磁涌流是指在变压器合闸励磁过程中产生的瞬态电流。
本文将深入探讨三相变压器空载合闸励磁涌流的大小和波形,并解释其原因和影响。
2. 励磁涌流的定义与原理励磁涌流是指在变压器合闸过程中,由于电源电压突然施加到变压器绕组上而产生的暂态电流。
这种暂态电流是由于绕组中的自感、互感和铁芯饱和等因素引起的。
当变压器合闸时,输入侧绕组上突然施加了额定电源电压。
由于绕组中存在着自感和互感,突然施加的电压会导致绕组中产生较大的暂态电流。
铁芯饱和也会导致励磁涌流的增大。
3. 励磁涌流的大小励磁涌流的大小取决于多个因素,包括变压器的参数、电源电压和频率等。
一般来说,励磁涌流的大小与变压器的容量成正比。
在变压器空载合闸时,励磁涌流的峰值通常为额定电流的2-6倍。
具体数值取决于变压器的设计和制造质量。
4. 励磁涌流波形分析励磁涌流通常呈现出一个尖峰,其波形可以分为三个阶段:启动阶段、衰减阶段和稳定阶段。
•启动阶段:在合闸刹那间,突然施加到绕组上的电压会导致绕组中产生一个很大的暂态电流尖峰。
这个尖峰通常持续几个周期。
•衰减阶段:随着时间的推移,暂态电流逐渐减小并趋于稳定。
这个过程通常持续约20-30个周期。
•稳定阶段:励磁涌流逐渐趋于稳定状态,维持在一个较小的数值上。
这个阶段可以持续几分钟到几十分钟。
励磁涌流的波形与变压器的设计和制造有关,不同类型的变压器可能会产生不同的波形特征。
5. 励磁涌流的影响励磁涌流对变压器和电力系统都会产生一定的影响。
5.1 对变压器的影响励磁涌流会在变压器绕组中产生较大的暂态电流,这会引起电阻损耗和额外的温升。
长期以来,大幅度的励磁涌流可能导致绕组过热,从而降低变压器的寿命。
励磁涌流还可能导致铁芯饱和。
变压器空载合闸产生的励磁涌流及其影响?
煤炭是国民经济发展的主要动力,煤矿的生产为电能,直接决定了供电系统的可靠性、安全性和稳定性。
变压器作为煤矿供电系统的主要电气设备,对供电系统的安全稳定运行具有重要意义。
在实际生产中,变压器的误动作是影响其稳定运行的关键故障因素,而导致误动作的主要因素是励磁涌流。
因此,有效地抑制变压器空载合闸产生的励磁涌流十分重要。
所谓的空载合闸就是在变压器二次侧不带负载的情况下,将一次侧合闸接入额定电压。
变压器铁芯中的磁通相位落后电压90度,所以此时铁芯中的磁通为最大,但磁通是不能突变的,所以铁芯中会产生一个方向相反随时间衰减速的直流磁通来抵消这个最大值,经过半个周期后,这个直流磁通又与交流磁通方向相同,二者相加,就使得铁芯饱和,就会产生很大的励磁涌流。
显然,励磁涌流的发生,是受励磁电压的影响。
只要系统电压一有变动,励磁电压受到影响,就会产生励磁涌流。
在不同的情况下将产生如下所述的初始、电压复原及共振等不同程度的励磁涌流。
其瞬时尖峰值及持续时间,将视下列各因素的综合情况而定,可能会高达变压器额定电流的8~30倍。
励磁涌流的发生,会使变压器的铁芯饱和,造成涡流损耗、铁损增大,漏磁通增强。
较大的励磁涌流使变压器过热,绝缘老化,影响变压器寿命,严重时可能造成周围绝缘介质损伤,烧毁变压器,甚至造成大面积的停电。
时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。
变压器空载合闸励磁涌流抑制技术研究变压器空载合闸励磁涌流抑制技术研究1 引言电力变压器在空载合闸投人电网时.由于变压器铁芯磁通的饱和及铁芯材料的非线性特性,会产生幅值相当大的励磁涌流. 由此可能导致变压器差动保护误动作.同时造成绕组变形,从而减少变压器寿命励磁涌流含有多个谐波成分及直流分量,这将会降低电力系统供电质量.同时涌流中的高次谐波对连接到电力系统中的敏感电力电子器件有极强的破坏作用。
励磁涌流是由于铁芯磁通饱和所引起的冲击电流,其大小与变压器等值阻抗、合闸初相角、剩磁大小、绕组接线方式、铁芯结构及材质等因素有关。
为了减小励磁涌流对电力系统的影响.通常采取在合闸回路串联电阻来限制涌流的幅值和暂态过程.但该方法增加了投资费用和操作的复杂性随着开关技术的发展,采取选相位关合l1.31技术,通过控制合闸时刻电压的初相角.使铁芯中的磁通在空载合闸时刻不发生突变,避免铁芯磁通的饱和,从而有效地抑制励磁涌流的暂态过程选相位关合技术合闸时刻与铁芯中的剩磁有关,由于剩磁很难测量,因此选相位关合技术在实际应用中还存在着问题。
笔者在分析串联电阻法和选相位关合技术原理的基础上,考虑剩磁对最佳合闸时刻的影响,提出一种抑制三相YN,d接法变压器励磁涌流的新方法。
2 基本原理变压器铁芯材料励磁特性具有非线性特性.见图l。
当铁芯磁通小于饱和磁通时,励磁电流很小。
若励磁电流i 随着磁通增加迅速增加。
为方便分析励磁涌流产生的原因,先以单相变压器为例,设合闸时刻铁芯中的剩磁为回路电压方程【I】为:其中:为变压器投入时刻电压初相角:为变压器绕组电阻:为变压器绕组电感。
式(2)中:一COS(tot+ )为稳态磁通,( +一旦tTI'cos )e 为维持t=0时刻磁通不能发生突变而产生的暂态磁通.这是一个衰减的非周期分量,衰减时间常数为兄当在电压过零时刻即初相角Ot=0时合闸,有最大磁通2 m+ 。
现代电力变压器在正常工作状态下磁通已接近饱和.当达到最大磁通~时,励磁电流将会成百倍地增长,其值可能达到额定电流的6~8倍.持续时间随着尺增加而缩短。
变压器空载合闸产生励磁涌流的原因变压器是电力系统中常见的电力设备之一,其主要功能是将电能从一种电压等级转换为另一种电压等级,以满足不同用电需求。
在变压器运行中,空载合闸是一种常见的操作方式,但它会产生励磁涌流。
本文将从原因角度探讨空载合闸产生励磁涌流的原因。
我们需要了解什么是励磁涌流。
励磁涌流是指在变压器空载合闸瞬间,由于变压器磁路中的磁通量变化导致的涌流现象。
这种涌流会引起变压器绕组和铁芯中的电流增大,可能导致设备振动、声响和绝缘老化等问题,甚至对电力系统的稳定运行产生不利影响。
那么,为什么空载合闸会产生励磁涌流呢?主要有以下几个原因。
励磁涌流与变压器的磁化特性有关。
变压器的铁芯是由硅钢片叠压而成的,具有一定的磁滞特性。
当变压器断开后,铁芯中的磁通量并不会立即消失,而是会逐渐衰减。
当再次合闸时,铁芯中的磁通量需要重新建立,这就需要一定的时间。
在这个过程中,会产生一段时间的励磁涌流。
励磁涌流还与变压器的电容特性有关。
变压器的绕组之间和绕组与地之间都存在一定的电容。
当变压器断开后,这些电容会被放电,导致励磁涌流。
同时,当再次合闸时,由于电容的存在,电流需要一定的时间才能建立起来,从而产生励磁涌流。
变压器的电感特性也会影响励磁涌流的产生。
变压器的绕组之间存在一定的电感,当断开变压器后,这些电感会形成自感电动势。
当再次合闸时,电流需要克服这个自感电动势才能建立起来,这也会导致励磁涌流的产生。
除了上述主要原因外,还有一些次要因素也会对励磁涌流产生影响。
例如,变压器的铁芯饱和程度、变压器的负载情况、电源电压的波动等。
这些因素的变化都会导致励磁涌流的大小和波形发生变化。
为了减小变压器空载合闸产生的励磁涌流,可以采取一些措施。
首先,可以合理设计变压器的磁路和绕组结构,增加铁芯的饱和磁场强度,减小励磁涌流的产生。
其次,可以通过合理选择合闸时机,避免在电网电压波动较大的时候进行空载合闸操作。
此外,还可以采用励磁变流器等装置来调节变压器的励磁电流,从而减小励磁涌流的影响。
为什么变压器合闸时发生的励磁涌流很大?
前期,了解了变压器产生励磁涌流的原因。
本期,接着了解变压器合闸时为什么发生的励磁涌流很大?
变压器线圈中,励磁电流和磁通的关系,由磁化特性决定,铁芯愈饱合,产生一定的磁通所需要的励磁电流愈大。
在正常情况下,铁芯中的磁通就已饱合,如在不利条件下合闸,铁芯中磁通密度最大值可达两倍的正常值,铁芯饱和将非常严重,使其导磁数减小,励磁电抗大大减小,因而励磁电流数值大增,由磁化特性决定的电流波形很尖,这个冲击电流可超过变压器额定电流的6-8倍。
所以,由于变压器电、磁能的转换,合闸瞬间电压的相角,铁芯的饱合程度等,决定了变压器合闸时,有励磁涌流,励磁涌流的大小,将受到铁芯剩磁与合闸电压相角的影响。
变压器合闸时发生励磁涌流很大的原因主要有以下2点:
一、t=0时铁芯中的磁链不能突变,产生磁通的自由分量使铁芯中磁通最大,最严重的情况下,磁通可达稳态最大值的2倍;
二、由于铁芯深度饱和使电流急剧增加。
电流增大的程度与合闸时电压的相角及铁芯的饱和程度有关。
在电压的相角为0时合闸,励磁涌流最大。
励磁涌流衰减很快,小容量变压器仅几个周波就可达到稳态,大容量变压器衰减的慢,约20s才衰减完。
励磁涌流对变压器本身没有什么危害,但有可能引起继电保护装置误动。
因此,新安装及大修后的电力变压器在正式投入运行前一定要做冲击合闸试验。
目的是检查变压器的绝缘强度和机械强度,检验差动保护躲过励磁涌流的性能。
时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。
220kV变压器空载合闸励磁涌流及抑制措施分析引言励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。
对变压器差动保护来讲,励磁涌流可视为一种差动电流。
暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。
随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。
1励磁涌流产生机理及危害变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。
涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。
励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。
励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。
其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。
由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。
变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。
励磁涌流主要危害:(1)可能引起变压器差动保护动作,造成投运失败,影响送电效率。
(2)数值大的励磁涌流会导致变压器及断路器因电力过大而受损,连续冲击会降低变压器绕组机械强度,损坏电气设备。
(3)导致周边换流站直流换相失败或功率波动。
2涌流检测方法当电力变压器合闸电源时,灵敏的差动保护可能误动。
为使差动保护躲过涌流,必须采取措施使算法能区分涌流状况与故障状况。
波形对称法:将流入继电器的差流进行微分,将微分后波形的前半周数据和后半周数据逐点做对称比较,故障电流基本上是工频正弦波,波形对称。
而励磁涌流时,三相差动电流中有大量的二次谐波和三次谐波分量存在,波形发生畸变、间断、不对称,利用算法检测出这种畸变,即可识别出励磁涌流。
变压器空载合闸励磁涌流及其抑制措施随着低压隔离变压器容量的不断增大,空载合闸励磁涌流的危害愈发严重,甚至严重影响了大容量低压隔离变压器的应用。
由于变压器铁芯材料励磁特性具有非线性特性,当铁芯磁通低于饱和时也就是变压器处于处于空载的稳态运行时,励磁电流是十分小的,仅占额定电流的0.2%~1%。
但是,当变压器空载合闸时,就会收到变压器铁芯剩余励磁及当变压器刚刚进行初载合闸时初相角所带来的随机性,而导致铁芯磁通逐渐趋于饱和状态,产生较大幅度值的励磁涌流其最大的峰值甚至可以达到变压器标准额定电流的6~8倍。
发生如此大的励磁涌流,必然会造成电网电压的不断波动,造成变压器的继电保护错误动作,从而诱发操作过电压,给电力电气设备带来严重的安全隐患。
为了有效抑制变压器空载合闸产生的励磁涌流,可以采取以下5种措施:一、变压器低压侧并联电容法在变压器低压侧并联一定的电容,变压器低压侧产生的磁通与高压侧磁通极性相反,对主磁通起去磁作用,从而达到抑制励磁涌流的目的。
二、在变压器的输入端串联电阻变压器合闸时,在变压器的输入端与电网间串联适当电阻可以限制冲击电流,串联电阻法能有效限制合闸冲击电流。
三、控制三相开关的合闸速断由于合闸瞬间外施交流电压的峰值为最大值时,变压器不会产生励磁涌流的特点,通过控制三相开关合闸的角度抑制励磁电流。
四、内插接地电阻由于变压器空载合闸时三相励磁涌流不平衡,在三相变压器的中性点处连接一个接地电阻,来抑制变压器的励磁涌流。
五、在升压变低压侧安装变压器合闸涌流一体化抑制装置变压器合闸涌流一体化抑制装置是基于电感线圈遵循磁链守恒原理,在变压器内部无剩余磁通时,选择在电压峰值,磁通为0时合闸将有效的避免涌流的产生;而在变压器内部有剩余磁通时,若能得知剩磁的极性和数值,在预期磁通等于剩磁通电压角度合闸,将有效的避免涌流的产生。
了解了变压器空载合闸励磁涌流及其抑制措施,有助于抑制变压器励磁涌流。
时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。
变压器空载合闸励磁涌流与外部故障切除后恢复性涌流讨论利用变压器模型对空载合闸励磁涌流与外部故障切除后恢复性涌流产生机理进行分析,得出各自的特点,进行比较分析,总结出变压器励磁涌流对变压器差动保护的影响,得到变压器空载合闸励磁涌流会引起差动保护误动而恢复性涌流本身不会引起差动保护误动的结论。
标签:变压器差动保护;励磁涌流;恢复性涌流;机理;误动0 前言电力变压器是电力系统中最关键的设备之一,它的安全性和稳定性影响着整个电力系统的运行。
所谓励磁涌流就是电力变压器在空载合闸投入电网或外部故障切除后电压恢复时,在变压器线圈内所引起的冲击电流。
这种冲击电流数值相当大,严重时达到额定电流的10~20倍,容易造成变压器保护的误动作和使变压器的绝缘破坏,对变压器的稳定运行相当不利,甚至影响整个电力系统的安全运行。
为此,有必要就变压器空投及起外部故障切除后产生的励磁涌流进行分析,总结出涌流的特征。
通过对变压器励磁涌流及恢复性涌流机理、特性分析,阐述二者对变压器差动保护影响。
1 变压器空载合闸励磁涌流分析新建和大修变压器后,要对变压器进行几次空载冲击合闸实验,其目的是考查励磁涌流是否导致变压器差动保护误动作,检查变压器绝缘强度是否能承受全电压和分闸过电压、机械强度是否能经受励磁涌流产生的强大电动力。
励磁涌流的大小取决于铁芯采用的磁密、合闸电压的相角、合闸绕组距铁芯的距离,铁芯中剩磁的大小和极性等,5次合闸过程中共有15相次不同相角和剩磁下合闸,某相出现较大或最大励磁涌流的概率有一定代表性,这就是变压器多次冲击合闸的原因。
1.1 变压器空载合闸励磁涌流产生的机理变压器空载的励磁涌流是由于变压器在静止状态下一旦合闸接上电源时,便会有电流流过一次线圈,在二次线圈中就会产生感应电势。
在这过渡状态中,由于电场和磁场的关系,就会产生一种抵制这种变化的励磁涌流。
电力变压器空载合闸瞬间铁芯磁通处于瞬变过程,会产生三相不对称磁通,导致电力变压器绕组线圈迅速达到饱和,不过这种电流主要是非周期性变化的直流分量,它能导致铁芯严重饱和,在最坏的情况下合闸主磁通可以突变到稳定磁通的3倍,而励磁涌流有可能达到稳态空载电流的几百倍。
变压器合闸涌流的产生及剩磁对其的影响?当变压器合闸励磁涌流较大时,在合闸时将导致断路器出现跳闸现象,严重时,还会引起断路器的烧毁。
由于励磁涌流幅值很大且仅流经变压器电源侧,将引起变压器纵差动保护产生很大的差流,导致差动保护误动作跳闸。
想要抑制变压器合闸涌流,首先来了解变压器合闸涌流是如何产生的?变压器在空载合闸投入电网时在其绕组中产生的暂态电流。
若变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通量远远超过铁芯的饱和磁通量,使铁芯瞬间饱和,因此产生极大的冲击励磁电流也叫励磁涌流或者合闸涌流。
励磁涌流最大峰值可达到变压器额定电流的6-8倍。
由于变压器合闸励磁涌流在空载合闸时,变压器铁芯中的磁通不能突变,导致励磁磁通除周期分量外产生直流分量。
到约1/2周期时,周期分量与直流分量磁通相加达到最大值。
如果合闸瞬间铁芯无剩磁,电压经过零值,则这个最大值接近周期分量磁通幅值的两倍。
如果合闸瞬间铁芯有剩磁,那么当剩磁方向与周期分量方向相同时,将削弱这个最大值,当剩磁方向与周期分量方向相反时,将增大这个最大值。
当剩磁方向与周期分量方向相反同时电压经过零值时,这个最大值接近周期分量磁通幅值的两倍再加上剩余磁通。
在这种情况下,铁芯必将严重饱和,励磁涌流大大增加,甚至会发生严重畸变。
由此可见,剩磁对合闸涌流的影响是很大的,不仅可以增大合闸涌流还可以削弱合闸涌流。
此外,变压器合闸励磁涌流其大小不仅与剩磁大小有关,还与电源容量、电压、合闸相角、铁芯饱和特性等因素有关,分析时要综合考虑。
了解了变压器合闸涌流的产生及剩磁对变压器合闸涌流的影响,有助于抑制变压器励磁涌流。
时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。
变压器空载合闸时的励磁涌流
变压器是电力系统中不可或缺的重要设备,它起着将电能从一
电压等级传输到另一电压等级的关键作用。
在变压器运行过程中,
空载合闸时的励磁涌流是一个非常重要的问题,它会对设备的安全
稳定运行产生影响。
励磁涌流是指变压器在空载合闸时,由于磁路突然饱和而产生
的瞬时大电流现象。
这种电流会导致变压器线圈和铁芯中产生过大
的磁场,从而引起变压器的震动和噪音,甚至可能损坏设备。
因此,励磁涌流对变压器的安全运行构成了潜在的威胁。
为了有效应对变压器空载合闸时的励磁涌流问题,我们可以采
取以下措施:
1. 采用先合闸后通电的操作方式,通过逐步增加励磁电流的方法,减小励磁涌流的影响。
2. 在设计变压器时,可以采用合理的磁路结构和材料,以减小
励磁涌流的大小。
3. 在变压器的运行控制系统中,设置合适的励磁控制装置,对励磁电流进行合理控制,以减小励磁涌流的影响。
4. 对变压器进行定期的检测和维护,及时发现和处理励磁涌流带来的问题。
总之,变压器空载合闸时的励磁涌流是一个需要引起重视的问题,只有通过科学合理的手段和措施,才能有效地减小励磁涌流的影响,确保变压器的安全稳定运行。