小学奥数5-5-3 余数性质(一).专项练习及答案解析
- 格式:doc
- 大小:1008.17 KB
- 文档页数:11
五五数之剩三怎么解答及例题五五数之剩三怎么解答及例题1. 前言在数学中,余数是一个常见的概念。
当我们对一个数进行除法运算时,如果除不尽,那么剩下的部分就是余数。
而“五五数之剩三”则是一个经典的问题,也是一个非常有趣的数学题目。
今天,我们就来探讨一下这个问题,并分享一些相关的例题和解答方法。
2. 什么是“五五数之剩三”“五五数之剩三”是一个数学问题,通常是以口诀的形式传播开来的。
它的意思就是,将一个数字除以5,剩下的余数是3。
也就是说,这个数字可以表达为5n+3的形式,其中n是整数。
3. 例题分析现在,让我们来看几个例题,通过这些例题来更深入地理解“五五数之剩三”。
例题1:求100以内能被5整除余3的数。
解答:我们可以逐个尝试100以内的数字,找出满足条件的数。
经过计算和筛选,我们可以得出答案是8、13、18、23、28、33、38、43、48、53、58、63、68、73、78、83、88、93、98。
这些数字都能被5整除,并且余3。
例题2:证明所有符合条件的数都可以写成5n+3的形式。
解答:要证明这个命题,我们可以采用数学归纳法。
假设k是一个满足条件的数,即k除以5的余数是3。
那么根据除法的性质,我们可以将k表示为5m+3的形式,其中m是一个整数。
现在,我们假设k+5也是一个满足条件的数,即(k+5)除以5的余数也是3。
那么根据除法的性质,我们可以将k+5表示为5(m+1)+3的形式。
可以看到,无论k是多少,只要满足条件,都可以写成5n+3的形式。
4. 个人观点和理解“五五数之剩三”这个问题,看似简单,实则蕴含了很多数学的奥秘。
通过解答这个问题,我们可以锻炼自己对数学运算和性质的理解,同时也能培养我们的逻辑思维能力。
我个人认为,数学问题并不仅仅是为了得出一个答案,更重要的是在解答过程中培养我们的思维能力和逻辑推理能力。
我们在解答数学问题的过程中,应该注重方法和思路的培养,而不是仅仅追求结果。
5. 总结通过本文的探讨,我们对“五五数之剩三”这个数学问题有了更深入的理解。
五年级奥数题及答案-求余数问题
编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:求余数问题,可以帮助到你们,助您快速通往高分之路!!
求余数:
求437×319×2010+2010被7除的余数。
解答:437≡3(mod7),319≡5(mod7),2010≡1(mod7)
由"同余性质"可知:
437×319×2010≡3×5×1(mod7)=15(mod7)≡1(mod7)
所以:437×319×2010+2010≡1+1(mod7)=2(mod7)
即:437×319×2010+2010被7除的余数是2.这道题主要考察了同余性质。
必须注意的是同余性质只能用在加、减、乘。
1.能够根据除法性质调整余数进行解题 2.能够利用余数性质进行相应估算 3.学会多位数的除法计算 4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.模块一、带余除法的估算问题例题精讲知识点拨教学目标5-5-2.带余除法(二)【例 1】修改31743的某一个数字,可以得到823的倍数。
问修改后的这个数是几?【考点】带余除法的估算问题【难度】3星【题型】解答【解析】本题采用试除法。
823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.【答案】33743【例 2】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】小学数学夏令营【解析】由48412÷=÷=,48412÷=知,一组是10或11人.同理可知48316÷=,4859.6知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【答案】10【例 3】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【考点】带余除法的估算问题【难度】3星【题型】解答【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数13(61)91为78583+=.【答案】83【例 4】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【考点】带余除法的估算问题【难度】3星【题型】解答【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【答案】99【例 5】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】圣彼得堡数学奥林匹克【解析】除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过++=,既然它们的和等于15,所以这三个余数分别就是2,5,8.所以该25815数加1后能被3,6,9整除,而[3,6,9]18=,设该数为a,则181=-,即a m18(1)17=-+(m为非零自然数),所以它除以18的余数只能为17.a m【答案】17模块二、多位数的余数问题【例 6】 2000"2"2222个除以13所得余数是_____.【考点】多位数的余数问题 【难度】3星 【题型】填空【解析】 方法一、我们发现222222整除13,2000÷6余2,所以答案为22÷13余9。
1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0知识点拨教学目标5-5-4.余数性质(二)这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
余数的性质知识结构三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2(2)余数的减法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4(3)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.例题精讲【例1】在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【例3】六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【巩固】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【例4】求478296351⨯⨯除以17的余数.【巩固】求4373091993⨯⨯被7除的余数.【例5】求12÷的余数644319【巩固】 求89143除以7的余数.【例 6】 20102009200920092009⨯⨯⨯L 14444244443个的个位数字是________.【巩固】 2007×2007×…×2007(2008个2007)的个位数字是 。
五五数之剩三怎么解答及例题
【最新版】
目录
1.题目背景和意义
2.五五数之剩三的解答方法
3.例题解析
4.总结
正文
【1.题目背景和意义】
五五数之剩三,又被称为“韩信点兵”,是一道著名的数学题目。
它来源于古代战争,传说是韩信为了计算自己军队的人数而发明的方法。
这个问题的关键在于如何用简单的算术运算来求解。
如今,这道题目已经成为了数学爱好者和学生们喜爱的趣味数学题目,可以锻炼解题思维和逻辑能力。
【2.五五数之剩三的解答方法】
五五数之剩三的解答方法其实非常简单。
首先,我们需要知道一个基本的数学原理:任意一个大于 5 的整数,除以 5 之后,余数只可能是 1、2、3、4。
因此,如果一个数除以 5 的余数是 3,那么这个数可以表示为5 的倍数加 3。
例如,8 除以 5 的余数是 3,可以表示为 5×1+3。
【3.例题解析】
现在,我们来看一道例题。
题目是:一个整数除以 5 的余数是 3,除以 3 的余数是 1,这个数是多少?
根据上面的分析,这个数可以表示为 5 的倍数加 3,也可以表示为 3 的倍数加 1。
所以,这个数可以表示为 15 的倍数加 3,也可以表示为 13 的倍数加 1。
因此,这个数是 15×3+3=48,或者 13×3+1=40。
所以,这
个数是 48 或者 40。
【4.总结】
五五数之剩三的问题,虽然看起来复杂,但实际上解答起来非常简单。
只需要根据除法的基本原理,找到符合条件的数,就可以求解出答案。
五五数之剩三怎么解答及例题
摘要:
一、问题背景
二、解答思路
三、解题步骤
四、例题解析
五、总结
正文:
【问题背景】
五五数之剩三,是小学奥数中的一道经典题目。
它要求学生在理解题意的基础上,运用数学方法解决问题。
此题对于培养学生的逻辑思维能力、分析问题和解决问题的能力具有重要意义。
【解答思路】
要解答五五数之剩三这个问题,首先需要理解题意,找出解题的关键信息。
然后根据已知条件,分析问题,找到合适的解题方法。
最后按照步骤计算得出答案。
【解题步骤】
1.理解题意:五五数之剩三,是指一个数除以5 余3,求这个数。
2.分析问题:已知一个数除以5 余3,可以推断出该数一定是5 的倍数加3。
3.解题方法:找到比该数小4 的数,因为该数减去4 后一定是5 的倍
数。
4.计算答案:用该数除以5 的商加4,即可得到这个数。
【例题解析】
假设有一道例题:一个数除以5 余3,这个数是多少?
解题步骤如下:
1.设这个数为x,则有x = 5n + 3(n 为整数)。
2.找到比x 小4 的数,即x - 4 = 5m(m 为整数)。
3.将x 用m 表示,有x = 5m + 3。
4.由于x 是5 的倍数加3,所以x = 5(m+1) + 3 = 5m + 8。
5.得出结论,x = 5m + 8。
【总结】
五五数之剩三这类题目,关键在于理解题意,善于寻找解题的关键信息。
通过分析和计算,我们可以找到合适的解题方法,从而解决问题。
第二十一讲余数的性质与计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况.当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a b q r=⨯+), 0≤r<b;r=时,我们称a能被b整除;当0r≠时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商当0余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数×商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)÷商;商=(被除数-余数)÷除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:(1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125的余数;(2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11和13的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法......- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.(1)20132013除以4和8的余数分别是多少?(2)20142014除以3和9的余数分别是多少?「分析」根据4、8、3、9的特性,可以很快计算出结果.练习2.(1)20121221除以5和25的余数分别是多少?(2)20130209除以3和9的余数分别是多少?例题3.(1)123456789除以7和11的余数分别是多少?87654321呢?(2)360360360除以99的余数是多少?「分析」根据7、1、99的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012除以13和99的余数分别是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -为了更好地了解余数的其它一些重要性质,我们再来做几个练习:(1)211除以9的余数是______;(2)137除以9的余数是______;(3)211137+的和除以9的余数是______; (4)211137-的差除以9的余数是______;(5)211137⨯的积除以9的余数是______; (6)2137除以9的余数是______. 比较上面的结果,我们发现余数还有一些很好的性质:这三条性质分别称为余数的可加性...、可减性...和可乘性....在计算一个算式的结果除以某个数的余数时,可以利用上述性质进行简算.例如计算33371580+⨯-的结果除以7的余数就可以像右侧这样计算.这一简算方法又称替换求余法...... 需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423317+除以6的余数时,利用“和的余数等于余数的和”,结果就变成了358+=,86>,所以还需要再次计算8除以6的余数是2,才是423317+除以6最后的余数.再比如:在计算423317⨯除以6的余数时,也会遇到35156⨯=>的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可.例如:在计算423317-除以6的余数时,会发现结果变成了35-不够减.此时,只要再加上6,用6354+-=来计算即可.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.33371580+⨯- 5213+⨯- 每个数都用它除以7的练习4.++除以111的余数是多少?(1)123456789-的结果除以22余数是多少?(2)2244686678- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.+⨯除以4、9的余数分别是多少?(1)877844923581368⨯除以7、11、13的余数分别是多少?(2)365366+367368369370「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.(1)1002的个位数字是多少?20143除以10的余数是多少?(2)20143除以7的余数是多少?「分析」一个数的个位数字就是它除以10的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节,猴爸爸一大早就领着猴儿们去观看龙舟比赛。
五五数之剩三怎么解答及例题摘要:1.五五数之剩三的概述2.解题思路和方法3.例题解析4.实际应用和拓展正文:在我们的数学学习中,五五数之剩三这个问题常常引起学生的困惑。
所谓五五数之剩三,就是当我们将一个数除以5,余数为3时,如何求解这个数的问题。
接下来,我们将详细解析这个问题,并提供一些实用的方法和例题。
首先,我们要明确五五数之剩三的解题思路。
根据除法的原理,被除数等于除数乘以商再加上余数。
在这个问题中,除数是5,余数是3,所以我们要求的就是满足这个条件的商。
接下来,我们通过一个例题来详细解析这个问题。
假设我们要求的数是x,那么我们可以列出如下的等式:x = 5 * q + 3其中,q就是我们要求的商。
我们可以通过变换这个等式,来求解q的值。
首先,我们将等式两边同时减去3,得到:x - 3 = 5 * q然后,我们将等式两边同时除以5,得到:(x - 3) / 5 = q这样,我们就可以根据这个等式来求解q的值。
例如,如果我们知道x等于23,那么我们可以计算出:q = (23 - 3) / 5 = 4所以,当五五数之剩三的问题中,被除数为23,余数为3时,商q的值为4。
此外,我们还可以通过这个方法来进行实际应用和拓展。
例如,如果我们要求的是被除数为15的商,我们可以计算出:q = (15 - 3) / 5 = 2所以,当被除数为15,余数为3时,商q的值为2。
总的来说,五五数之剩三这个问题的解题思路和方法其实非常简单。
只需要根据除法的原理,列出相应的等式,然后通过变换和计算,就可以求解出满足条件的商。
第二十一讲余数的性质与计算37』桂除的余数足多少?我知沽玳,余数昂7!^1这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况. 当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b丰0),若有a+ b=q r (也就是a b q r ), 0当r 0 时,我们称a 能被b 整除;当r 0 时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数X商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)*商;商=(被除数-余数)十除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125 的余数;2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11 的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11 再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11 和13 的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11 或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法.例题2.1)20132013 除以4和8 的余数分别是多少?2)20142014 除以3和9 的余数分别是多少?分析」根据4、8、3、9 的特性,可以很快计算出结果.练习2.(1)20121221 除以5和25 的余数分别是多少?(2)20130209 除以3和9 的余数分别是多少?例题3.(1)123456789 除以7和11的余数分别是多少?87654321 呢?(2)360360360 除以99 的余数是多少?「分析」根据7、1、99 的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012 除以13和99 的余数分别是多少?为了更好地了解余数的其它一些重要性质,我们再来做几个练习:1)211除以9的余数是 _______ ;(2)137除以9的余数是_________(3) 211 137的和除以9的余数是___________ ; ( 4) 211 137的差除以9的余数是(5)211 137的积除以9的余数是__________ ; (6) 1372除以9的余数是________比较上面的结果,我们发现余数还有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积•这三条性质分别称为余数的可加性、可减性和可乘性•在计算一个算式的结果除以某个数的余数时,可以利用上述性每个数都用它除以7的质进行简算.例如计算33 37 15 80的结果除以7的余数就可以像右侧这样计算•这一简算方法又称替换求余法•需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423 317除以6的余数时,利用“和的余数等于余数的和”,结果就变成了3 5 8, 8 6,所以还需要再次计算8除以6的余数是2,才是423 317除以6最后的余数•再比如:在计算423 317除以6的余数时,也会遇到3 5 15 6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可•例如:在计算423 317除以6的余数时,会发现结果变成了3 5不够减.此时,只要再加上6,用6 3 5 4来计算即可.例题4.一年有365天,轮船制造厂每天都可以生产零件1234个•年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.练习4.(1)123 456 789除以111 的余数是多少?(2)224468 6678的结果除以22 余数是多少?如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.例题5.(1)87784 49235 81368除以4、9 的余数分别是多少?(2)365366+367368 369370除以7、11、13 的余数分别是多少?「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.( 1) 2100的个位数字是多少?32014除以10 的余数是多少?(2) 32014除以7 的余数是多少?「分析」一个数的个位数字就是它除以10 的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节, 猴爸爸一大早就领着猴儿们去观看龙舟比赛。
5-5-3.余数性质(三)教学目标1.学习余数的三大定理及综合运用2.理解弃9法,并运用其解题知识点拨一、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理1a与b的差除以c的余数,等于a,b分别除以c的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为121898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
1.能够根据除法性质调整余数进行解题2.能够利用余数性质进行相应估算3.学会多位数的除法计算4.根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q +r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.除法公式的应用例题精讲知识点拨教学目标5-5-1.带余除法(一)【例 1】某数被13除,商是9,余数是8,则某数等于。
【例 2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
【巩固】计算口÷△,结果是:商为10,余数为▲。
如果▲的值是6,那么△的最小值是_____。
【例 3】除法算式 L L□□=208中,被除数最小等于。
【例 4】71427和19的积被7除,余数是几?【例 5】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【巩固】一个两位数除310,余数是37,求这样的两位数。
1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4. 根据简单操作进行找规律计算带余除法的定义及性质1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能知识点拨教学目标5-5-1.带余除法(一)够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题精讲除法公式的应用【例 1】某数被13除,商是9,余数是8,则某数等于。
【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例 2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。
【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:⨯+=36278980【答案】980【巩固】计算口÷△,结果是:商为10,余数为▲。
余数性质(一)1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
数论-余数问题-余数的性质-4星题课程目标知识提要余数的性质•余数的基本性质被除数=除数×商+余数除数=(被除数−余数)÷商商=(被除数−余数)÷除数余数小于除数。
•余数的三大性质(1)余数的加法性质:和的余数等于余数的和,或这个和除以除数的余数。
(2)余数的减法性质:差的余数等于余数的差,不够减加除数再减。
(3)余数的乘法性质:积的余数等于余数的积,或者余数的积除以除数的余数。
精选例题余数的性质1. 有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是人.【答案】1484【分析】三所学校的高中生分别是:A校742人,B校732人,C校722人.如果A校或C校初中人数是高中人数的1.5倍,该校总人数是奇数,而按照给出条件得出其他两校总人数都是偶数,与三校总人数5480是偶数矛盾,因此只能是B校的初中人数是高中人数的1.5倍.三校初中的总人数是5480−2196=3284,被3除余2;732被3整除,722被3除余2,742被3除余1.从余数来看2×2+1=5,1×2+2=4,就断定初中人数是高中人数的2倍,只能是C校.所以,A校总人数是742+742=1484(人).2. 在自然数1∼2011中,最多可以取出个数,使得这些数中任意四个数的和都不能被11整除.【答案】550【分析】2011÷11=182⋯9,可以全选余数是3、4、5的,因为3×4=12,5×4=20,在20和22之间还可以有一个21,所以还可以选一个余数是6的.所以是183×3+1=550,这种选法能选到550,选余数是6、7、8和一个余数是5的,还是可以选出550个.3. 如果两个自然数的积被13除余1,那么我们称这两个自然数互为“模13的倒数”,比如,2×7=14,被13除余1,则2和7互为“模13的倒数”;1×1=1,则1的“模的倒数”是它自身,显然,一个自然数如果存在“模13的倒数”,则它的倒数并不是唯一的,比如,14就是1的另一个“模13的倒数”,判断1,2,3,4,5,6,7,8,9,10,11,12是否有“模13的倒数”,并利用所得结论计算1×2×3×4×5×6×7×8×9×10×11×12(记为12!,读作12的阶乘)被13除所得的余数.【答案】12【分析】模13的倒数:(1,1),(2,7),(3,9),(4,10),(5,8),(6,11)1×2×3×4×5×6×7×8×9×10×11×12=(2×7)×(3×9)×(4×10)×(5×8)×(6×11)×12,所以被13除所得的余数为12.4. (1)(123456789+23456879)÷3的余数是;(2)(12345687×24568×365878)÷9的余数是.【答案】(1)2;(2)0.【分析】根据余数定理可得.5. M、N为非零自然数,且2007M+2008N被7整除.M+N的最小值为.【答案】5【分析】2007除以7的余数是5,2008除以7的余数是6,所以5M+6N能被7整除试算,M+N最小值为3+2=5.6. 在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有组.【答案】4.【分析】1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为2+5=2+5+0=7,2+5+3+6=0+2+5+3+6=7+9,所以这样的数组共有下面4个:(2000,2003),(1998,2000,2003),(2000,2003,2001,1995),(1998,2000,2003,2001,1995).7. 三位数abc除以它的各位数字和的余数是1,三位数cba除以它的各位数字和的余数也是1.如果不同的字母代表不同的数字,且a>c,那么abc = .【答案】452【分析】abc−cba=99(a−c),故(a+b+c)∣[99(a−c)],但(a+b+c)必定不是3的倍数,否则abc是3的倍数,abc÷(a+b+c)的余数必为3的倍数.故(a+b+c)∣[11(a−c)],11是质数,且a+b+c>a−c,故(a+b+c)必为11的倍数.若a+b+c=11,则a+c−b=1,b=5,又a、b、c互不相同,a>c,故a=4,c=2,abc=452;若a+b+c=22,则a+c−b=12,b=5,又a、b、c互不相同,a>c,故a=9,c=8,但此解并未满足(a+b+c)∣[11(a−c)]的要求,故知此种情况无解.综上,本题有唯一答案452.8. 如果自然数 a 、b 、c 除以 14 都余 5,则 a +b +c 除以 14,得到的余数是 .【答案】 1【分析】 已知 a ÷14⋯5,b ÷14⋯5,c ÷14⋯5,由余数的可加性得知:(a +b +c)÷14⋯19. 商店里有六箱货物,分别重 15,16,18,19,20,31 千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的 2 倍,那么商店剩下的一箱货物重量是 千克.【答案】 20【分析】 两个顾客买的货物重量是 3 的倍数.(15+16+18+19+20+31)÷(1+2)=119÷3=39⋯⋯2,剩下的一箱货物重量除以 3 应当余 2,只能是 20 千克.10. 由 1、4、7、10、13 组成甲组数,由 2、5、8、11、14 组成乙组数,由 3、6、9、12、15 组成丙组数.现在从三组数中各取一个数相加,共可以得到 个不同的和.【答案】 13【分析】 所得的和数一定是 3 的倍数,最小是 6,最大是 42,中间的 3 的倍数也都能得到,所以一共有 (42−6)÷3+1=13(个) 不同的和.11. 有一个整数,用它去除 70,110,160 所得到的 3 个余数之和是 50,那么这个整数是 .【答案】 29【分析】 (70+110+160)−50=290,50÷3=16......2,除数应当是 290 的大于 17 小于 70 的约数,只可能是 29 和 58,110÷58=1......52,52>50,所以除数不是 58.70÷29=2......12,110÷29=3......23,160÷29=5......15,12+23+15=50,所以除数是 29.12. 四个最简真分数 12、a 3、b 5、c 67,满足:12−a 3+b 5+c 67=20092010.则 a +b +c = .【答案】 32【分析】由题可得1005−670a+402b+30c=2009,整理得402b+30c−670a=1004,考虑除以5的余数,且b<5,推断出b=2,把b=2代入上式,可得3c−67a=20,所以c=29,a=1,a+b+c=32.13. 定义:1!=1,2!=1×2,3!=1×2×3,n!=1×2×3×⋯×n,则2011!+10除以2012的余数为.【答案】10【分析】2011!中包含2与1006,所以2011!是2012的倍数.那么余数为10.14. 将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是.【答案】198【分析】第三个数比第一个数多9,第四个数比第三个数多9;若第一个数除以9余a,则第三个数和第四个数也余a,第五个数则余2a,五个数总和除以9余4a;而由于1+2+3++9=45是9的倍数,易知a=0,即这五个数都是9的倍数;若设第一个数为18,则这五个数分别为18,9,27,36,63;6出现两次不符合要求;若设第一个数为27,则这五个数分别为27,9,36,45,81;符合要求.所有项之和为27+9+36+45+81=19815. 将1∼2015这2015个自然数依次写出,得到一个多位数123456789⋯20142015,这个多位数除以9,余数是.【答案】0【分析】乱切法,求多位数123456789⋯20142015除以9的余数,即要求1+2+3+4+5+⋯+2015=(1+2015)×20152=1008×2015除以9的余数,1008×2015≡0×8 (mod 9),则余数为0.16. 有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,铅笔支数是钢笔支数的3倍,只有一只盒里放的是水彩笔.这盒水彩笔共有支.【答案】49【分析】铅笔数是钢笔数的3倍,圆珠笔数是钢笔数的2倍,因此这三种笔支数的和是钢笔数的3+2+1=6(倍).17+23+33+36+38+42+49+51=289,除以6余1,所以水彩笔的支数除以6余1,在上述8盒的支数中,只有49除以6余1,因此水彩笔共有49支.17. 22003与20032的和除以7的余数是.【答案】5.【分析】找规律.用7除2,22,23,24,25,26,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为22003=23×667+2,所以22003除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以20032除以7余1.故22003与20032的和除以7的余数是4+1=5.18. 从1到999这999个自然数中有个数的各位数字之和能被4整除.【答案】248【分析】由于在一个数的前面写上几个0不影响这个数的各位数字之和,所以可以将1到999中的一位数和两位数的前面补上两个或一个0,使之成为一个三位数.现在相当于要求001到999中各位数字之和能被4整除的数的个数.一个数除以4的余数可能为0,1,2,3,0~9中除以4余0的数有3个,除以4余1的也有3个,除以4余2和3的各有2个.三个数的和要能被4整除,必须要求它们除以4的余数的和能被4整除,余数的情况有如下5种:0+0+0;0+1+3;0+2+2;1+1+2;2+3+3.(1)如果是0+0+0,即3个数除以4的余数都是0,则每位上都有3种选择,共有3×3×3=27种可能,但是注意到其中也包含了000这个数,应予排除,所以此时共有27−1=26(个);(2)如果是0+1+3,即3个数除以4的余数分别为0,1,3,而在3个位置上的排列有3!=6(种),所以此时有3×3×2×6=108(个);(3)如果是0+2+2,即3个数除以4的余数分别为0,2,2,在3个位置上的排列有3种,所以此时有3×2×2×3=36(个);(4)如果是1+1+2,即3个数除以4的余数分别为1,1,2,在3个位置上的排列有3种,所以此时有3×3×2×3=54(个);(5)如果是2+3+3,即3个数除以4的余数分别为2,3,3,在3个位置上的排列有3种,此时有2×2×2×3=24(个).根据加法原理,共有26+108+36+54+24=248(个).19. 下列算式中,“迎”、“春”、“杯”、“数”、“学”、“花”、“园”、“探”、“秘”代表1~9 中的不同非零数字,那么,“迎春杯”所代表三位数的最大值是.1984−迎春杯=2015−数学−花园−探秘【答案】214【分析】(1)将等式整理得:迎春杯+31=数学+花园+探秘,等式两边除以9的余数相同,所以迎春杯除以9的余数只能为7,等式右侧除以9的余数为2;(2)要想迎春杯最大,则数学,花园,探秘应尽量的大,这3个数和最大为96+85+74=255,所以迎春杯最大不大于255−31=224,由于不同汉字代表不同非零数字,所以“迎”最大为2,“春”最大为1;(3)由于迎春杯除以9的余数为7,若“迎”取2,“春”取1,则“杯”为4,经尝试可得:214+31=97+85+67,所以迎春杯最大值为21420. 18+28+38+…+98除以3的余数是多少?【答案】0.【分析】根据等差数列求和列式:18+28+38+…+98=(18+98)×9÷2,整理可得58×9,因为58÷3⋯⋯1,9÷3⋯⋯0,根据余数定理,58×9除以3的余数等于1乘0除以3的余数,即1×0÷3⋯⋯0,所以18+28+38+…+98除以3的余数是0.21. 从1,2,3,4,⋯,2007中取N个不同的数,取出的数中任意三个的和能被15整除.N最大为多少?【答案】134【分析】取出的N个不同的数中,任意三个的和能被15整除,则其中任意两个数除以15的余数相同,且这个余数的3倍能被15整除,所以这个余数只能是0,5或者10.在1∼2007中,除以15的余数为0的有15×1,15×2,⋯,15×133,共有133个;除以15的余数为5的有15×0+5,15×1+5,⋯,15×133+5,共有134个;除以15的余数为10的有15×0+10,15×1+10,⋯,15×133+10,共有134个.所以N最大为134.22. 验算46876×9573=447156412这个算式是否正确?【答案】不正确.【分析】根据余数乘积性质,以及弃九法可知这个算式左边(46876×9573)÷9的余数为6,而右边447156412除以9的余数为7,所以这个算式不成立.23. 有如下图所示的十二张扑克牌.2点、6点、10点各四张,你能从中选出七张牌,使上面点数之和恰等于52吗?说明理由.【答案】不能【分析】因为每张牌除以4的余数均为2,7张牌除以4的余数仍为2,而52是4的倍数,矛盾,所以不能选出这样的7张牌.24. 若a为自然数,证明10∣∣(a2005−a1949).【答案】见解析.【分析】10=2×5,由于a2005与a1949的奇偶性相同,所以2∣∣(a2005−a1949).a2005−a1949=a1949(a56−1),如果a能被5整除,那么5∣a1949(a56−1);如果a不能被5整除,那么a被5除的余数为1、2、3或者4,a4被5除的余数为14、24、34、44被5除的余数,即为1、16、81、256被5除的余数,而这四个数除以5均余1,所以不管a为多少,a4被5除的余数为1,而a56=(a4)14,即14个a4相乘,所以a56除以5均余1,则a56−1能被5整除,有5∣a1949(a56−1).所以5∣(a2005−a1949).由于2与5互质,所以10∣(a2005−a1949).25. 求644312÷19的余数.【答案】11【分析】本题为余数乘法定理的拓展模式,即数字的乘方与一个数相除的余数情况.由6443÷19余2,求原式的余数只要求212÷19的余数即可.但是如果用2÷19发现会进入一个死循环,因为这时被除数比除数小了,所以可以进行适当的调整,212=26×26=64×64,64÷19余数为7,那么求212÷19的余数就转化为求64×64÷19的余数,即49÷19的余数.49÷19余数为11,所以644312÷19的余数为11.26. 从1,2,3,4,⋯,200中取N个不同的数,取出的数中任意三个的和都不能被7整除.N最大为多少?【答案】60【分析】除以7的余数有:0、1、2、3、4、5、6,从余数看,能整除7的组合有:余数和为7:(0,0,0)、(0,1,6)、(0,2,5)、(0,3,4)、(1,1,5)、(1,2,4)、(1,3,3)、(2,2,3);余数和为14:(2,6,6)、(3,5,6)、(4,4,6)、(4,5,5).取1,则不能取6、5、3;取2,则不能取6、5、3;取1和2,则不能取4.1和2,与6、5、4、3选择,要选择取1和2.200÷7=28⋯⋯4,取29个1,取29个2,2个0,共计:29+29+2=60(个).27. 用自然数n去除63,91,129得到的三个余数之和为25,那么n=.【答案】43.【分析】n能整除63+91+129−25=258.因为25÷3=8...1,所以n是258大于8的约数.显然,n不能大于63.符合条件的只有43.28. 已知:a÷5=⋯⋯3,b÷5=⋯⋯2且a>b那么:(1)(a+b)÷5⋯⋯;(2)(a−b)÷5⋯⋯;(3)(a×b)÷5⋯⋯.【答案】(1)0;(2)1;(3)1.【分析】(1)(3+2)÷5⋯⋯0;(2)(3−2)÷5⋯⋯1;(3)(3×2)÷5⋯⋯1.29. 1+2+3+…+2000除以19的余数是多少?【答案】15.【分析】根据等差数列求和列式:1+2+3+…+2000=(1+2000)×2000÷2,整理可得2001×1000,因为2001÷19⋯6,1000÷19⋯12,根据余数定理,2001×1000除以19的余数等于6×12除以19的余数,即6×12÷19⋯15,所以1+2+3+…+2000除以19的余数是15.30. 如果a+b+c是5的倍数,2a+3b+4c也是5的倍数,求证a−c是5的倍数.(a、b、c都是自然数)【答案】见解析【分析】a−c=3(a+b+c)−(2a+3b+4c),所以a−c能被5整除.31. 有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2014个数中,有几个是5的倍数?【答案】402【分析】先观察规律可知这组数从第三个开始,每个数都等于与它相邻的前面两个数的和,所以根据余数的加法性质得出如下表格:数112358⋯⋯⋯⋯⋯⋯⋯⋯⋯除以5的余数112303314044320从上表可知这组自然数除以5的余数是每5个就有一个余数为0,所以2014÷5=402⋯⋯4所以,在这串数的前2014个数中,有402个是5的倍数.32. 六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《数学的发现》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这本《数学的发现》的定价是多少元?【答案】32【分析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《数学的发现》的定价是(14+17+18+21+26)÷3=32元.33. 六位数20▫▫08能被49整除,▫▫中的数是多少?【答案】05或54.【分析】设六位数为20ab08,则20ab08=200008+ab00=200008+ab×100.因为200008÷49=4081⋯⋯39,所以(ab×100)÷49的余数为49−39=10.又因为100÷49=2⋯⋯2,所以ab÷49的余数为5.则ab可以是05或54.34. 在所有由1、3、5、7、9中的3个不同数字组成的三位数中,有多少个是3的倍数?【答案】24【分析】除以3余0的数有3,9,除以3余1的数有1,7,除以3余2的数有5,三个数字之和为3的倍数,本题只能从除以3余0,1,2的数中各取一个,每个三位数交换位置又可以变换出6个,因此共有2×2×1×6=24(个).35. (1)123+456+789的结果除以111的余数是多少?(2)224468−6678的结果除以22的余数是多少?【答案】(1)36;(2)12【分析】简答:利用替换求余法计算.36. 已知98个互不相同的质数p1,p2,⋯,p98,记N=p12+p22+⋯+p982,问:N被3除的余数是多少?【答案】1或2.【分析】(1)这些质数中不含质数3,所以该数平方后被3除的余数就是1,所以N被3除的余数就是98被3除的余数,是2;(2)如果有3,那么剩下97个除以3余1.3的平方除以3余数是0,那么N除以3的余数1.37. 已知n!+4等于两个相邻自然数的乘积,试确定自然数n的值.(n!=1×2×3×⋯×n)【答案】2【分析】注意到两个相邻自然数的乘积除以3只能余0或余2.因为当n⩾3时,n!+4除以3余1,所以n<3,尝试n取0、1、2后得n为2.38. 从1,2,3,⋯⋯49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【答案】23【分析】将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出8+7+7+1=23个39. (1)21100的个位数字是多少?32014除以10的余数是多少?(2)32014除以7的余数是多少?【答案】(1)6;9(2)4【分析】详解:(1)2n的个位数字依次是2、4、8、6、⋯每四个数为一个周期.100除以4的余数是0,那么2100的个位数字是周期中的第四个数6.3n的个位数字依次是3、9、7、1、⋯每四个数为一个周期.2014除以4的余数是2,那么32014的个位数字是周期中的第二个数9.(2)3n除以7的余数依次是3、2、6、4、5、1、⋯每六个数为一个周期.2014除以6的余数是4.所以32014除以7的余数是周期中的第四个数4.40. 甲、乙两个天平上都放着一定重量的物体,问:哪—个是平衡的?【答案】天平乙是平衡的.【分析】考虑除以3,所得的余数.因为478除以3余1,9763除以3也余1(只要看4+7+8,9+7+6+3除以3的余数),所以478×9763除以3余1×1=1,而4666514除以3余2(即4+6+6+6+5+1+4除以3余2),因此478×9763≠4666514,从而天平甲不平衡.天平乙是平衡的.41. 有6个密封的盒子,分别装有红球、白球和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15,16,18,19,20,31,已知黑球的个数是红球个数的两倍,装白球的盒子只有1个,问:(1)装有15个球的盒子里装的是什么颜色的球?(2)有多少个盒子里装的是黑球?【答案】(1)红球;(2)3【分析】(1)所有球的个数:15+16+18+19+20+31=119(个).黑球的个数是红球的2倍,黑球加红球的个数是红球的2+1=3倍119÷3=39⋯⋯2根据余数的可加可减性,白球的个数除以3也是余2,白球的个数只能是20.黑球和红球共:119−20=99(个).红球:99÷3=33(个)只能是15+18=33(个).答:装有15个球的盒子里装的是红球.(2)还剩下16,19,31的盒子里装的是黑球,即有3个盒子.答:有3个盒子里装的是黑球.42. 如果(3a+b)是7的倍数,求证(2b−a)也是7的倍数.(a、b都是自然数).【答案】见解析【分析】方法一:因为(3a+b)是7的倍数,所以(6a+2b)也是7的倍数,所以(6a+2b−7a)即(2b−a),也是7的倍数.方法二:设3a+b=7k,那么a=7k−b3,所以2b−a=7b−7k3也是7的倍数.43. 11+22+33+44+⋯+20052005除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1+4+7+6+5=23的个位数3,所以原式的个位数字是3,即除以10的余数是3.44. 今天是星期四,101000天之后将是星期几?【答案】星期一【分析】先求较小的n,使10n除以7的余数为1.10除以7余3,102除以7余2,103=10×102除以7余3×2=6,104=102×102除以7余2×2=4,106=103×103除以7的余数等于6×6=36除以7的余数等于1,所以,101000除以7的余数等于104×106×166除以7的余数等于4×1=4故101000天后为星期一.45. 在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【答案】99【分析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,⋯,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5⋯⋯9,所以共有5×18+9=99个这样的数.46. 如果六位数1992▫▫能被105整除,那么它的最后两位数是多少?【答案】90【分析】方法一:利用整除特征.因为105=3×7×5,所以这个六位数同时满足能被3、7、5整除的数的特征即可.末位只能为0或5.①如果末位填入0,那么数字和为1+9+9+2+▫+0=21+▫,要求数字和是3的倍数,所以▫可以为0,3,6,9,验证200−199=1,230−199=31,260−199=61,290−199=91,有91是7的倍数,即199290是7的倍数,所以题中数字的末两位为90.②如果末位填入5,同上解法,验证没有数同时满足能被3、7、5整除的特征.所以,题中数的末两位只能是90.方法二:采用试除法用199200试除,199200÷105=1897⋯⋯15,余15可以看成不足,105−15=90.所以补上90,即在末两位的方格内填入90即可.47. 22008+20082除以7的余数是多少?【答案】3【分析】23=8除以7的余数为1,2008=3×669+1,所以22008=23×669+1=(23)669×2,其除以7的余数为:1669×2=2;2008除以7的余数为6,则20082除以7的余数等于62除以7的余数,为1;所以22008+20082除以7的余数为:2+1=3.48. 甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【答案】17【分析】设这个数为M,则603÷M=A1⋯⋯r1,939÷M=A2⋯⋯r2,393÷M=A3⋯⋯r3,r1=2×r2,r2=2×r3,要消去余数r1,r2,r3,我们只能先把把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,这样被除数和余数都扩大2倍,同理,第三个式子乘以4.这样我们可以得到下面的式子:603÷M=A1…r1,(939×2)÷M=2A2…(r2×2),(393×4)÷M=4A3⋯⋯(r3×4)这样余数就处理成相同的.最后两两相减消去余数,意味着能被M整除.939×2−603=1275,393×4−603=969,1275−969= 306,(1275,306)=51=3×17.603,939,393这三个数有公约数3.51÷3=17.则A等于17.49. 如果(a+2b)被5除余数为2,(3a−b)被5除所得的余数为3,求证:(a−b)能被5整除.(a、b都是自然数).【答案】证明见解析【分析】方法一:设a+2b=5k+2,3a−b=5l+3,解方程组 $\left\{ \begin{gathered}a + 2b = 5k +2 \hfill \\3a - b = 5l +3 \hfill \\\end{gathered} \right.$ 得到 $\left\{ \begin{gathered}a = \dfrac{{10l+ 5k + 8}}{7} \hfill \\b = \dfrac{{3 +15k - 5l}}{7} \hfill \\\end{gathered} \right.$,所以a−b=15l−10k+57能被5整除.方法二:由题目条件2(3a−b)−3(a+2b)能被5整除,即3a−8b能被5整除,继而得到3a−3b能被5整除,所以a−b能被5整除.50. 在六位数11▫▫11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【答案】53【分析】采用试除法.设六位数为11ab11,则11ab11=11×10000+ab00+11=110011+ab00如果一个数能同时被17和19整除,那么一定能被323整除.110011÷323=340⋯⋯191,余191也可以看成不足323−191=132.所以当ab00=132+323n时,即ab00是100的倍数时,六位数才是323的倍数.所以有323n的末位只能是10−2=8,所以n只能是6,16,26,⋯验证有n=16时,132+ 323×16=5300,所以原题的方框中填入5,3得到的115311满足题意.−1的个位数字是多少?51. 自然数2×2×2×...×2⏟67个2【答案】7.的个数数字,再减去1即为所求(特别的如果是0,【分析】我们先计算2×2×2×...×2⏟67个2那么减去1后的个位数字因为借位为9).将一个数除以10,所得的余数即是这个数的个位数字.而积的余数,等于同余余数的积.2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以10的余数为6;2×2×2×2×2除以10的余数为2,2×2×...×2除以10的余数为4,⏟6个22×2×...×2除以10的余数为8,⏟7个22×2×...×2除以10的余数为6;⋯⋯⏟8个2也就是说,n个2相乘所得的积除以10的余数每4个数一循环.除以10的余数同余与2×2×2,即余数为8,因为67÷4=16⋯⋯3,所以2×2×2...×2⏟67个2−1除以10的余数为7.所以2×2×2...×2⏟67个2−1的个位数字为7.即2×2×2...×2⏟67个2评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.52. 11+22+33+44+⋯⋯+20132013+20142014除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2014这2014个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94结果的个位数字为4,由于2014个加数共可分成100组另14个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005、…… 20142014,它们和的个位数字是1+4+7+6+5+6+3+6+9+0+1+6+3+6=63,63的个位数3,所以原式的个位数字是3,即除以10的余数是3.53. 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【答案】见解析.【分析】1996÷4=499,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数.取500个数:1,11,111,⋯⋯,111⋯⋯1(500个1).用499去除这500个数,得到500个余数a1,a2,a3,⋯,a500.由于余数只能取0,1,2,⋯,498这499个值,所以根据抽屉原则,必有2个余数是相同的,这2个数的差就是499的倍数,差的前若干位是1,后若干位是0:11⋯100⋯0.又499和10是互质的,所以它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,这是1996的倍数.54. 已知n!+3是一个完全平方数,试确定自然数n的值.(n!=1×2×3×⋯×n)【答案】0、1或3【分析】枚举验证n为0、1、2、3、4、…,得到n为0、1或3时满足.因为当n⩾4时,n!+3除以4余3,根据完全平方数除以4只能余0或余1,可知当n⩾4时,n!+1不可能是完全平方数.55. 算式188+288+388+⋯+1988+2088的结果除以9、13的余数分别是多少?【答案】8;10【分析】188+288+388+⋯+1988+2008=(188+2088)×10然后利用替换求余法计算.56. (1)87784+49235×81368除以4、9的余数分別是多少?(2)365366+367368×369370除以7、11、13的余数分别是多少?【答案】(1)0;2(2)2;2;2【分析】 详解:提示,特性求余法和替换法结合使用.57. 用 0 至 9 这十个数字各 1 次,组成四位数、三位数、两位数和一位数各 1 个,并使这四个数两两互质.已知组成的四位数是 1860,那么其他的三个数是多少?【答案】 7;43;529【分析】 1860=22×3×5×31,一位数只能是 7,另外两个数的末位只能是 3 和 9.剩下的数字之和除以 3 余 2,只能拆成两个数除以 3 余 1 的组合,所以 4 和 2、5 是分成两组,49 是 7 的倍数,所以两位数只能是 43,259 是 7 的倍数,所以三位数只能是 529.58. 在任意的四个自然数中,是否其中必有两个数,它们的差能被 3 整除?【答案】 是.【分析】 因为任何整数除以 3,其余数只可能是 0,1,2 三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以 3 的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以 3 的余数相同,所以这两个数的差必能被 3 整除.59. 一个大于 1 的数去除 290,235,200 时,得余数分别为 a ,a +2,a +5,则这个自然数是多少?【答案】 19【分析】 设这个数为 x ,则有{290÷x =m ⋯⋯a235÷x =n ⋯⋯a +2200÷x =p ⋯⋯a +5可以转化为:{290÷x =m ⋯⋯a233÷x =n ⋯⋯a 195÷x =p ⋯⋯a即有 290≡233(modx)≡195(modx),根据同余性质,可知 x 为它们两两差的约数,又290−233=57,290−195=95,233−195=38,(38,57,95)=19,所以这个自然数为 19.60. 算式 2009×2009+2010×2010+2011×2011 除以 31 的余数是多少?【答案】 15【分析】 简答:利用替换求余法计算.61. 已知60,154,200被某自然数除所得的余数分别是a−1,a2,a3−1,求该自然数的值.【答案】29【分析】根据题意可知,自然数61,154,201被该数除所得余数分别是a,a2,a3.由于a2=a×a,所以自然数612=3721与154同余;由于a3=a×a2,所以61×154=9394与201同余,所以除数是3721−154=3567和9394−201=9193的公约数,运用辗转相除法可得到(3567,9193)=29,该除数为29.经检验成立.62. 一个自然数除429、480所得的余数相等,求这个自然数的值.【答案】3,17或51.【分析】这两个数除以该自然数的余数相同,也就是同余,那么这两个数的差除以该自然数就除得开,也就是(480−429)能够除得开,即51.51=3×17,这个数可以是3,17或51.63. 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【答案】12504【分析】五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8×9×9×9×3=17496(个).所以满足条件的五位数共有30000−17496=12504(个).64. (3130+3031)被13除所得的余数是多少?【答案】3【分析】31被13除所得的余数为5,当n取1,2,3,⋯,时5n被13除所得余数分别是5,12,8,1,5,12,8,1,⋯,以4为周期循环出现,所以530被13除的余数与52被13除的余数相同,余12,则3130除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,⋯,时,4n被13除所得的余数分别是4,3,12,9,10,1,4,3,12,9,10,⋯,以6为周期循环出现,所以431被13除所得的余数等于41被13除所得的余数,即4,故3031除以13的余数为4;所以(3130+3031)被13除所得的余数是12+4−13=3.65. 求1∼2013的自然数中最多可以取出多少个数,使得任意两数之和不能被两数之差整除?。
1.学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
1. 学习同余的性质2. 利用整除性质判别余数同余定理1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711-()能被3整除. (2)用式子表示为:如果有a ≡b ( modm ),那么一定有a -b =mk ,k 是整数,即m |(a -b ) 3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12. 【答案】4,6,12例题精讲知识点拨教学目标5-5-3.同余问题【例 2】 某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【考点】两个数的同余问题 【难度】2星 【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.知识点拨教学目标5-5-3.余数性质(三)乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。
而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。
所以我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。
例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。
这个思想往往可以帮助我们解决一些较复杂的算式谜问题。
例题精讲模块一、余数的加减法定理【例 1】 幼儿园的老师给班里的小朋友送来40只桔子,200块饼干,120块奶糖。
平均分发完毕,还剩4只桔子,20块饼干,12粒奶糖。
这班里共有_______位小朋友。
【考点】余数的加减法定理 【难度】1星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 40-4=36,200-20=180,120-12=108。
小朋友的人数应是36,180,108的大于20的公约数,只有36。
【答案】36【例 2】 在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组.【考点】余数的加减法定理 【难度】2星 【题型】填空【关键词】少年数学智力冬令营【解析】 1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为252507+=++=,25360253679+++=++++=+,所以这样的数组共有下面4个:()2000,2003,()1998,2000,2003 ,()2000,2003,2001,1995 ,()1998,2000,2003,2001,1995.【答案】4【例 3】 号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【考点】余数的加减法定理 【难度】2星 【题型】解答【解析】 本题可以体现出加法余数定理的巧用。
计算101,126,173,193除以3的余数分别为2,0,2,1。
那么任意两名运动员的比赛盘数只需要用2,0,2,1两两相加除以3即可。
显然126运动员打5盘是最多的。
【答案】5【例 4】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【考点】余数的加减法定理 【难度】3星 【题型】填空【关键词】小学数学奥林匹克【解析】(70110160)50290÷=,除数应当是290的大于17小于70 ++-=,50316 (2)的约数,只可能是29和58,11058 1 (52)>,所以除数不是÷=,525058.7029 2 (12)++=,÷=,12231550÷=,11029 3 (23)÷=,16029 5 (15)所以除数是29【答案】29【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【考点】余数的加减法定理【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】n能整除639112925258÷=,所以n是258大于8的约++-=.因为2538 (1)数.显然,n不能大于63.符合条件的只有43.【答案】43【例5】如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?【考点】余数的加减法定理【难度】3星【题型】解答【解析】从5!开始个位数字都是0了因此只需要计算前4个数,1!+2!+3!+4!=1+2+6+24=33所以末位数字一定是3【答案】3【例6】六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元.【考点】余数的加减法定理【难度】3星【题型】填空【关键词】小数报【解析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《成语大词典》的定价是++++÷= (元) .(1417182126)332【答案】32【巩固】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【考点】余数的加减法定理【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】两个顾客买的货物重量是3的倍数.(151618192031)(12)119339 (2)+++++÷+=÷=,剩下的一箱货物重量除以3应当余2,只能是20千克.【答案】20【巩固】六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.(第五届小数报数学竞赛初赛) 【考点】余数的加减法定理【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】根据“甲、乙二人各自手中卡片上的数之和一个人是另一个人的2倍”可知,甲、乙手中五张卡片上的数之和应是3的倍数.计算这六个数的总和是+++++=,1193125818421866191224941056510565除以3余2;因为甲、乙二人手中五张卡片上的数之和是3的倍数,那么丙手中的卡片上的数除以3余2.六个数中只有1193除以3余2,故丙手中卡片上的数为1193.【答案】1193【例7】从1,2,3,4,…,2007中取N个不同的数,取出的数中任意三个的和能被15整除.N最大为多少?【考点】余数的加减法定理【难度】3星【题型】解答【关键词】走美杯,初赛,六年级,第8题【解析】取出的N个不同的数中,任意三个的和能被15整除,则其中任意两个数除以15的余数相同,且这个余数的3倍能被15整除,所以这个余数只能是0,5或者10.在12007中,除以15的余数为0的有151⨯,…,15133⨯,共有⨯,152⨯+,共有⨯+,…,151335⨯+,1515133个;除以15的余数为5的有1505134个;除以15的余数为10的有15010⨯+,15110⨯+,共⨯+,…,1513310有134个.所以N最大为134.【答案】134【例8】一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁?【考点】余数的加减法定理【难度】3星【题型】解答【关键词】香港圣公会,小学数学奥林匹克【解析】从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是31k+型的数,又是质数.只有7,13,19,31,37,43,就容易看出:父43岁,母37岁,兄13岁,妹7岁.【答案】37【例9】有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是________人.【考点】余数的加减法定理【难度】3星【题型】填空【关键词】香港圣公会,小学数学奥林匹克【解析】三所学校的高中生分别是:A校742人,B校732人,C校722人.如果A校或C 校初中人数是高中人数的1.5倍,该校总人数是奇数,而按照给出条件得出其他两校总人数都是偶数,与三校总人数5480是偶数矛盾,因此只能是B校的初中人数是高中人数的1.5倍.三校初中的总人数是548021963284-=,被3除余2;732被3整除,722被3除余2,742被3除余1.从余数来看2215⨯+=,⨯+=,就断定初中人数是高中人数的2倍,只能是C校.所以,A校总人1224数是7427421484+= (人) .【答案】1484模块二、余数的乘法定理【例10】求2461135604711⨯⨯÷的余数.【考点】余数的乘法定理【难度】3星【题型】解答【解析】因为246111223 (8)÷=,1351112 (3)÷=,根据同余定理(三),÷=,604711549 (8)⨯⨯=,⨯⨯÷的余数,而838192⨯⨯÷的余数等于838112461135604711⨯⨯÷的余数为5.1921117 (5)÷=,所以2461135604711【答案】5【巩固】求478296351⨯⨯除以17的余数.【考点】余数的乘法定理【难度】3星【题型】解答【关键词】华杯赛【解析】先求出乘积再求余数,计算量较大.可先分别计算出各因数除以17的余数,再求余数之积除以17的余数.478,296,351除以17的余数分别为2,7和11,(2711)179 (1)⨯⨯÷=.【答案】1【巩固】求4373091993⨯⨯被7除的余数.【考点】余数的乘法定理【难度】3星【题型】解答【解析】方法一:先将4373091993⨯⨯=.再求⨯⨯算出以后,即4373091993269120769得此数被7除的余数为1.方法二:因为473除以7的余数为3,309除以7的余数为1,由“同余的可乘性”知:().又因为1993除以7的余数为5,所以⨯437309()除以7的余数为31⨯⨯⨯()即15除以7的余数,算出⨯⨯()除以7的余数等于3154373091993⨯⨯被7除的余数为1.4373091993方法三:利用余数判别法⑹,算出4373091993269120769⨯⨯=,奇数节的数之和与偶数节的数之和的差即2697691201722336()()(),36除以7+++++-++=+-=的余数为1,即4373091993⨯⨯被7除的余数为1.【答案】1【例11】求4782569352⨯⨯除以9的余数.【考点】余数的乘法定理【难度】3星【题型】解答【分析】47819291++==+,3521091++==+,++==⨯+,2561394⨯⨯除以9的余数等于14144782569351⨯⨯=.【答案】4【例12】一个数被7除,余数是3,该数的3倍被7除,余数是。