复变函数论复习提纲
- 格式:docx
- 大小:17.69 KB
- 文档页数:6
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
复变函数Complex Function⚫第一章复数与复变函数⚫第二章解析函数⚫第三章复变函数积分⚫第四章复变函数项级数⚫第五章留数及其应用主要内容复数形如 z = x+iy , 其中x 和y 是任意两个实数.=x z Re(), =y z Im()z 的共轭复数记作: ,z =+⇒z x iy =−z x iy共轭复数的性质:+=−=z z z z z i z 2Re(); 2Im()⎝⎭+ ⎪⎛⎫−i i 1117)(()()+−=−i i i 1117714)(=⎣⎦−⎡⎤i 21727)(=−i 2277)(=i .−+−i i i i 121)(()()−+⋅=++−i i i ii i i i 1111)()(−=+−+i i 2111=−−i 2231复数的四则运算: 和 差 积 商复数的几何表示向量的长度==+z r x y22复数的模=z rei θ指数表示式三角表示式=+z r i cos sin θθ)(其中r = |z |, = Arg zθ复数的表示方法幅角的主值:满足−<≤πθπ的复数z 的幅角称为辐角的主值.θ=z arg 0)Arg arg 2 0,1,2,.π=+=±±z z k k (复数的幅角θθθθθθ⋅=⋅+++=⋅+ez z r r i r r i [cos()sin()](12212)1212112θθθπ=⎝⎭ ⎪==+⎛⎫+++r e n n w z r i k k n ni k k nncos sin 22121ππ)(复数的方根=θ−θ+θ−θ=θ−θe z r r i z r r i [cos()sin()]21)22121211(12复数乘积和商θθθ=+=r e z r n i n n n n i n [cos()sin()]()θθθ=+=ei r z r i (cos sin )+=z 1604例1: 解方程ππ⎝⎭⎪=+⎛⎫++i k k 4416cos sin 2241ππππ⎝⎭⎪=+⎛⎫++i k k 442cos sin22ππ=k (0,1,2,3)复数的乘幂=−z 164解:幅角的主值).=+=±±πz z k k ,Arg arg 2 0,1,2(满足−<≤πθπ的复数z 的幅角称为辐角的主值.记做:=z arg 0θ例2: 的幅角主值=−+z i 13ππππ−−+=+=−+=i 133arg 13arctan 32)(的幅角主值=−z 3π−=arg(3)例3: 证明+=++z z z z z z 2Re ,121212222)(并由此证明+≤+z z z z .1212证明:+=++z z z z z z ()1212122)(=+++z z z z z z z z 11221212+=++z z z z z z 2Re 121212222)(≤++z z z z 2121222=++=+z z z z z z 2121212222)(+=z z z z z z ()2Re 121212)(≤x z=z zz2⇒+≤+z z z z .1212例4: 映射 ,求圆周的象.=+z w z 1=z 2令=+=+z x iy w u iv ,,映射=+1w z z⇒+=++−+u iv x iy x iyx y22,解:于是=++u x x x y 22 ,=−+v y y x y 22,=z 2⇒==u x v y 44,53⇒==x u y v53,44+=u v 25914422+=x y 422映射=w f z (), w 称为z 的象,z 称为w 的原象两个特殊的映射==w zw z (2)(1)2复变函数的极限与连续性定理2: 设 =+f z u x y iv x y ()(,)(,),则 f (z )在处连续 =+z x iy 000的充分必要条件是 u x y (,),v x y (,)都在x y (,)00点连续.结论:arg z 在原点与负实轴上不连续.=→f z f z z z lim ()()00复变函数连续复变函数的极限=→f z A z z lim ()0定理1:=+=+=+f z u x y iv x y A u iv z x iy ,(,),,00000)()(设函数=⇔==→→→→→f z A u x y u v x y v y y y y z z x x x x lim lim ,,lim ,000)()()(−+=+x yi x y f z x x x yi ()= ()22++==x y x y u v x xy , 22222=y kx方法1: 沿++==→→→→x k x k u x y x y y x x 1lim ,lim 1000022222 )(依赖于k ,故极限不存在。
第 1 页 共 4 页复变函数复习提要第1章:复数与复变函数⒈了解复数定义及其几何意义; ⒉熟练掌握复数的运算; ⒊知道无穷远点邻域;⒋了解单连通区域与复连通区域; ⒌理解复变函数;⒍理解复变函数的极限与连续。
复数是用有序数对),(y x 定义的,其中y x ,为实数。
要注意,因为复数是“有序数对”,所以一般地讲,),(),(x y y x ≠。
正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示,即},:),({R b a b a z C ∈==复数的四则运算定义为),(),(),(d b c a d c b a ++=+ ),(),(),(d b c a d c b a --=- ),(),(),(ad bc bd ac d c b a +-=⋅ 0,),(),(),(222222≠++-++=÷d c dc ad bc d c bd ac d c b a 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ⋅=⋅④乘法结合律 321321)()(z z z z z z ⋅⋅=⋅⋅⑤乘法对加法的分配律 3121321)(z z z z z z z ⋅+⋅=+⋅ ),(y x -称为),(y x z =的共轭复数,记为z 。
22y x +称为),(y x z =的模,记为z 。
共轭复数满足第 2 页 共 4 页z zz z zz zz z Im i2,Re 2,2=-=+=⋅ 2121z z z z ±=± 2121z z z z ⋅=⋅ 0,)(22121≠=z z zz z 例1 设i 3,i 5221+=-=z z ,求21z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。
解 为求21z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=⋅⋅=zz z z z z z 例2 求复数)i 21)(i 34()i 21)(i 34(+--+=A 的模.解 令i 21,i 3421-=+=z z ,有2121z z z z A ⋅⋅=由共轭复数的运算结果得1212121212121=⋅⋅=⋅⋅=⋅⋅=z z z z z z z z z z z z A复数的三角式 )sin i (cos θθ+=r z (其中z r =) 复数的三角式 θi e r z = 由此得如下关系式 )(i 21i 2i 1212121e e eθθθθ+⋅=⋅=⋅r r r r z z0,e e e 2)(i 21i 2i 1212121≠==-z r r r r z z θθθθ第 3 页 共 4 页θn n nr z i e=2121z z z z ⋅=⋅0,22121≠=z z z z z)Arg()Arg()Arg(2121z z z z +=⋅ )Arg()Arg()Arg(2121z z z z -= 对于复数θi e r z =,它的n 次方根为)1,,1,0(eπ2i-==+n k r z nk nn θ。
(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。
②一个复数等于零,当且仅当它的实部与虚部同时等于零。
③称复数x+iy 和x-iy 互为共轭复数。
2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。
(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值()Arg z =()arg z +2k π3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。
(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。
(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
精品江苏大学复变函数复习提纲(红色的特别注意,我大二的 ,考完整理的 )(一 )复数的概念1. 复数的概念:z x iy , x, y 是实数, x Re z , y Im z .i21.注:两个复数不能比较大小.2.复数的表示1)模: z x2y2;2)幅角:在 z0 时,矢量与x轴正向的夹角,记为 Arg z (多值函数);主值 arg z 是位于( , ]中的幅角。
y3 )arg z与arctan之间的关系如下:y当 x 0, arg z arctan;xy0,arg z arctany当 x 0,x;arctanyy0,arg zx4 )三角表示:z z cos i sin,其中arg z;注:中间一定是“+”号。
5 )指数表示:z z e i,其中arg z 。
(二 ) 复数的运算1. 加减法:若z1x1iy1 , z2x2iy 2,则z1z2x1x2i y1y22.乘除法:1 )若z1x1iy1, z2x2iy 2,则z1z2x1 x2y1 y2i x2 y1x1 y2;z1x1iy1x1iy1x2iy2x1x2y1 y2i y1 x2y2 x1。
z2x2iy 2x2iy2x2iy 2x22y22x22y22 2 )若z z e i 1, z z e i2 , 则精品z 1z 2i 12z 1z 1 i 12z 1 z 2 e;z 2ez 23. 乘幂与方根1) 若 z z (cosi sin ) z e i,则 z n nnz (cosni sin n ) z e in 。
2) 若 zz (cosi sin )z e i ,则nz12k 2k L n 1) (有 n 个相异的值)z n cosi sin (k 0,1,2nn(三)复变函数1 .复变函数: w f z ,在几何上可以看作把 z 平面上的一个点集 D 变到 w 平面上的一个点集 G的映射 .2 .复初等函数1 )指数函数:e z e x cos y isin y ,在 z 平面处处可导,处处解析;且 e ze z 。
复变函数复习第一章1、z=x+iy 中实部为x,虚部为y 而不是yi ;2、2z z z =⋅而不是z z ⋅ 第二章 1、设()()000,(,),,f z u x y iv x y z x iy A a ib =+=+=+,那么0lim ()z z f z A →=的必要与充分条件是00(,)(,)lim (,)x y x y u x y a →=且00(,)(,)lim (,)x y x y v x y b →=。
2.需要知道的例题〔1〕讨论初等函数:sec z ,csc z ,tan z ,cot z ,sh z ,ch z 的连续性。
由于1sec cos z z =1csc sin z z = sin tan cos z z z= cos cot sin zz z = 2z z e e shz --= 2z z e e chz -+=sin ,cos ,,z zz z e e -在整个复平面上连续。
所以,sec ,csc ,tan ,cot z z z z 在分母不为零处连续,,shz chz 在整个复平面上连续〔2〕讨论函数arg z 的连续性设z 0为复平面上任意一点,那么当z 0=0时,arg z 在z 0无定义,故arg z 在z 0=0处不连续。
当z 0落在负实轴上时,由于arg z ππ-<≤,arg z 在z 从实轴的上方趋于z 0时,arg z 趋于π,在z 从实轴的下方趋于z 0时,arg z 趋于π-.因此arg z 此时不连续。
当z 0为其它情况时,由于00lim arg arg z z z z →=所以arg z 连续。
〔3〕讨论对数函数Ln z 的连续性因为ln ||arg 2(0,1,2,)Lnz z i z k i k π=++=±±⋅⋅⋅,而ln|z|在除原点和负实轴以外处处连续,反以Ln z 的各个分支和其主值函数ln z 在除去原点和负实轴以外的复平面上处处连续. 注:可导的函数一定连续. 3、函数()(,)(,)f z u x y iv x y =+在定义域内一点z x iy =+可导的必要与充分条件是:(,)u x y 和(,)v x y 在点(,)x y 可微,并且在该点满足柯西—黎曼方程,u v u v x y y x∂∂∂∂==-∂∂∂∂ 注:假设()f z 可导,必须同时满足,u v u v x y y x∂∂∂∂==-∂∂∂∂,只满足其中的一个式子不一定可导!!!4、求导公式:∴'()u v v u u u v v f z i i i i x x y y x y y x∂∂∂∂∂∂∂∂=+=-=-=+∂∂∂∂∂∂∂∂这个公式可以求()f z . 5、断定()f z 在0z 处是否可导,可根据,,,u u v vx y x y∂∂∂∂∂∂∂∂是否存在来断定,假设不存在肯定不可导。
复变函数复习资料复变函数是数学中的一个重要分支,它研究的是具有复数变量和复数值的函数。
复变函数的研究对于数学的发展和应用有着重要的意义。
在这篇文章中,我将为大家提供一些复变函数的复习资料,希望对大家的学习有所帮助。
一、复变函数的基本概念复变函数是指定义在复数域上的函数,它的自变量和因变量都是复数。
复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中z=x+iy,u(x,y)和v(x,y)分别是实部和虚部函数。
复变函数的导数和积分也有相应的定义,与实数函数的导数和积分有一些不同之处。
二、复变函数的解析性与调和性复变函数的解析性是指函数在某个区域内处处可导,它是复变函数的重要性质。
根据柯西—黎曼方程,只有满足一定条件的函数才能是解析函数。
解析函数具有很多重要的性质,例如它的实部和虚部都是调和函数,它的导数也是解析函数。
三、复变函数的级数表示复变函数可以用级数表示,这是复变函数研究中常用的一种方法。
泰勒级数是复变函数的一种重要的级数表示形式,它可以将函数展开成一系列幂函数的和。
而洛朗级数则是将函数展开成一系列幂函数和互补幂函数的和,适用于具有奇点的函数。
四、复变函数的积分复变函数的积分是复分析中的重要内容,它与实数函数的积分有一些不同之处。
复变函数的积分可以沿着一条曲线进行,这就是复积分的概念。
复积分有一些重要的性质,例如柯西—黎曼积分定理和柯西公式等,它们在复分析中有着广泛的应用。
五、复变函数的应用复变函数在物理学、工程学和计算机科学等领域有着广泛的应用。
它可以用来描述电磁场、流体力学和信号处理等问题。
复变函数的解析性和级数表示等性质使得它在实际问题的求解中具有很大的优势。
总结:复变函数是数学中的一个重要分支,它研究的是具有复数变量和复数值的函数。
复变函数的解析性、级数表示和积分等性质是复变函数研究的核心内容。
复变函数在物理学、工程学和计算机科学等领域有着广泛的应用。
希望通过这些复习资料,能够帮助大家更好地理解和掌握复变函数的知识。
(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。
②一个复数等于零,当且仅当它的实部与虚部同时等于零。
③称复数x+iy 和x-iy 互为共轭复数。
2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。
(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值 ()Arg z =()arg z +2k π 3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。
(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。
(二) 复数的运算 1.加减法:若1112,z x iy z x=+=+,则()()121212z z x x i yy±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
复变函数与积分变换复习要点1、将i + 和66622(cos sin )ii e i πππ+==+22366611(cos sin )222i i i e e i e πππππ−===−。
2、写出函数()f z u iv =+在区域D 内解析的充要条件。
答:充要条件为:u 和v 在D 内可导,且在D 内满足C-R 方程:, u v u v x y y x∂∂∂∂==−∂∂∂∂。
3、写出解析函数()f z u iv =+的一阶导数公式。
答:(1)()u vf z i x x∂∂=+∂∂。
4、写出积分10()n C dzz z +−⎰的值。
答:当C 为包含0z 在内的正向简单闭曲线时,102,0()0, n C i n dzz z n π+=⎧=⎨−⎩⎰为其它整数;当C 不包含0z 在内时,100()n C dzz z +=−⎰。
5、写出复合闭路定理。
答:()f z 在多连通域D 内解析,C 是D 内的一条简单闭曲线,12,,,n C C C 为C 内部的n条互不包含也互不相交的简单闭曲线,且以12,,,,n C C C C 为边界的区域全含于D ,则有:12()0nC C C C f z dz −−−++++=⎰。
6、写出柯西积分公式和柯西积分的高阶导数公式。
答:柯西积分公式:001()()2Cf z f z dz iz z π=−⎰,其中C 为正向简单闭曲线,0z 在C 的内部,且()f z 在C 内和C 上处处解析。
高阶导数公式:()010!()()2()n n C n f z fz dz iz z π+=−⎰,其中C为正向简单闭曲线,0z 在C 的内部,且()f z 在C 内和C 上处处解析。
7、写出下列函数的泰勒展开式:1, , sin , cos , ln(1), (1)1z e z z z z zα++−。
答:01,(||1)1nn z z z +∞==<−∑;0,(||)!n z n z e z n +∞==<+∞∑;210(1)sin ,(||)(21)!n n n z z z n +∞+=−=<+∞+∑; 20(1)cos ,(||)(2)!n nn z z z n +∞=−=<+∞∑;1ln(1)(1),(||1)1n nn z z z n ++∞=+=−<+∑;(1),(||1)n nn z C z z αα+∞=+=<∑。
复变函数复习要点第一章复习要点1、熟悉复数的三种表示,熟练掌握复数基本运算(加、减、乘除、乘方、开方以及共轭运算)并熟悉其它们的几何意义;2、熟练掌握直线和圆周的各种形式的复数方程;3、熟练掌握用复数关系来表示平面点集,能画出复数关系表示的平面点集的草图,并能判断一个给定的平面点集是否区域,如果是区域还要能判定此区域是单连通区域还是多连通区域;4、熟悉复变函数的三种表示(代数表示、极坐标表示、映射表示),熟练掌握复变函数极限和连续的定义以及复变函数极限、连续与其实部、虚部二元函数极限和连续的关系。
5、能准确地写出并证明复变函数极限和连续的基本性质(如:局部不等性、局部有界性等);掌握有界闭集上连续函数的整体性质(有界性、模函数的最值性、一致连续性)。
第二章复习要点1、熟练掌握复变函数导数和微分的定义,复变函数导数的运算法则;2、熟练掌握解析函数的定义(包括区域内解析、一点解析和闭区域上解析),熟悉复变函数在一点可导和解析的关系,以及复变函数在区域内解析(在闭区域上解析)与在点的解析的关系;熟练掌握解析函数的运算法则(包括四则运算、复合运算、逆运算);3、熟练掌握复变函数可导和解析的充要条件以及利用实部、虚部两个二元函数的偏导数计算复变函数导数的计算公式,能利用充要条件准确判断给定的具体复变函数在平面上的可到性和解析性;熟悉复变函数可导和解析的柯西—黎曼条件,能熟练地运用柯西-黎曼条件解决解析函数为常函数的各种条件;4、熟练掌握解析函数与其实部、虚部两个二元函数调和的关系,并能利用解析函数的实部或虚部,求出虚部或实部,从而求出解析函数;5、熟悉常用的初等单值解析函数(如:常函数,多项式函数、有理函数,指数函数,三角函数,双曲函数);6、熟悉讨论多值函数的基本方法(找支点,作支割线,将多值函数的各分支函数单值化),并熟练掌握幅角函数、对数函数、根式函数和一般幂函数的单值化方法;7、熟悉幅角函数、对数函数、根式函数、一般幂函数的一般计算(即直接利用这些函数的结构表示来计算);8、熟练幅角连续改变量的计算公式;熟练掌握幅角函数、对数函数、根式函数、一般幂函数的分支函数的已知初值求终值的公式,并能用这些公式正确计算相应的分支函数的函数值;P z是多项式)的单值化方法(包括支点的确定方法,支割线的作法),9、()以及它的分支函数的已知初值求终值的公式。
复变函数积分变换复习提纲
一、积分变换的定义
1.复变函数积分变换的概念
2.不同积分变换的定义与区别(如拉普拉斯变换、傅立叶变换等)
二、积分变换的性质
1.线性性质:积分变换的线性性质以及相关的证明方法
2.逆变换:如何通过逆变换将变换后的函数还原为原函数
3.平移性质:积分变换中的平移性质以及具体计算方法
三、积分变换的计算方法
1.常用积分变换的计算:如拉普拉斯变换的计算步骤和方法
2.特殊函数的积分变换:如指数函数、正弦、余弦函数等
3.部分分数展开法:利用部分分数展开将复杂的函数进行积分变换
四、积分变换的性质应用
1.微分方程的解析解求解:利用积分变换可以将微分方程转化为代数方程进行求解
2.求极限:通过积分变换可以简化复杂函数的极限计算
3.求解积分:利用积分变换可以求解一些特定的积分问题
五、积分变换的应用举例
1.电路分析中的应用
2.信号与系统中的应用
3.滤波器设计中的应用
六、积分变换的常见问题与解决方法
1.变换域的收敛性与逆变换的存在性问题
2.利用积分变换求解非初值问题时需要注意的问题
3.实际问题的离散化处理:如何将连续问题转化为离散问题进行求解
七、积分变换的进一步研究与拓展
1.多变量复函数的积分变换
2.复杂函数的积分变换
3.积分变换在物理学、工程学等领域的应用
以上为复变函数积分变换的复习提纲,可以根据实际情况进行修改和补充。
希望对你的复习有所帮助!。
不考内容《复变函数》第一章:§复球面§区域§5 第二部分:映射的概念§6 复变函数的极限与连续性第四章§1 复数项级数第五章§3 留数在定积分上的应用、《积分变换》第一章:傅立叶变换第二章:§4 卷积注意:第二章一般不算积分,除了周期函数的公式以外。
复变函数复习第一章 复数与复变函数1.复数的表示(1)复数的代数表示:复数z = x + i y ,其中x,y 为实数.(2)复数的几何表示:复数z = x + i y 可以用xy 平面上的点P(x,y)来表示,因而也能用原点指向P 点的平面向量来表示.(3)复数的三角表示:复数()θθsin cos i r z += 复数的模 22y x r z +==复数的辐角Argz=θ, ()xyArgz tg = , 复数的辐角的主值argzArgz=argz+2k π(k 为整数). 规定-π<argz ≤π当0=z 时,|z|=0,辐角没有意义.当∞=z 时,|z|=+∞,没有实部,虚部和辐角. argz(0≠z )与反正切xy Arctg 的主值x y arctg ⎪⎭⎫ ⎝⎛<<-22ππx y arctg 的关系:第一、四象限 xy arctg z =arg x ﹥0第二象限 π+=xyarctg z arg x ﹤0,y ﹥0第三象限 π-=xy arctg z arg x ﹤0,y ﹤0 正虚轴 2arg π=z x=0,y ﹥0 负虚轴 2arg π-=z x=0,y ﹤0负实轴 π=z arg x ﹤0,y=0(4)复数的指数表示:θi re z z =≠,0时2.复数的运算设z 1= x 1+iy 1=()111sin cos θθi r +, z 2 = x 2+iy 2()222sin cos θθi r +=(1)相等 z 1= z 2 ⇔ x 1=x 2 y 1=y 2 (2)加(减)法 z 1±z 2=(x 1±x 2)+i(y 1±y 2) (3)乘法 z 1z 2=(x 1x 2-y 1y 2)+i(x 2y 1+x 1y 2)()()[]212121)(21sin cos 21θθθθθθ+++==+i r r e r r i(4)除法222121z z z z z z ⋅⋅==22222121y x y y x x +++i 22222112y x y x y x +-()2121θθ-=i e r r )]sin()[cos(212121θθθθ-+-=i r r (z 2≠0)(5)乘幂 )sin (cos θθθn i n r e r z n in n n +==特别 |z|=1时, (cos θ+isin θ)n =cosn θ+isinn θ (棣莫弗公式) (6)方根,2sin 2cos1⎪⎭⎫⎝⎛+++=n k i n k r z n nπθπθ ()1,,2,1,0-=n k (7)共轭 z = x-iy=re -i θ , 21z z ±=1z 2z ±, 121z z z =2z , 2121z z z z =⎪⎪⎭⎫ ⎝⎛ ;z z = ; 22y x z z += ; x z z 2=+, iy z z 2=- .注意:(1)在复数的运算中,除加减法用代数表示较方便外,其它运算宜采用三角表示,特别是用指数表示最方便.(2)关于复数的模与辐角有以下计算公式:2121z z z z ⋅= ,()2121Argz Argz z z Arg +=2121z z z z = , Arg ⎪⎪⎭⎫ ⎝⎛21z z =21Argz Argz - (z 2≠0) 3.复变函数的概念复变函数的定义,极限,连续以及导数等概念在形式上几乎与实变函数完全相同.但需注意的是,复变函数的定义域是复平面上的点集,因此在讨论有关概念时,应注意复变量z 变化方式的任意性,即z →z 0可以以任意方式(直线,曲线…),而一元实变函数中实变量x →x 0只能沿x 轴.4.简单曲线是研究复变量的变化范围时经常用到的重要概念之一,特别是简单闭曲线经常作为区域的边界出现.在复变函数的积分运算中,常常需要把曲线表示为复参量的形式,通常用得最多的是一元实参量t 的复值函数 z=z(t)=x(t)+iy(t) (α≤t ≤β) 其中 x=x(t), y=y(t) (α≤t ≤β) 是该曲线在直角坐标系中的参数方程.第二章 解析函数1. 复变函数的导数(1)定义 函数w = f (z)在其定义域D 内一点z 0处(可导)的导数()()()()()000000000limlim lim z z z f z f z z f z z f z wdzdwz f z z z z z z --=∆-∆+=∆∆=='→→∆→∆= 若函数w = f (z)在区域D 内处处可导,称 f (z)在D 内可导. (2) f(z)在z 0可导连续(3)求导法则 若f(z),g(z)在点z 可导,则()1-='b bbzz(b 为复数);()()[]()()z g z f z g z f '±'='±; ()()[]()()()()z g z f z g z f z g z f '+'=';()()()()()()()[]z g z f z g z f z g z g z f '-'='⎥⎦⎤⎢⎣⎡21,()0≠z g .()[]{}()()z g w f zg f ''=',其中 ()z g w = . ()()w z f ϕ'='1,其中()z f w =与()w z ϕ=是两个互为反函数的单值函数,且 ()0≠'w ϕ. 2.解析函数(1)定义 如果函数f(z)在z 0及z 0的邻域内处处可导,那末称f(z)在z 0解析.如果f(z)在z 0不解析,则称z 0为f(z)的奇点. 如果f(z)在区域D 内每一点解析,那末称f(z)在D 内解析,或称f(z)是D 内的一个解析函数.(2)性质 两个解析函数的和,差,积,商(分母不为零)及复合函数仍然解析 有理分式函数)()(z Q z P 在复平面内除了使分母为零的点外处处解析 (3)柯西-黎曼方程 (C-R 方程)函数()()()y x iv y x u z f ,,+=在定义域D 内(解析)一点iy x z +=可导⇔u(x,y)与v(x,y)在(D 内)点(x,y)可微,并且满足C-R 方程 yv x u ∂∂=∂∂,x v y u ∂∂-=∂∂.推论 若f (z)在z 处可导, 则 ()yui y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=' . 3.初等函数 定义 定义区域 单值多值性 解析区域 (1) 对数函数Lnz=lnz+2 kπi 整个复平面 多值 整个复平面iArgz z Lnz +=ln (z0) (除原点和负实轴)(k=0,±1,±2,…) 主值分支z i z z arg ln ln +=(2)乘幂 a b = e bL n a =e blna+2bki多值(k=0,±1,±2,…) 主值分支e b l n ab 为正整数n 单值 整个复平面nb 1= n 个分支 (除原点和负实轴)定义 定义区域 解析区域 单值多值性 基本周期 奇偶性(3)指数函数 e z(4)双曲函数2zz e e chz -+=2i 偶2zz e e shz --=整个复平面 单值 奇(5)三角函数2cos iziz e e z -+=2偶ie e z iziz 2sin --= 奇第三章 复变函数的积分1.积分的计算 ()()[]()t d t z t z f z d z f C '=⎰⎰βα光滑曲线C 参数方程: ()()()βα≥≤+==t t iy t x t z z ,, 正向t 增加()⎰+-Cn z z dz10⎩⎨⎧≠==0002n n i πC 是包围z 0的任何一条正向简单闭曲线2.积分的性质 f(z),g(z)沿曲线C连续(1) ()()dz z f dz z f C C ⎰⎰-=- ; (2) ()()dz z f k dz z kf C C ⎰⎰=;(k 为常数) (3) ()[()]()()dz z g dz z f dz z g z f C C C ⎰⎰⎰±=±(4)设曲线C 的长度为L,函数f(z)在C 上满足()M z f ≤,那末()()ML ds z f dz z f C C ≤≤⎰⎰.3.柯西-古萨基本定理 如果函数f(z)在单连域B 内处处解析,那末函数f(z)沿B 内任何一条封闭曲线C 的积分为零: ()0=⎰dz z f C.推广:(1)闭路变形原理 在区域内的—个解析函数f(z)沿闭曲线的积分,不因闭曲线在区域内作连续变形而改变其值,只要在变形过程中曲线不经过f(z)的奇点.(2)复合闭路定理 设C 为多连域D 内的一条简单闭曲线,C 1,C 2,…,C n 是在C 内部的简单闭曲线,它们互不包含也互不相交,并且以 C ,C 1,C 2,…,C n 为边界的区域全含于D.如果f(z)在D 内解析,那末1) ()()dz z f dz z f nk C CK∑⎰⎰==1 ,其中C 及C k 均取正向.2) 0)(=⎰Γdz z f ,这里г为由C 及C k ―(k=1,2,…,n )所组成的复合闭路,其方向是:C 逆时针,C k ―顺时针. 推论:(1) ()()dz z f dz z f Z Z C ⎰⎰=10,C是连结z 0与z 1的任一曲线.(2)函数()()ςςd f z F ZZ ⎰=0必为B 内的—个解析函数,并且()()z f z F ='.5.原函数 如果在区域B 内φ/(z)=f(z),那末φ(z)称为f(z)在区域B 内的原函数不定积分 ()()c z dz z f +=⎰ϕ ,其中c为任意复常数.()()()0110z z dz z f Z Z ϕϕ-=⎰,其中z 0 ,z 1是B 内任意两点6.柯西积分公式 如果f(z)在区域D 内处处解析,C 为D 内的任何一条正向简单闭曲线,它的内部完全含于D,z 0为C 内的任一点,那末()()dz z z z f i z f C ⎰-=0021π 解析函数f(z)的导数仍为解析函数,上式两边形式上对z 0求n 阶导数得到高阶导数公式 ()()()()dz z z z f i n z fC n n ⎰+-=1002!π . 7.调和函数 如果二元实变函数φ(x,y)在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程02222=∂∂+∂∂yxϕϕ,那末称φ(x,y)为区域D 内的调和函数任何在区域D 内解析的函数f(z)=u(x,y)+iv(x,y)的实部和虚部都是D 内的调和函数,并且其虚部v(x,y)为实部u(x,y)的共轭调和函数. 8.已知实部或虚部求解析函数(1)偏积分法 如已知u(x,y),可利用柯西一黎曼方程 x u y v ∂∂=∂∂,将x 当成常数,对y 积分得 ()()x g dy xuy x v +∂∂=⎰,,再利用 x v y u ∂∂-=∂∂ 确定g(x). 也可以利用 yux v ∂∂-=∂∂ ,将y 当成常数,对x 积分得()()y h dx yu y x v +∂∂-=⎰, ,再利用 y v x u ∂∂=∂∂ 确定h(y).(2)不定积分法 由于 ()xvi x u z f ∂∂+∂∂=', 利用柯西一黎曼方程得到 ()()z U yui x u z f =∂∂-∂∂=' ,则 ()()c dz z U z f +=⎰ .或 ()()z V xv i y v z f =∂∂+∂∂=' ,则 ()()c dz z V z f +=⎰ . 第四章 级数1.幂级数 形为()()()() +-++-+-+=-∑∞=n n n n n a z c a z c a z c c a z c 22100或 +++++=∑∞=n n n n n z c z c z c c z c 22100的级数称为幂级数.(1)阿贝尔定理 如果级数∑∞=0n n n z c 在()00≠=z z 收敛,那末对满足0z z <的z,级数必绝对收敛. 如果在0z z =级数发散,那末对满足0z z >的z,级数必发散.(2)对于幂级数()nn n a z c -∑∞=0或 ∑∞=0n n n z c ,存在以a 或0为中心,R 为半径的圆周C R .在C R 的内部,级数绝对收敛;在C R 的外部,级数发散.圆周C R 称为幂级数的收敛圆,收敛圆的半径R 称为收敛半径. 特别1)R=0,级数在复平面内除原点外处处发散2)R=∞,级数在复平面内处处收敛(3)对于幂级数∑∞=0n nn z c ,如果λ=+∞→nn n c c 1lim或λ=∞→n n n c lim 那末收敛半径 λ1=R .(包括R=0或R=)(4)在收敛圆内幂级数()n n n a z c -∑∞=0的和函数f(z)是解析函数.在收敛圆R a z <-内,式()()nn n a z c z f -=∑∞=0,可进行有理(加,减.乘法)运算,代换(复合)运算和微积分运算.2.泰勒级数 函数f(z)可在以展开中心z 0为圆心,z 0到f(z)的最近的一个奇点的距离为半径R=-z 0的解析圆域z-z 0<R 内展开为泰勒级数.()()()()n n n z z n z f z f 000!-=∑∞= 泰勒展开式具有唯一性,因此可以借助于一些已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的泰勒展开式. 常用的已知函数的展开式为+++++=-nz z z z2111 , 1<z . ++++++=!!3!2132n z z z z e n z 3.洛朗级数 函数f(z)可在以展开中心z 0为圆心的解析的圆环域 R 1<z-z 0<R 2内展开为洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=,其中 ()()() ,2,1,0.2110±±=-=⎰+n d z f i c C n n ςςςπ 这里C 为在圆环域内绕z 0的任何一条正向简单闭曲线.洛朗展开式具有唯一性,因此也可以借助于已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的洛朗展开式.第五章 留数1.孤立奇点的概念和分类(1)定义 如果函数f(z)虽在z 0不解析,但在z 0的某一个去心邻域δ<-<00z z 内处处解析,则将z 0称为f(z)的孤立奇点.(2)孤立奇点的分类和判定z 0为f(z)的 ()z f z z 0lim → f(z)在z 0的去心邻域内的洛朗级数 可去奇点 存在且有限 没有负幂项 极点 ∞有限多个负幂项本性奇点不存在且不为∞ 无穷多个负幂项z 0是f(z)的m 级极点()()()z g z z z f m01-=⇔ ,其中g(z)是在δ<-0z z 内解析的函数,且 ()00≠z g .(3)函数的零点及其与极点的关系不恒等于零的解析函数f(z)如果能表示成 ()()()z z z z f m ϕ0-= 其中()z ϕ在z 0解析并且()00≠z ϕ,m 为某一正整数,那末z 0称为f(z)的m 级零点.如果f(z)在z 0解析,那末z 0为f(z)的m 级零点 ⇔ ()()()()()0,1,,2,1,0,000≠-==z f m n z f m nz 0是f(z)的m 级极点⇔z 0是()z f 1的m 级零点.如果()()()z h z g z f =,而z 0是g(z)的m 级零点,h(z)的n 级零点,那末z 0为()z f 1的(n-m)级零点,为f(z)的(n-m)级极点.(4)函数在无穷远点的性态如果函数f(z)在无穷远点∞=z 的去心邻域+∞<<z R 内解析,那末称点∞为f(z)的孤立奇点.f(z)在+∞<<z R 内的洛朗展开式 ()n n n nn n z c c zc z f ∑∑∞=-∞=-++=101其中 ()() ,2,1,0,211±±==⎰+n d f ic C n n ςςςπ,C 为+∞<<z R 内绕原点的任一正向简单闭曲线.洛朗级数 z=∞是f(z)的 ()z f z ∞→lim没有正幂项 → 可去奇点 ← 存在且有限 有限正幂项(最高m 次) → 极点(m 级) ← ∞ 无限正幂项 → 本性奇点 ← 不存在且不为∞ 2.留数与留数的计算(1)留数定义 如果z 0为f(z)的一个孤立奇点,C 是z 0的去心邻域R z z <-<00 内包围z 0的任意一条正向简单闭曲线,函数f(z)在此邻域内展开成洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=, 则f(z)在z 0处的留数 ()[]()dz z f ic z z f s C⎰==-π21,Re 10 (2)留数定理 设函数f(z)在区域D 内除有限个孤立奇点n z z z ,,,21 外处处解析.C 是D 内包围诸奇点的一条正向简单闭曲线,那末()()[]∑⎰==nk k Cz z f s i dz z f 1,Re 2π(3)留数的计算1)可用洛朗级数计算 ()[]10,Re -=c z z f s当z 0为可去奇点时, ()[]0,Re 0=z z f s ;当z 0为本性奇点时,只能用此法, 2)当z 0为一级极点时, ()[])]()[(lim ,Re 000z f z z z z f s z z -=→若()()()z Q z P z f =,P(z)及Q(z)在z 0都解析,如果()(),0,000=≠z Q z P()00≠'z Q ,那末z 0为f(z)的一级极点,而 ()[]()()000,Re z Q z P z z f s '=. 3)如果z 0为f(z)的m 级极点,那末()[]()()(){}z f z z dzd m z z f s mm m z z 01100lim !11,Re --=--→4.无穷远点处的留数函数f(z)在圆环域+∞<<z R 内解析,C 为这圆环域内绕原点的任何一条正向简单闭曲线, f(z)在∞点的留数 ()[]()dz z f i z f s C ⎰-=∞π21,Re . 如果函数f(z)在扩充复平面内只有有限个孤立奇点,那末f(z)在所有各奇点(包括∞点)的留数的总和必等于零.()[]⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-=∞0,11Re ,Re 2z z f s z f s ])。
复变函数论复习提纲
复变函数论
一、复数与复变函数
一、要求
(一)明确复数、区域、复平面、扩充复平面,逐段光滑曲线等概念。
(二)明确复变函数概念和几何意义,掌握一些简单函数的变换性质。
(三)掌握复变函数的极限和连续性的概念和基本性质。
(四)熟练掌握复数的有关计算,会作点集的图形。
二、考试内容
(一)复数概念、复数的表示法及其代数运算、复数的模与幅角、共轭复数及其简单运算。
(二)平面点集基本概念,曲线(连续曲线、约当曲线、逐段光滑曲线)、区域(单连通区域、复连通区域)、
复平面。
(三)复变函数的概念及其几何意义,复变函数的极限与连续性。
(四)无穷远点,扩充复平面。
二、解析函数
一、要求
(一)掌握导数、解析函数的概念。
(二)掌握C——R条件,并能熟练地判断复变函数的可导性和解析性。
(三)掌握复基本初等函数的定义和基本性质。
(四)掌握正整幂函数、根式函数、指数函数、对数函数的变换性质,了解根式函数单值解析分支的取法。
二、考试内容
(一)导数、解析函数、C——R条件。
(二)初等函数:正整幂函数与根式函数,指数函数与对数函数,
三解函数与反三角函数,双曲函数,一般
幂函数和一般指数函数。
三、复变函数的积分
一、要求
(一)明确复积分的概念及其基本性质。
(二)会证柯西积分定理和柯西积分公式;理解解析函数的无限可微性和莫勒拉定理。
(三)熟练地掌握复积分的计算方法。
(四)理解刘维尔定理,会证代数基本定理。
(五)掌握解析函数与调和函数的关系。
二、考试内容
(一)复积分的概念、基本性质及其计算方法。
(二)柯西积分定理(在f'(z)连续的条件下,用格林公式证明)。
不定积分,复连通区域上的柯西积分
定理。
(三)柯西积分公式,解析函数的无限可微性。
(四)柯西不等式、刘维尔定理、代数基本定理。
(五)莫勒拉定理。
(六)解析函数与调和函数的关系。
四、解析函数的幂级数表示法
一、要求
(一)明确收敛、绝对收敛、一致收敛、内闭一致收敛、幂级数、收敛半径、收敛圆、泰勒级数等概念。
(二)了解一致收敛的函数项极数的分析性质。
(三)掌握解析函数的零点孤立性定理和唯一性定理,了解最大模原理的含义。
(四)会求幂级数的收敛半径,了解幂级数的和函数在收敛圆周上必有奇点。
(五)会求简单初等函数的泰勒展开式。
二、考试内容
(一)复数项极数、收敛、绝对收敛。
(二)复变函数项级数、收敛、一致收敛、内闭一致收敛、一致收敛的函数项级数的分析性质。
(三)幂级数、阿贝尔定理、收敛半径、收敛圆、幂级数和函数的解析性。
(四)泰勒定理。
基本初等函数的泰勒展开式。
(五)解析函数零点的孤立性、唯一性定理,最大模原理。
五、罗朗级数、孤立奇点
一、要求
(一)明确罗朗级数、孤立奇点、可去奇点、极点、本性奇点等概念。
(二)会求简单函数的罗朗展式。
(三)会判别孤立奇点的类型。
二、考试内容
(一)解析函数的罗朗展式。
(二)解析函数的孤立奇点的概念、分类以及函数在孤立奇点领域内的性质。
(三)解析函数在无穷远点的性质。
六、残数及其应用
一、要求
(一)掌握残数概念和残数的求法。
(二)掌握残数定理的证法并会用残数定理计算曲线积分。
(三)会用残数理论计算定积分和广义积分(三种类型);
(四)了解幅角原理、儒歇定理,会用儒歇定理判断某些方程在指定区域内根的个数。
二、考试内容
(一)残数定义、残数求法、有限复平面上的残数定理。
(二)解析函数在无穷远点上的残数、扩充复平面上的残数定理。
(三)用残数计算曲线积分。
(四)用残数计算一些定积分和广义积分。
(五)儒歇定理及其应用。
七、保形变换
一、要求
(一)掌握导数的模和幅角的几何意义。
(二)明确保角变换和保形变换的概念。
了解解析变换的保域性。
掌握单叶角析变换的保形性。
(三)掌握分式线性变换的性质和几个典型的分式线性变换。
(四)会用分式线性变换和几个基本初等变换所构成的复合变换作简单区域之间的保形变换。
二、考试内容
(一)导数的模和幅角的几何意义,保角变换,保形变换。
(二)解析变换的保域性(不证),单叶解析变换的保形性。
(三)分式线性变换用其分解,分式线性变换的性质及几个典型的分式线性变换。
(四)简单复合变换。
实变函数论
一、集合及其基数
一、要求
(一)理解集合的并、交、差、余运算的含义,掌握其性质。
(二)理解集合基数的概念,掌握可数集与不可数集的定义、性质和判定。
熟悉常见的一些可数集和不可数
集。
二、考试内容
(一)集合的表示和运算。
狄莫根公式,上限集和下限集。
(二)集合的基数。
(三)可数集和不可数集。
二、点集
一、要求
(一)熟悉n维欧氏空间Rn中聚点、内点、界点、孤立点、开集、闭集和完备集的概念,掌握它们的性质。
(二)理解Rn空间中的聚点定理和有限覆盖定理。
(三)掌握直线上的开集、闭集和完备集的构造理论。
(四)了解Cantor集的构造和性质。
二、考试内容
(一)n维欧氏空间Rn中的领域、内点、聚点、界点、孤立点和导集、边界、闭集。
(二)开集、闭集的定义及其性质,完备集的概念,Cantor集。
(三)直线上开集、闭集和完备集的构造。
(三)理解“测度收敛”和“几乎处处收敛”的概念。
它们的关系。
了解F·Riesz定理。
二、考试内容
(一)可测函数及其性质。
(二)叶果洛夫(Eropob)定理和鲁津(ЛУ3ИН)定理。
(三)几乎处处收敛。
测度收敛。
黎斯(F·Riesz)定理。
五、积分论
一、要求
(一)掌握勒贝格(Lebesgue)积分的概念,了解勒贝格积分与黎曼积分的关系。
(二)熟悉L可积函数的积分性质。
(三)掌握Lebesgue控制收敛定理,levi定理,逐项积分定理和积分的可数可加性定理,并会运用这些定
理解决积分号与极限号的交换问题。
二、考试内容
(一)在测度有限的可测集上有界函数Lebesgue积分的定义及性质。
(二)Lebesgue积分与Riemann积分之间的关系,Riemann可积的一个充要条件。
(三)一般Lebesgue可积函数及性质。
(四)积分的极限定理:Lebesgue控制收敛定理,Levi定理,逐项积分定理,积分的可数可加性。
选用教材意见
《复变函数论》(第二版)钟玉泉编高等教育出版社出版《实变函数论》仇惠玲单佑民主编
江苏省教育考试院。