冀教版2020-2021学年度第一学期七年级数学期中模拟测试题(附答案)
- 格式:doc
- 大小:426.50 KB
- 文档页数:21
冀教版七年级下册数学期中考试试卷一、单选题1.16-=()A .6-B .6C .16-D .162.下列选项中,平移左边三角形能与右边三角形重合的选项是()A .B.C .D.3.若a 为正整数,则()2a a a a ⋅⋅⋅⋅⋅⋅⋅=个()A .2a aB .2aa C .2aa D .2a a +4.下列命题中,是假命题的为()A .对顶角相等B .同位角相等C .同角的余角相等D .过直线外一点有且只有一条直线与已知直线垂直5.根据“x 与y 的差的2倍等于9”的数量关系可列方程为()A .2(x ﹣y )=9B .x ﹣2y =9C .2x ﹣y =9D .x ﹣y =9×26.()22ab ab ⨯=,则括号内应填的单项式是()A .2B .2aC .2bD .4b7.把方程230x y --=改写成用x 表示y ,正确的是()A .32y x -=B .23y x =+C .23y x =-D .23y x -=-+8.如图,有两种说法:①线段AB 的长是点B 到直线1l 的距离;②线段AB 的长是直线1l 、2l 之间的距离,关于这两种说法,正确的是()A .①正确,②错误B .①正确,②正确C .①错误,②正确D .①错误,②错误9.说明命题“对于任意实数x ,254x x ++的值总是正数”是假命题的反例可以是()A .1x =B .0x =C .3x =-D .5x =-10.若关于x ,y 的方程组23222x y k x y k +=-⎧⎨+=-⎩的解互为相反数,则k =()A .0B .1C .2D .311.代数式()()222235yz xz y xz z x xyz +-+++的值()A .只与x ,y 有关B .只与y ,z 有关C .与x ,y ,z 都无关D .与x ,y ,z 都有关12.《九章算术》是我国古代数学的经典著作,书中记载:今有上禾七秉,损实一斗,益之下禾两秉,而实一十斗;下禾八秉,益实一斗,于上禾二秉,而实一十斗.问上、下禾实一秉各几何?共意思为:现有七捆上等稻子和两捆下够稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子.问一捆上等稻子和一捆下等稻子各打谷子多少斗?设一捆上等稻子和一捆下等稻子分别打成谷子x 斗,y 斗,则可建立方程组为()A .7211028110x y x y -+=⎧⎨++=⎩B .7211028110x y x y +-=⎧⎨+-=⎩C .7211028110x y x y +-=⎧⎨++=⎩D .7211028110x y x y -+=⎧⎨+-=⎩13.如图,把,,AB CD EF 三根木条钉在一起,使之可以在连接点M ,N 处自由旋转,若150∠=︒,260∠=︒,则如何旋转木条AB 才能使它与木条CD 平行.小明说:把木条AB 绕点M 逆时针旋转10°;小刚说:把木条AB 绕点M 顺时针旋转170°.以下说法正确的是()A .小明的操作正确,小刚的操作错误B .小明的操作错误,小刚的操作正确C .小明和小刚的操作都正确D .小明和小刚的操作都错误14.甲种细胞的直径用科学记数法表示为6110a -⨯,乙种细胞的直径用科学记数法表示为6210a -⨯,若甲、乙两种细胞的直径差用科学记数法表示为310n a ⨯,则n 的值为()A .-5B .-5或-6C .-6D .-6或-7二、填空题15.如图,已知OM a P ,ON a P ,所以点O M N 、、三点共线的理由__________.16.计算:20212020122⎛⎫⨯-= ⎪⎝⎭_________.17.小轩计算一道整式乘法的题:()()54x m x +-,由于小轩将第一个多项式中的“m +”抄成“m -”,得到的结果为253424x x -+.(1)m =___________;(2)这道题的正确结果是_____________.三、解答题18.化简:()25312632x x x x x ⋅+--÷.19.解方程组:310522x y x y -=⎧⎨+=⎩.20.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O .(1)若35EOC ∠=︒,求AOD ∠的度数;(2)若2BOC AOC ∠=∠,求DOE ∠的度数.21.(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:_________.方法2:_________.(2)从中你能发现什么结论?请用等式表示出来:_________.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a 、b ,如果a +b =10,ab =24,求阴影部分的面积.22.在化简()()()2111x x x +-+-●◆题目中,表示+,-,⨯,÷四个运算符号中的某一个,◆表示二次项的系数.(1)若●表示“⨯”;①把◆猜成1时,请化简()()()2111x x x +-+-;②若结果是一个常数,请说明◆表示的数是几?(2)若◆表示数2-,当1x =时,()()()21121x x x +-+--●的值为1-,请推算●所表示的符号.23.如图,//AB CD ,C 在D 的右侧,BE 平分ABC ∠,DE 平分ADC ∠,,BE DE 所在直线交于点E ,80ADC ∠=︒.(1)若50ABC ∠=︒,求BED ∠的度数;(2)将线段BC 沿DC 方向平移,使得点B 在点A 的右侧,其他条件不变,若120ABC ∠=︒,求BED ∠的度数.24.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法,请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料根;方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1根.(2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.参考答案1.D【解析】根据负整数指数幂的运算法则计算.【详解】解:由负整数指数幂的运算法则可知:1166-=,故选D.【点睛】本题考查负指数指数幂的运算,熟练掌握负整数指数幂的运算法则是解题关键.2.A【解析】【分析】利用平移前后图形的形状和大小完全相同对各选项进行判断.【详解】解:A、平移左边三角形能与右边三角形重合,故A符合题意;B、平移左边三角形不能与右边三角形重合,故B不符合题意;C、平移左边三角形不能与右边三角形重合,故C不符合题意;D、平移左边三角形不能与右边三角形重合,故D不符合题意;故选:A.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.3.A【解析】同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:∵•aaa a a a⋯个=,∴22•aaa a a a⎛⎫⋯⋯=⎪⎪⎝⎭个.故选:A.【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.4.B【解析】【分析】根据对顶角、同位角、余角、垂直的定义逐项判断即可得.【详解】A、对顶角相等,此项是真命题,不符题意;B、两直线平行,同位角相等,此项是假命题,符合题意;C、同角的余角相等,此项是真命题,不符题意;D、过直线外一点有且只有一条直线与已知直线垂直,此项是真命题,不符题意;故选:B.【点睛】本题考查了对顶角、同位角、余角、垂直的定义,熟练掌握各概念是解题关键.5.A【解析】【分析】首先要理解题意,根据文字表述x与y的差的2倍等于9列出方程即可.【详解】解:由文字表述列方程得,2(x-y)=9.故选:A.【点睛】本题考查由实际问题抽象出二元一次方程,比较简单,注意审清题意即可.6.C【解析】【分析】用2ab2除以ab即可.【详解】2ab2÷ab=2b.故选C.【点睛】本题考查了单项式的除法,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.7.C【解析】【分析】把方程2x-y-3=0看作关于y的一元一次方程,然后解一次方程即可.【详解】解:解关于y的方程2x-y-3=0,得y=2x-3.故选:C.【点睛】本题考查了解二元一次方程:二元一次方程可看作是关于某一个未知数的一元一次方程,即可以用一个未知数表示另一个未知数.8.B【解析】【分析】根据点到直线的距离、平行线的判定与性质逐个判断即可得.【详解】1BA l ⊥ ,∴线段AB 的长是点B 到直线1l 的距离,即说法①正确;12,BA l BA l ⊥⊥ ,12//l l ∴,∴线段AB 的长是直线1l 、2l 之间的距离,即说法②正确;故选:B .【点睛】本题考查了点到直线的距离、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.9.C 【解析】【分析】将各选项中x 的值代入254x x ++进行计算即可得.【详解】A 、当1x =时,22541514100x x ++=+⨯+=>,此项不是反例,不符题意;B 、当0x =时,2254050440x x ++=+⨯+=>,此项不是反例,不符题意;C 、当3x =-时,()()2254353420x x ++=-+⨯-+=-<,此项是反例,符合题意;D 、当5x =-时,()()2254555440x x ++=-+⨯-+=>,此项不是反例,不符题意;故选:C .【点睛】本题考查了含乘方的有理数混合运算、命题,熟练掌握运算法则和命题的概念是解题关键.10.C 【解析】【分析】将两式相加,然后再利用方程组的解互为相反数即可建立一个关于k 的方程,解方程即可求出k 的值.【详解】23222x y k x y k +=-⎧⎨+=-⎩①②将两式相加得,332x y k +=-,∵方程组的解互为相反数,∴0x y +=,∴20k -=,∴2k =.故选:C .【点睛】本题主要考查根据方程组的解求参数,能够想到让两式相加出现x y +是解题的关键.11.A 【解析】【分析】原式去括号合并得到最简结果,即可作出判断.【详解】解:yz (xz +2)-2y (3xz 2+z +x )+5xyz 2=xyz 2+2yz -6xyz 2-2yz -2xy +5xyz 2=-2xy ,所以代数式的值只与x ,y 有关.故选:A .【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.12.C 【解析】【分析】根据“七捆上等稻子和两捆下等稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意得:7211028110x y x y +-=⎧⎨++=⎩.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.C 【解析】【分析】根据小明小刚的描述,两种操作的结果都能使∠1=60°,可得结果.【详解】解:根据小明的操作,把木条AB 绕点M 逆时针旋转10°,则1260∠=∠=︒,根据同位角相等,两直线平行,故//AB CD ;根据小刚的操作,如解图,把木条AB 绕点M 顺时针旋转170°,则60AMF ∠=︒,即2AMF ∠=∠.同理可得,//AB CD .因此,小明和小刚的操作都正确.故选C.【点睛】本题考查了平行线的判定,同位角相等,两直线平行.错因分析容易题.失分的原因是:1.没有掌握平行线的判定,其中同位角或内错角相等、同旁内角互补,两直线平行.2.没有掌握旋转的基本性质.14.D 【解析】分1212119a a a a -<≤-<,两种情况讨论.【详解】解:∵12110110a a ≤<≤<,,∴1212999a a a a -<-<-<,,∴当1201a a <-<时,121101010a a <-<,a 1×10−6-a 2×10−6=(10a 1-10a 2)×10-7,n =-7;当1219a a ≤-<时,a 1×10−6-a 2×10−6=(a 1-a 2)×10-6,n =-6;故选D .【点睛】本题考查科学记数法的应用,熟练掌握科学记数法的意义和法则是解题关键.15.平行公理的推论【解析】【分析】根据平行公理的推论即可得.【详解】平行公理的推论:平行于同一条直线的两条直线互相平行//,//OM a ON a//OM ON∴则点O M N 、、三点共线故答案为:平行公理的推论.【点睛】本题考查了平行公理的推论,熟记平行公理的推论是解题关键.16.12-【解析】【分析】根据积的乘方和同底数幂的乘法法则计算即可.【详解】解:20212020122⎛⎫⨯- ⎪⎝⎭=2020202011222⎛⎫⎛⎫⨯-⨯- ⎪ ⎝⎭⎝⎭=202011222⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=()2020112⎛⎫-⨯- ⎪⎝⎭=12-故答案为:12-.【点睛】本题考查了积的乘方和同底数幂的乘法,解题的关键是灵活运用运算法则.17.6252624x x +-【解析】【分析】(1)根据整式乘法的运算法则即可得;(2)将m 的值代入,根据整式乘法的运算法则即可得.【详解】(1)由题意,()()22545(45)453424x m x x m x m x x --=-++=-+,则有424m =,解得6m =;(2)()()2654543024x x x x x +-=-+-,252624x x =+-,故答案为:6,252624x x +-.【点睛】本题考查了整式乘法,熟练掌握运算法则是解题关键.18.66x 【解析】【分析】直接利用同底数幂的乘法,除法,积的乘方,幂的乘方计算化简即可.【详解】解:原式=66634x x x +-=66x 【点睛】本题主要考查整式的混合运算,熟练掌握同底数幂的乘除法,幂的乘方,积的乘方的运算法则是解题的关键.19.24x y =⎧⎨=-⎩【解析】【分析】①×2+②得出11x =22,求出x ,把x =2代入①求出y 即可.【详解】解:310522x y x y -=⎧⎨+=⎩①②,①×2+②得:11x =22,解得:x =2,把x =2代入①得:6﹣y =10,解得:y =﹣4,所以方程组的解是:24x y =⎧⎨=-⎩.【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.20.(1)125°;(2)150°【解析】【分析】(1)把COB ∠的度数计算出来,再根据对顶角的性质即可得到答案;(2)根据2BOC AOC ∠=∠,设AOC x ∠=,2BOC x ∠=得到60BOD AOC ∠=∠=︒,最后根据EO AB ⊥即可得到答案;【详解】解:(1)EO AB ⊥ ,90EOB ∴∠=︒,909035125COB EOC ∴∠=︒+∠=︒+︒=︒125AOD COB ∴∠=∠=︒;(2)2BOC AOC ∠=∠ ,∴设AOC x ∠=,2BOC x∠=又180BOC AOC ∠+∠=︒2180x x ∴+=︒,60x ∴=︒,60BOD AOC ∴∠=∠=︒,又EO AB ⊥ ,90EOB ∴∠=︒,6090150DOE BOD EOB ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查了对顶角的性质(对顶角相等)和邻补角的性质,熟练掌握邻补角的性质和对顶角的性质是解题的关键.21.(1)22a b +,()22a b ab +-;(2)()2222a b a b ab +=+-;(3)14【解析】【分析】(1)方法1:两个正方形面积之和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由ABD BGF ABCD CGFE S S S S S =+-- 阴影正方形正方形,化简成a b +,ab 的形式,再代入数据即可求阴影部分的面积.【详解】(1)由题意可得:方法1:22S a b =+阴影,方法2:()22S a b ab =+-阴影,故答案为:22a b +,()22a b ab +-;(2)()2222a b a b ab +=+-,故答案为:()2222a b a b ab +=+-;(3)ABD BGFABCD CGFE S S S S S =+-- 阴影正方形正方形()2221122a b a a b b =+--+()21322a b ab =+-,∵10a b +=,24ab =,21310241422S =⨯-⨯=阴影.【点睛】本题考查了完全平方公式的几何背景,用代数式表示图形的面积是本题的关键.22.(1)①222x -;②-1;(2)●为+或-【解析】【分析】(1)①利用平方差公式计算后,再合并同类项可得结果;②利用平方差公式计算后,再合并同类项可得结果为()212x +-◆,根据结果是一个常数,可得10+=◆,从而可得1=-◆(2)将1x =代入,由题意可得2031-=-●,即202=●,从而可得●为+或-【详解】解:(1)①()()()2111x x x +-+-2211x x =-+-222x =-②原式2211x x =-+-◆()212x =+-◆若结果是一个常数10∴+=◆1∴=-◆(2)1x = 原式2031=-=-●202∴=●∴●为+或-【点睛】本题(1)主要考查平方差公式的应用及合并同类项;(2)主要考查整式的混合运算,熟记运算法则是解决本题的关键23.(1)65°;(2)20°或160°【解析】【分析】1)作//EF AB ,如图1,利用角平分线的定义得到25ABE ∠=︒,40EDC ∠=︒,利用平行线的性质得到25BEF ABE ∠=∠=︒,40FED EDC ∠=∠=︒,从而得到BED ∠的度数;(2)作//EF AB ,如图2,利用角平分线的定义得到60ABE ∠=︒,40EDC ∠=︒,利用平行线的性质得到120BEF ∠=︒,40FED EDC ∠=∠=︒,从而得到BED ∠的度数;如图3,利用//AB CD 得到240∠=︒,然后根据三角形外角性质可计算出BED ∠.【详解】解:(1)作//EF AB ,如图1,BE 平分ABC ∠,DE 平分ADC ∠,1252ABE ABC ∴∠=∠=︒,1402EDC ADC ∠=∠=︒,//AB CD ,//EF CD ∴,25BEF ABE ∠=∠=︒ ,40FED EDC ∠=∠=︒,254065BED ∴∠=︒+︒=︒;(2)作//EF AB ,如图2,BE 平分ABC ∠,DE 平分ADC ∠,1602ABE ABC ∴∠=∠=︒,1402EDC ADC ∠=∠=︒,//AB CD ,//EF CD ∴,180120BEF ABE ∠=︒-∠=︒ ,40FED EDC ∠=∠=︒,12040160BED ∴∠=︒+︒=︒.如图3,BE 平分ABC ∠,DE 平分ADC ∠,11602ABC ∴∠==︒,1402EDC ADC ∠=∠=︒,//AB CD ,240∴∠=︒,12BED ∠=∠+∠ ,604020BED ∴∠=︒-︒=︒.如图4,BE 平分ABC ∠,DE 平分ADC ∠,1602ABE ABC ∴∠=∠=︒,12402ADC ∠=∠=︒,//AB CD ,160ABE ∴∠=∠=︒,3240∠=∠=︒ ,而12BED ∠=∠+∠,604020BED ∴∠=︒-︒=︒.综上所述,BED ∠的度数为20︒或160︒.【点睛】本题考查了平移的性质:解题的关键是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.也考查了平行线的性质.24.(1)4;(2)24;4;(3)方法①与方法③联合【解析】【分析】(1)由总数÷每份数=份数就可以直接得出结论;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此方程构成方程组求出其解即可.(3)分别设方法①裁剪m根,方法③裁剪n根6m长的钢管和设方法①裁剪a根,方法②裁剪b根6m长的钢管,建立方程组求出其解即可.【详解】(1)(6-2.5)÷0.8=4…0.3,最多裁成0.8米长的用料4根,故答案为:4;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得232, 4100, x yx y+=⎧⎨+=⎩解得:24,4. xy=⎧⎨=⎩答:用方法②剪24根,方法③裁剪4根6m长的钢管;(3)设方法①裁剪m根,方法③裁剪n根6m长的钢管,由题意,得7100, 232,m nn+=⎧⎨=⎩解得:1216 mn=⎧⎨=⎩∴m+n=2824428x y+=+=,m n x y∴+=+设方法①裁剪a根,方法②裁剪b根6m长的钢管,由题意,得74100,32,a bb+=⎧⎨=⎩解得:4,32,ab=-⎧⎨=⎩无意义,∴方法①与方法③联合,所需要6m长的钢管与(2)中根数相同.【点睛】本题考查了二元一次方程组的应用,二元一次方程组的解法的运用,解答时根据每份数×份数=总数建立方程是关键,注意分类讨论思想的运用.。
昆一中西山学校2020-2021学年度上学期期中考试七年级数学试卷(全卷三个大题,共23小题,共4页;满分100分,考试用时 120分钟)一、填空题(每小题3分,满分18分.请考生用黑色碳素笔将答案写在答题卡相应题号后的横线上) 1. -2的倒数是2. 若x=-2是方程kx+k=5的解,则k=3. 数轴上的点M 在原点的右侧距原点6个单位长度,将点M 向左移动8个单位长度至点N,则点N 表示的数是4. 已知6a m b n 与-37a 3b 2n+1是同类项,则-n m =5. 若x=l 时,代数式ax 3+bx+7的值为3,则当x=-1时,ax 3+bx+7的值为6. 如右图,一只青蛙在圆周上标有数的五个点上跳,若它停在负数点上, 则下一次沿顺时针方向跳两个点;若停在正数点上,则下一次沿逆时针 方向跳一个点,若青蛙从数-3对应的点开始跳,第1次跳到数-5对应的点,如此,则经2022次跳后它停的点所对应的数为 第6题图二、选择题(每小题3分,满分24分.在每小题给出的四个选项中,只有一项是正确的;每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号的小框涂黑) 7. 下列各对数中,是互为相反数的是(. )A.3与 13 B.-3与 13 C. 32 与 -1.5. D.4与-58. 2019年10月1日上午,庆祝中华人民共和国成立70周年大会在首都北京天安门广场举行,国庆70年阅兵分列式规模史上最大,共1.5万人参阅,阅兵编59个方(梯)队和联合军乐团,各型飞机160余架,装备580台(套),是近几次阅兵中规模最大的一次。
这一天参与的群众约19万人,即约190000人,用科学记数法表示为( )人,A.0.19x106B.1.9x105C.19x104D.1.9x106 9. 下列运算结果正确的是A. 5x-x=4B. 2x 2+2x 3=4x 5C.-n 2-n 2=2n 2.D.a 2b-ab 2=0 10. 下列说法中,正确的是A. 2x−2和x2和是整式 B. 单项式子34πa 2的系数是34,次数是三次 C. 式2x+35的常数项是3 D. 多项式x 4-1是四次二项式,它的次数为四次11.下列等式的变形,正确的是A. 若a 2=5a 则a=5B. 若a=b ,则ax−3 = bx−3 C. 若ab =cd (b ≠0,d ≠0),则a=c ,b=d D. 若x+y=2y ,则x=y12.如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是A. 162B. 154C. 98D. 70 第12题图13.对于两个不相等的有理数a ,b ,我们规定符号max{a ,b}表示a ,b 两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程 max{x ,-x}=3x-2的解为A.1 2B. 1C. 1或12D. 12或5614.已知数a ,b ,c 的大小关系如图,下列说法:① ab+ac>8:② -a-b+c<0 ③a |a |+b |b|+c|c|=−1 ④|a-b|+|c+b|-|a-c|=-2b ;⑤若x 为数轴上任意一个数a.b, 则|x-b|+|x-a|的最小值为a-b.其中正确结论的个数是A. 1B. 2C. 3D. 4第14题图三、解答题(共9题,满分58分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(本小题满分12分)计算:(1) 9-(-8)+(-18) (2) 5×(-12)÷(-4) ×(-113) (3) ( 79−14 -518) × 36 (4)-32+(5-0.52×42)+(-1.5)16.(本小题满分6分)化简: (1) 4a 2+3b 2+2ab-4a 2-4b 2(2)2(x 2+ xy -5 ) - 4 ( 2x 2- xy) 17.(本小题满分6分)解方程: (1) 3x+7 = 27 - 2x; (2)1−x 3-x−26=118.(本小题满分5分)先化简,再求值:3xy 2-[ xy- 2 ( 2x - 32x 2y )+2xy 2 ] + 3x 2y, 其中x=-2,y=- 1219.(本小题满分5分)如表有六张卡片,卡片正面分别写有六个数字,背面分别写有六个字母.(1)画数轴并在数轴上表示出卡片正面的数:(2)将卡片正面的数由大到小排列,然后将卡片翻转,卡片上的字母组成的是20. (本小题满分5分)某窗户的形状如图所示(图中长度单位:米),其中上部是半径为y 米的半圆形,下部是宽为52 y 米的长方形,计算:(1)求窗户的面积;(2)求窗框的总长(注:窗框的总长为图中所有线条的总长)(3)若窗户上安装的玻璃每平方米20元,窗框料每米4元, 第20题图窗框厚度不计,求安装这种窗户的总费用)21.(本小陋满分 5分)昆明市地铁3号线,西起西山公园站,东至东部汽车客运站,2017年8月29日开通运营,是沟通昆明市主城区东西的骨干线路,其中部分站点如图所示,某天,小红从西部客运站这一站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束,约定向东为正,当天的乘车记录如下(单位:站)+3,-2,+5,-6,+4,-7,+8,-2(1)请通过计算说明A 站是哪一站?(2)若相邻两站之间的距离为1.5千米,求这次小红志愿服务期间乘坐地铁行的路程是多少千米? 22.(本小题满分6分)观察算式:1x3+1=4=22;2x4+1=9=32;3x5+1=16=42(1)请根据你发现的规律填空:8x10+1=(2)用含n 的等式表示上面的规律:(3)用找到的规律计算;(1+11×3) (1+12×4) (1+13×5) (1+14×6)… (1+114×16)23.(本小题满分8分)已知:a 是最大的负整数,且a 、b 满足|c-7|+(2a+b )2=0,请回答问题: (1)请直接写出a 、b 、c 的值:a = ; b = ; C =(2)数a 、b 、c 所对应的点分别为A 、B 、C ,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,试计算此时BC -AB 的值. (3)在 (1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t 秒钟时,请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由:若不变,请求其值,第23题图。
2017-2018学年冀教版七年级(下)期中检测数学试卷一、选择题:本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)点P(﹣1,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x>5 B.x≥5 C.x ≠5 D.x≥03.(3分)下列各式中正确的是()A.=±4 B.=4 C.=3 D.=4.(3分)点M(4,2)关于x轴对称的点的坐标是()A.(4,﹣2)B.(﹣4,2)C.(﹣4,﹣2)D.(2,4)5.(3分)如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100°C.110°D.130°6.(3分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=∠4 B.∠B=∠DCE C.∠1=∠2 D.∠D+∠DAB=180°7.(3分)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣7)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,﹣4)D.(﹣9,﹣4)8.(3分)如图,把一块直角形的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()A.65°B.55° C.60°D.35°9.(3分)下列命题不正确的是()A.相等的角是对顶角B.平移前后图形的形状和大小都没有发生改变C.两条平行线被第三条直线所截,同旁内角互补D.在同一平面内,过直线外一点有且只有一条直线与该直线平行10.(3分)估计+1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间11.(3分)下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算(+)=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A.1个B.2个C.3个 D.4个12.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在题中横线上。
2020-2021学年度七年级(上)期中数学试卷1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是( )A. 6.75×103B. 67.5×103C. 6.75×104D. 6.75×1052.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“神”相对的面上的汉字是( )A. 太B. 空C. 漫D. 步3.多项式52x2−2x+1的次数是( )A. 4B. 3C. 2D. 14.如果|a|=|b|,那么a与b的关系是( )A. 相等B. 互为相反数C. 都是零D. 相等或互为相反数5.下列各组中的两项属于同类项的是( )A. 52x2y与−32xy3 B. −8a2b与5a2cC. 14pq与−52qp D. 19abc与−28ab6.如图是从一个几何体的上面看到的图形,其中数字代表几何体的高度,那么从这个几何体左面看到的图形是( )A. B. C. D.7.下列结果运算为负值的是( )A. (−7)×(−67) B. (−213)+52C. 0×(−2)D. 6÷(−15)8.一个直角三角形的三条边分别为3、4、5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是( )A. 12πB. 16πC. 12π或16πD. 36π或48π9.将半圆绕它的直径旋转一周形成的几何体是______ .10.若火箭发射点火前5秒记为−5秒,那么火箭发射点火后10秒应记为______ .11.在式子:−8、−6mn7、2a2+3a−1、3b2a、0中,单项式有______ 个.12.用一个平面去截下列几何体:①正方体;②圆柱;③长方体;④四棱柱.截面可能是三角形的有______.(填写序号)13.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是______ .14.由一些大小相同的小正方体组成一个几何体,从正面看和从上面看的形状图如图所示,那么组成该几何体所需小正方体的个数最少为______ .15.化简−1−(2a−1)的结果是______ .16.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b−a|+|c−a|−|c−b|=______ .17.(1)32.54+(−5.4)+(−12.54)−(−5.4)(2)(−56+38)÷(−124)(3)18+6÷(−2)×(−1 3 )(4)−14−23÷(−4)3−(14−18)(5)化简:3a+2b−5a−b(6)化简:−(b−4)+4(−b−3)(7)化简,求值:2(a2b+ab2)−2(a2b−1)−3ab2+2,其中a=−2,b=2.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.19.某品牌的太阳能热水器在夏季的一天中午12点时水的温度是53℃,下午每小时下降0.8℃,求18点时水的温度.(列式计算)20.今年“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人):日期1日2日3日4日5日6日7日人数变化+1.8+0.8+0.2−0.4−0.8+0.2−1.0(1)若9月30日的游客人数为0.3万人,求10月5日的游客人数;(列式计算)(2)七天内游客人数最多的是______ 日,最少的是______ 日;(3)若以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况.21.某公园的成人票价每张50元,儿童票价每张30元;甲旅游团有a名成人和b名儿童,乙旅游团的成。
北师大版2020-2021学年度第一学期七年级数学期中模拟基础测试题(附答案详解)1.下列各数中,比-1小的数是( )A .0B .0.5C .-0.5D .-22.泰州某部门统计今年初三毕业的人数大约为3.14万人,那么该部门统计时精确到了( )A .百分位B .万位C .十分位D .百位3.数轴上点A ,B ,M 表示的数分别是a ,2a ,9,点M 为线段AB 的中点,则a 的值是( )A .3 B .4.5 C .6 D .184.下列运算正确的是( )A .x y xy +=B .22254x y x y x y -=C .23534x x x +=D .33523x x -=5.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )A .236πB .136πC .132πD .120π6.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如图,如果将两地国际标准时间的差简称为时差,那么( )A .首尔与纽约的时差为13小时B .北京与多伦多的时差为14小时C .北京与纽约的时差为14小时D .首尔与多伦多的时差为13小时7.有以下五个结论:①按2:1画出的图形是放大后的图形;②假分数的倒数一定都是真分数;③如果底完全重合且高相等的圆锥和圆柱,那么圆锥的体积等于圆柱体积的13;④一件商品进价600元,商场先提价10%,再降价10%,商场不赔不赚;⑤工程队修一条水渠,每天工作6小时,12天可以完成,如果工作效率不变,每天工作8小时,9天可以完成任务.其中结论正确的个数是( )A .2个B .3个C .4个D .5个8.数轴上点M 到原点的距离是5,则点M 表示的数是( )A .5B .-5C .5或-5D .不能确定 9.如图,是把圆柱体沿上面的直径截去一部分后剩下的物体图形,它的俯视图是( )A .B .C .D . 10.若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( )A .120B .-120C .0D .1811.整式x 2-3x 的值是7,则3x 2-9x -5的值是__________ .12.在下列括号内填上适当的数:(______)-(+12)=-13; (______)-(-0.05)=10.13.,0.76和68%这三个数中最大的数是 ,最小的数是 。
2020学年第一学期阶段性抽测七年级数学(问卷)(无答案)本试卷分选择题和非选择题两部分,共三大题24小题,共6页,满分120分,考试用时100分钟注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签宇笔填写镇(街)、学校、试室号、姓名、座位号及准考证号等自己的个人信息,再用2B铅笔把对应准考证号的标号涂黑2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需要改动,用橡皮擦干净后,再选涂其他答案不能答在试卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图答案必须写在答题卡各题目指定区域的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能趯出指定的区域;不准使用铅笔、圆珠笔和涂改液不按以上要求作答的答案无效4.考生必须保持答题卡的整洁,考试结束后,将答题卡上交第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步,那么向南走5步记作()(A)+5步 (B)-5步 (C)-3步 (D)-2步2.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是(※)(A)(C)(D)3.在-3、-2、0、1中,最小的一个数是(※)(A)-3 (B)-2 (C)0 (D)14.“001号议案”提出三年后,广州目前污水处理能力达到了760000吨/日,位居全国第二,将7660000用科学记数法表示为(※)(A)7.66×104 (B)7.66×105 (C )76.6×105 (D)7.66×106 5.已知a=-2,b=1,则a b +-的值为(※)(A)3 (B)1 (C)0 (D)-1 6.下列运算中正确的是(※)(A)a 3+a 3=a 6 (B)a 3+a 3=2a 3 (C)a 3+a 3=2a 6 (D)a 3+a 3=a 9 7.下列变形中,正确的是(※)(A)-(3x+2)=-3x+2 (B)-(3x-2)=3x+2 (C)-(3x-2)=-3x+2 (D)-(3x-2)=-3x-2 8.下列说法错误的是(※)(A)2x 2-3xy-1是二次三项式 (B)-x+1不是单项式(C) 23π-xy 2的系数是23π- (D)-22xab 2的次数是69.已知a,b 是有理数,满足a<0<b,a+b>0,则把a,-a,b,-b 按照从小到大的顺序排列,正确的是(※)(A) -b<-a<a<b (B)-b<a<-a<b (C) -a<-b<a<b (D) a<-b<b<-a 10.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2020次后,点B(※)(A)不对应任何数 (B)对应的数是2018 (C)对应的数是2019 (D)对应的数是2020+0.9 g-0.36 g-0.8 g+2.5 g第10题图第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,共18分)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为 ※ ℃ 12.用四舍五入法将3.1416精确到0.01后,得到的近似数是※13在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是 ※14.若单项式3x 2y n 与-2x m y 3是同类项,则m+n= ※ 15.若代数式2y 2-y+1=3,那么代数式4y 2-2y+5的值为 ※16.根据下图所示的程序运算,若输入的x 值为1,则输出的结果为 ※第16题图三、解答题(本大题共8小题,满分72分.解答应写出文字说明、证明过程或演算步骤17.(本小题满分6分) 计算:(1)12-(-8)+(-7)+10(2) ()10011543⎛⎫-⨯--÷- ⎪⎝⎭18.(本小题满分6分)把下列各数分别填入相应的集合里:15, 12-,-5,2.333,0.1,0(1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }19.(本小题满分8分)化简:8a2+4-2a2-5a-a2-5+7a20.(本小题满分8分)辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼。
2020-2021学年浙江省湖州五中七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个是正确的)1.2的绝对值是()A.﹣2B.﹣C.D.22.下列实数中,无理数是()A.B.﹣0.2C.0D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.在0,2,﹣,﹣2四个数中,最小的数是()A.0B.2C.﹣D.﹣25.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A.﹣5℃B.﹣6℃C.﹣7℃D.﹣8℃6.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)7.设a为正整数,且a<<a+1,则a的值为()A.5B.6C.7D.88.近似数35.04万精确到()A.百位B.百分位C.万位D.个位9.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a的多项式的值用f(a)来表示.例如x=﹣2时,多项式f(x)=﹣3x2+x的值记为f(﹣2),那么f(﹣2)的值等于()A.﹣10B.﹣14C.10D.410.世界著名的莱布尼兹三角形如图所示,其排在第9行从左边数第3个位置上的数是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.﹣3的相反数是.12.﹣的系数是,次数是.13.9的平方根是;若的平方根是±2,则a=.14.已知:(a+6)2+=0,则a+b的值为.15.由四舍五入得到的近似数83.50,它表示大于或等于,而小于的数.16.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2.那么:d(103)=.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).根据运算性质填空:①=,②若d(3)=0.48,则d(9)=,d(0.3)=.三、解答题(本题共8小题,共72分,解答应写出必要演算步骤,文字说明或证明过程)17.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…};负数{…}.18.计算:(1)(2﹣3)﹣(﹣4﹣1);(2)﹣5×(﹣)+13×(﹣)﹣3×(﹣);(3)(﹣2)2+|﹣1|﹣;(4)(﹣)×(﹣)÷(﹣2).19.如图,a、b两数在数轴上对应点的位置如图所示:(1)在数轴上标出﹣a、﹣b对应的点,并将a、b、﹣a、﹣b用“<”连接起来;(2)化简:|﹣a|﹣|b﹣2|.20.如图,在一个底为acm,高为hcm的三角形铁皮上剪去一个半径为rcm的半圆.(1)用含a,h,r的代数式表示剩下铁皮(阴影部分)的面积,并判断这个代数式是单项式还是多项式;(2)求当a=20,h=15,r=4时剩下的铁皮面积(π取3).21.若a是的整数部分,b是的小数部分,求代数式+(b+4)2的值.22.出租车司机李师傅从上午8:00~9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,+3(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8:00~9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8:00~9:15一共收入多少元?23.请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3=(4)计算:113+123+133+…+203的值.24、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于4与2之间,求|a+4|+|a﹣2|的值.(3)满足|a+1|+|a+4|>3的a的取值范围是.(4)已知数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n(把点A到点C的距离记为AC,点B到点C的距离记为BC),则称点C为点A,B的“n节点”.例如:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A,B的“4节点”.若点E在数轴上(不与A,B重合),满足BE=AE,且此时点E为点A,B的“n节点”,求n的值.2020-2021学年浙江省湖州五中七年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.2的绝对值是()A.﹣2B.﹣C.D.2【分析】直接利用绝对值的计算求出2的绝对值即可.【解答】解:因为2为正数,所以2的绝对值是它本身,所以2的绝对值为2,故选:D.2.下列实数中,无理数是()A.B.﹣0.2C.0D.【分析】根据无理数的定义,逐项判断即可.【解答】解:A、是有理数,故此选项不符合题意;B、﹣0.2是有理数,故此选项不符合题意;C、0是有理数,故此选项不符合题意;D、是无理数,故此选项符合题意.故选:D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.4.在0,2,﹣,﹣2四个数中,最小的数是()A.0B.2C.﹣D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵,∴在0,2,﹣,﹣2四个数中,最小的数是﹣2.故选:D.5.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A.﹣5℃B.﹣6℃C.﹣7℃D.﹣8℃【分析】根据题意列出算式进行计算即可.【解答】解:﹣7+11﹣9=﹣7+11+(﹣9)=﹣5.故选:A.6.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选:B.7.设a为正整数,且a<<a+1,则a的值为()A.5B.6C.7D.8【分析】根据题意得出接近的有理数,即可得出答案.【解答】解:∵,∴,∵a为正整数,且a<<a+1,∴a=6.故选:B.8.近似数35.04万精确到()A.百位B.百分位C.万位D.个位【分析】根据末尾数字是百位进行解答.【解答】解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.9.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a的多项式的值用f(a)来表示.例如x=﹣2时,多项式f(x)=﹣3x2+x的值记为f(﹣2),那么f(﹣2)的值等于()A.﹣10B.﹣14C.10D.4【分析】把x=﹣2代入多项式,计算求值即可.【解答】解:f(﹣2)=﹣3×(﹣2)2+(﹣2)=﹣12﹣2=﹣14.故选:B.10.世界著名的莱布尼兹三角形如图所示,其排在第9行从左边数第3个位置上的数是()A.B.C.D.【分析】根据图中的数据,可以发现每一行开始的数字特点和每个小三角形中的三个数字之间的关系,然后即可写出排在第9行从左边数第3个位置上的数.【解答】解:由图中的数据可得,每一行的第一个数字都是对应的这一行行数的倒数,每个小三角形中数字,都是左下角的数字与右下角的数字之和等于顶角的数字,故第9行的第一数字是,第二个数字是=,第三个数字是=,故选:D.二.填空题(共6小题)11.﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.12.﹣的系数是﹣,次数是3.【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:﹣的系数是:﹣,次数是:3.故答案为:﹣;3.13.9的平方根是±3;若的平方根是±2,则a=16.【分析】直接利用平方根的定义以及算术平方根的定义分析得出答案.【解答】解:9的平方根是:±3,∵4的平方根是:±2,∴=4,∴a=16,故答案为:±3,16.14.已知:(a+6)2+=0,则a+b的值为﹣3.【分析】根据非负数的性质列式求出a和b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+6=0,b﹣3=0,解得a=﹣6,b=3,所以,a+b=﹣6+3=﹣3.故答案为:﹣3.15.由四舍五入得到的近似数83.50,它表示大于或等于83.495,而小于83.505的数.【分析】利用近似数的精确度确定千分位上的数字.【解答】解:近似数83.50的前四位是83.49时,千分位上的数字应大于或等于5,而近似数83.50的前四位是83.50时,千分位上的数字应小于5,因而近似数83.50表示大于或等于83.495而小于83.505的数.故答案为:83.495;83.50516.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2.那么:d(103)=3.(2)劳格数有如下运算性质:若m,n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).根据运算性质填空:①=5,②若d(3)=0.48,则d(9)=0.96,d(0.3)=﹣0.52.【分析】(1)根据劳格数的定义,可求出答案;(2)【解答】解:(1)根据劳格数的定义,可知d(103)=3,故答案为:3;(2)①由劳格数的运算性质可得:d(25)=d(2)+d(2)+d(2)+d(2)+d(2)=5d(2),∴=5,②d(9)=d(3×3)=d(3)+d(3)=0.48+0.49=0.96,d(0.3)=d()=d(3)﹣d(10)=0.48﹣1=﹣0.52,故答案为:(1)3;(2)5;0.96;﹣0.52.三.解答题17.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…};负数{…}.【考点】实数.【答案】见试题解答内容【分析】直接利用整数以及分数、无理数和负数的定义得出答案.【解答】解:整数:﹣|﹣3|,0分数:,,﹣3.,无理数:,,1﹣,1.1010010001…负数:﹣|﹣3|,,﹣3.,1﹣.18.计算:(1)(2﹣3)﹣(﹣4﹣1);(2)﹣5×(﹣)+13×(﹣)﹣3×(﹣);(3)(﹣2)2+|﹣1|﹣;(4)(﹣)×(﹣)÷(﹣2).【考点】实数的运算.【专题】实数;运算能力.【答案】(1)4;(2)﹣11;(3);(4)﹣.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接提取公因式﹣,进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【解答】解:(1)(2﹣3)﹣(﹣4﹣1)=﹣1+5=4;(2)原式=(﹣)×(﹣5+13﹣3)=﹣×5=﹣11;(3)原式=4+﹣1﹣3=;(4)原式=﹣××=﹣.19.如图,a、b两数在数轴上对应点的位置如图所示:(1)在数轴上标出﹣a、﹣b对应的点,并将a、b、﹣a、﹣b用“<”连接起来;(2)化简:|﹣a|﹣|b﹣2|.【考点】数轴;绝对值;实数大小比较.【专题】线段、角、相交线与平行线;数感.【答案】(1)﹣b<a<﹣a<b;(2)﹣a+b﹣2.【分析】(1)先在数轴上表示出﹣a、﹣b的位置,再比较大小即可;(2)根据数轴得出a<0,b<2,a<b,再去掉绝对值符号即可.【解答】解:(1)在数轴上标出﹣a、﹣b对应的点,如图所示:由数轴上点的位置可得:﹣b<a<﹣a<b;(2)∵a<0,b<2,a<b,∴|﹣a|=﹣a,|b﹣2|=2﹣b,∴|﹣a|﹣|b﹣2|=﹣a+b﹣2.20.如图,在一个底为acm,高为hcm的三角形铁皮上剪去一个半径为rcm的半圆.(1)用含a,h,r的代数式表示剩下铁皮(阴影部分)的面积,并判断这个代数式是单项式还是多项式;(2)求当a=20,h=15,r=4时剩下的铁皮面积(π取3).【考点】列代数式;代数式求值;多项式.【专题】整式;运算能力.【答案】(1)ah﹣πr2,是多项式;(2)26.【分析】(1)先用代数式表示图中各个部分的面积,再根据各个部分面积之间的关系得出结果;(2)把a=20,h=5,r=4代入(1)中的代数式计算即可.【解答】解:(1)S阴影=S三角形﹣S半圆=ah﹣πr2,是多项式;(2)当a=20,h=5,r=4,π=3时,S阴影=ah﹣πr2=×20×5﹣×3×42=50﹣24=26.21.若a是的整数部分,b是的小数部分,求代数式+(b+4)2的值.【考点】估算无理数的大小;二次根式的性质与化简.【专题】实数;二次根式;数感;运算能力.【答案】21.【分析】估算的值,确定的整数部分a,的小数部分b,再代入计算即可.【解答】解:∵4<<5,∴的整数部分a=4,的小数部分b=﹣4,∴+(b+4)2=+(﹣4+4)2=4+17=21.22.出租车司机李师傅从上午8:00~9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,+3(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8:00~9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8:00~9:15一共收入多少元?【考点】正数和负数.【专题】应用题.【答案】见试题解答内容【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:(1)由题意得:向东为“+”,向西为“﹣”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(﹣6)+(+3)+(﹣7)+(+8)+(+4)+(﹣9)+(﹣4)+(+3)+(+3)=3(千米),所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是3千米;(2)上午8:00~9:15李师傅开车的距离是:|+8|+|﹣6|+|+3|+|﹣7|+|+8|+|+4|+|﹣9|+|﹣4|+|+3|+|+3|=55(千米),上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00~9:15李师傅开车的平均速度是:55÷1.25=44(千米/小时);(3)一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8﹣3)+(6﹣3)+(3﹣3)+(7﹣3)+(8﹣3)+(4﹣3)+(9﹣3)+(4﹣3)+(3﹣3)+(3﹣3)]×2=50(元).则李师傅在上午8:00~9:15一共收入:80+50=130(元).23.请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3=(4)计算:113+123+133+…+203的值.【考点】有理数的乘方.【专题】规律型.【答案】见试题解答内容【分析】根据已知一系列等式,得出一般性规律,计算即可得到结果.【解答】解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故答案为:(1)3025;(2)44100;(3);(4)4107524、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于4与2之间,求|a+4|+|a﹣2|的值.(3)满足|a+1|+|a+4|>3的a的取值范围是.(4)已知数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n(把点A到点C的距离记为AC,点B到点C的距离记为BC),则称点C为点A,B的“n节点”.例如:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A,B的“4节点”.若点E在数轴上(不与A,B重合),满足BE=AE,且此时点E为点A,B的“n节点”,求n的值.【考点】数轴;绝对值.【专题】数形结合;分类讨论;运算能力.【答案】(1)3,5,1或﹣5;(2)6;(3)a<﹣4或a>﹣1;(4)4或12.【分析】(1)根据数轴两点之间距离即可计算.(2)根据a的范围,即可去掉绝对值,然后合并计算.(3)根据数轴上距离的意义,先判断﹣1和﹣4之间的距离,即可找到a的取值范围.(4)进行分类讨论,便可找到满足题意得节点.从而求n的值.【解答】解:(1)数轴上表示4和1的两点之间的距离是4﹣1=3;表示﹣3和2两点之间的距离是2﹣(﹣3)=5;如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5;(2)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=a+4+2﹣a=6;(3)|a+1|就表示a到﹣1的距离,|a+4|就表示a到﹣4的距离,因﹣1和﹣4之间的距离为3,也就是说,只要a不取﹣1到﹣4这一段,其余的a都能使得不等式成立,则不等式的解集是:a<﹣4或a>﹣1;(4)分三种情况:①当点E在BA延长线上时,∵不能满足BE=AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.故答案为:(1)3,5,1或﹣5;(2)6;(3)a<﹣4或a>﹣1;(4)4或12.。
2017-2018学年冀教版七年级(下)期中检测数学试卷一、选择题(1-6每题2分;7-14每题3分,共36分)1.(2分)如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A. 1 B. 2 C. 3 D. 42.(2分)如图,已知AB∥CD,与∠1是同位角的角是()A. 2 B. 3 C. 4 D. 53.(2分)9的算术平方根是()A. 3 B.﹣3 C.9D.±34.(2分)在实数,﹣,﹣3.14,0,π中,无理数有()A.0个B.1个C.2个 D.3个5.(2分)在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)点P(﹣3,4)到y轴的距离是()A. 4 B. 3 C.﹣3 D. 57.(3分)若|2﹣a|+=0,则a+b的值是()A. 2 B.0 C. 1 D.﹣18.(3分)如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45° C.55°D.65°9.(3分)在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()A.(4,3)B.(﹣2,﹣1)C.(4,﹣1)D.(﹣2,3)10.(3分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个 D.1个11.(3分)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位12.(3分)如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°13.(3分)下列算式中错误的是()A.﹣=﹣0.9 B.=±C.±=±1.6 D.=﹣14.(3分)点M(﹣2,5)是由点N向上平移3个单位得到的,则点N的坐标为()A.(﹣2,2)B.(﹣5,5)C.(﹣2,8)D.(1,5)二、填空题(每题3分,共18分)15.(3分)的立方根是.16.(3分)点A(﹣3,2)关于y轴对称的点的坐标为,关于原点对称的点的坐标为.17.(3分)如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为度.18.(3分)已知点P(2n﹣3,2n)在x轴上,则n的值是.19.(3分)对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)=.20.(3分)如图:AD∥BC,∠DAC=60°,∠ACF=25°,∠EFC=145°,则直线EF与BC的位置关系是.三.解答题21.(6分)化简:.22.(8分)已知2x﹣y的平方根为±3,﹣2是y的立方根,求﹣4xy的平方根.23.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD 的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥()∴∠BAC+=180°()∵∠BAC=70°(已知)∴∠AGD=.24.(10分)如图,在平面直角坐标系中:(1)写出点A的坐标;(2)将线段OA向上平移2个单位,再向左平移2个单位,得到线段O′A′,写出点O,A的对应点O′,A′的坐标;(3)在图中画出平移后的线段.25.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.参考答案与试题解析一、选择题(1-6每题2分;7-14每题3分,共36分)1.(2分)如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A. 1 B. 2 C. 3 D. 4考点:平行线的判定.分析:根据平行线的判定定理求解,即可求得答案.解答:解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.点评:此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.2.(2分)如图,已知AB∥CD,与∠1是同位角的角是()A. 2 B. 3 C. 4 D. 5考点:同位角、内错角、同旁内角.分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角判断即可.解答:解:根据同位角的概念可知,∠1的同位角是∠5,故选:D.点评:本题考查的是同位角、内错角和同旁内角的概念,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(2分)9的算术平方根是()A. 3 B.﹣3 C.9D.±3考点:算术平方根.分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,即可求出结果.解答:解:9的算术平方根是3;故选A.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.4.(2分)在实数,﹣,﹣3.14,0,π中,无理数有()A.0个B.1个C.2个 D.3个考点:无理数.分析:根据无理数的三种形式找出无理数的个数.解答:解:无理数有:﹣,π,共2个.故选C.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.(2分)在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解答:解:因为点P(﹣1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选B.点评:解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.(2分)点P(﹣3,4)到y轴的距离是()A. 4 B. 3 C.﹣3 D. 5考点:点的坐标.分析:根据点到y轴的距离是点的横坐标的绝对值,可得答案.解答:解:点P(﹣3,4)到y轴的距离是3,故选:B.点评:本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.7.(3分)若|2﹣a|+=0,则a+b的值是()A. 2 B.0 C. 1 D.﹣1考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2﹣a=0,3+b=0,解得a=2,b=﹣3,所以,a+b=2+(﹣3)=﹣1.故选D.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(3分)如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45° C.55°D.65°考点:平行线的性质.分析:先求出∠3的度数,再根据平行线性质得出∠1=∠3,代入求出即可.解答:解:∵AB∥CD,∴∠1=∠3,∵∠2=135°,∴∠3=180°﹣135°=45°,∴∠1=45°,故选B.点评:本题考查了平行线性质和邻补角的应用,注意:两直线平行,内错角相等.9.(3分)在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()A.(4,3)B.(﹣2,﹣1)C.(4,﹣1)D.(﹣2,3)考点:坐标与图形变化-平移.分析:让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.解答:解:点A(2,1)向左平移4个单位长度,再向下平移2个单位长度,平移后点的横坐标为2﹣4=﹣2;纵坐标为1﹣2=﹣1;即新点的坐标为(﹣2,﹣1),故选B.点评:本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.10.(3分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个 D.1个考点:平行线的性质;余角和补角.专题:几何图形问题.分析:由互余的定义、平行线的性质,利用等量代换求解即可.解答:解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.点评:此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.11.(3分)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位考点:平移的性质.专题:压轴题.分析:根据平移的性质可知,图中DE与AB是对应线段,DE 是AB向右平移4个单位,再向上平移2个单位得到的.解答:解:由题意可知把△ABC向右平移4个单位,再向上平移2个单位得到△DEF.故选C.点评:本题主要考查了平移的性质,观察图象,分析对应线段作答.12.(3分)如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°考点:平行线的性质;三角形的外角性质.分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解答:解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选:A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.13.(3分)下列算式中错误的是()A.﹣=﹣0.9 B.=±C.±=±1.6 D.=﹣考点:算术平方根;平方根;立方根.专题:计算题.分析:原式利用平方根及立方根定义计算得到结果,即可做出判断.解答:解:A、原式=﹣0.9,正确;B、原式=,错误;C、原式=±1.6,正确;D、原式=﹣,正确,故选B点评:此题考查了算术平方根,平方根,以及立方根,熟练掌握各自的定义是解本题的关键.14.(3分)点M(﹣2,5)是由点N向上平移3个单位得到的,则点N的坐标为()A.(﹣2,2)B.(﹣5,5)C.(﹣2,8)D.(1,5)考点:坐标与图形变化-平移.分析:根据题意可得点N是由点M(﹣2,5)向下平移3个单位得到的,故纵坐标减去3,横坐标不变.解答:解:点M(﹣2,5)是由点N向上平移3个单位得到的.那么点N是由点M(﹣2,5)向下平移3个单位得到的,所以点N的坐标为(﹣2,2).故选:A.点评:此题主要考查了点的平移,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.二、填空题(每题3分,共18分)15.(3分)的立方根是2.考点:立方根;算术平方根.专题:计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.解答:解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故答案为:2.点评:本题主要考查了立方根的概念的运用.如果一个数x 的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.16.(3分)点A(﹣3,2)关于y轴对称的点的坐标为(3,2),关于原点对称的点的坐标为(3,﹣2).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的特点及关于原点对称的点的特点解答即可.解答:解:∵关于y轴对称的点的两点的横坐标互为相反数,纵坐标相同,∴点A(﹣3,2)关于y轴对称的点的坐标为(3,2),∵关于原点对称的两点的横纵坐标均互为相反数,∴点A(﹣3,2)关于原点对称的点的坐标为(3,﹣2).故答案为(3,2),(3,﹣2).点评:考查两点关于y轴对称及关于原点对称的知识;用到的知识点为:关于y轴对称的点的两点的横坐标互为相反数,纵坐标相同;关于原点对称的两点的横纵坐标均互为相反数.17.(3分)如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.解答:解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.点评:根据两直线平行同位角相等和三角形外角的性质解答.18.(3分)已知点P(2n﹣3,2n)在x轴上,则n的值是0.考点:点的坐标.分析:根据横轴上的点纵坐标为零可得2n=0,再解即可.解答:解:∵点P(2n﹣3,2n)在x轴上,∴2n=0,解得:n=0,故答案为:0.点评:此题主要考查了点的坐标,关键是掌握点的坐标特点.19.(3分)对于两个不相等的实数a、b,定义一种新的运算如下:,如:3*2==,那么7*(6*3)=.考点:算术平方根.专题:新定义.分析:求出6*3=1,再求出7*1即可.解答:解:∵6*3==1,∴7*1==,即7*(6*3)=,故答案为:.点评:本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.20.(3分)如图:AD∥BC,∠DAC=60°,∠ACF=25°,∠EFC=145°,则直线EF与BC的位置关系是平行.考点:平行线的判定与性质.分析:由平行可得到∠DAC=∠ACB,结合条件可求得∠FCB=35°,可得∠EFC+∠FCB=180°,可判定EF∥BC.解答:解:平行.∵AD∥BC,∴∠ACB=∠DAC=60°,∵∠ACF=25°,∴∠FCB=35°,∴∠EFC+∠FCB=145°+35°=180°,∴EF∥BC,故答案为:平行.点评:本题主要考查平行线的性质和判定,掌握两直线平行的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.三.解答题21.(6分)化简:.考点:实数的运算.专题:计算题.分析:原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:原式=﹣+﹣1﹣3+=2﹣4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)已知2x﹣y的平方根为±3,﹣2是y的立方根,求﹣4xy的平方根.考点:平方根;立方根.分析:根据立方根的定义求出y,再根据平方根的定义列方程求出x,然后求出﹣4xy,再利用平方根的定义解答.解答:解:∵﹣2是y的立方根,∴y=(﹣2)3=﹣8,∵2x﹣y的平方根为±3,∴2x﹣(﹣8)=9,解得x=,∴﹣4xy=﹣4××(﹣8)=16,∵(±4)2=16,∴﹣4xy的平方根±4.点评:本题考查了平方根的定义,立方根的定义,熟记概念是解题的关键.23.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD 的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=∠3()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥DG()∴∠BAC+∠AGD=180°()∵∠BAC=70°(已知)∴∠AGD=110°.考点:平行线的判定与性质.专题:推理填空题.分析:由EF与AD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与DG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.解答:解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.24.(10分)如图,在平面直角坐标系中:(1)写出点A的坐标;(2)将线段OA向上平移2个单位,再向左平移2个单位,得到线段O′A′,写出点O,A的对应点O′,A′的坐标;(3)在图中画出平移后的线段.考点:作图-平移变换.分析:(1)从坐标系中可以看出A(2,1);(2)将线段OA的两个顶点分别,向上平移两次,每次平移1个单位,再将线段向左平移2个单位,得到线段O′A′,利用“上加下减,左减右加”,可知对应点O′、A′的坐标是O′(﹣2,2)、A′(0,3);(3)根据题目要求作出图形即可.解答:解:(1)A(2,1),(2)O′(﹣2,2)、A′(0,3),(3)如图所示:点评:本题考查了作图﹣平移变换,用到的知识点为:图形的平移要归结为图形顶点的平移;求点的坐标应根据所在象限确定符号,根据距离原点的水平距离和竖直距离确定具体坐标或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.25.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.考点:平行线的判定与性质.分析:(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.解答:证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.点评:本题考查了平行线的性质和判定,三角形的内角和定理的应用,主要考查学生的推理能力和计算能力.。
冀教版2020-2021学年度第一学期七年级数学期中模拟测试题(附答案)一、单选题1.①0的相反数是0;②0的倒数是0;③一个数的绝对值不可能是负数;④−(−3.8)的相反数是3.8;⑤整数包括正整数和负整数;⑥0是最小的有理数.上述说法中,正确的有( ) A.1个B.2个C.3个D.4个2.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是()A.低B.碳C.环D.色3.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段AD的长是()A.6 B.2 C.8 D.44.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.⊥,5.如图,在同一平面内,将ABC绕点A旋转到AED的位置,若AE BC∠的度数为()∠=,则ABC65ADCA.30B.40C.50D.606.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为( )A.﹣7 B.﹣3 C.﹣5 D.57.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°8.下列说法正确的是()A.射线AB和射线BA表示的是同一条射线B.直线AB和直线BA表示的是两条直线C.线段AB和线段BA表示的是同一条线段D.如图,点M在直线AB上,则点M在射线AB上9.-313,π,3.3的绝对值的大小关系是()A.1-33>|π|>|3.3|B.1-33>|3.3|>|π|C.|π|>1-33>|3.3|D.|π|>|3.3|>1-3310.对于四舍五入得到的近似数41.8110,下列说法正确的是()A.精确到百位B.精确到个位C.精确到万位D.精确到百分位二、填空题11.如图,已知∠AOB=75°,∠COD=35°,∠COD在∠AOB的内部绕着点O旋转(OC 与OA不重合,OD与OB不重合),若OE为∠AOC的角平分线.则2∠BOE-∠BOD 的值为______.12.-(-2017)的相反数是__.13.如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字,电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈.现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2011次后,落在一个圆圈中,该圆圈所标的数字是__________.14.宇宙间光的速度是340000000米/秒,用科学记数法表示为________.15.若|x|=9,则x=_____.16.一个叫巴尔末的瑞士中学教师成功地从光谱数据,,,,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n≥1)个光谱数据是 __▲____.17.无锡地铁三号线一期运营长度约为28500米,这个数据用科学记数法可表示为____米.18.图为44⨯的方格,每个小方格长度为1,点A 位置如图所示,请用方位法(方向和距离)表示点A 在点O 的__________.19.a 、b 在数轴上得位置如图所示,化简:2a b b a +--=________.20.已知当1x =时,代数式535ax bx cx +++的值为-5,那么当1x =-时,代数式53ax +bx +cx+5的值为_______.三、解答题21.把下列各数填入相应的大括号里:-7 ,-0.5 ,- 13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …};非负整数集合:{ …};正分数集合:{ …};负分数集合:{ …}.22.如图,将两块直角三角板的直角顶点C 叠放在一起.(1)若∠DCE =30°,求∠ACB 的度数;(2)试判断∠ACE 与∠BCD 的大小关系,并说明理由;(3)猜想∠ACB 与∠DCE 的数量关系,并说明理由.23.在矩形ABCD 中,AB =1,BC =2,对角线AC 、BD 相交于点O ,点A 绕点O 按顺时针方向旋转到A ′,旋转角为α(0°<α<∠AOD ).(1)如图①,△AA ′C 是 三角形;(2)如图②,当∠α=60°,求AA ′长度; (3)如图③,当∠α=∠AOB 时,求证:A ′D ∥AC .24.如图,河边有 A,B 两个村庄,现准备在河边建一个水厂,建在何处才能使费用最省?(要 求:画出图形,在图上标出要建设的水厂点 P)25.先化简,再求值:(1)3c 2-8c+2c 3-13c 2+2c -2c 3+3,其中c=-4;(2)22222(3)2(2)a b ab a b ab a b -+---,其中1a =,2b =-.26.计算:(1)3112(3)(8)()43÷---⨯-+ (2)23113132[()]123283⎧⎫-÷--+⨯⎨⎬⎩⎭27.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位km)(1)这辆出租车第三次行驶完后在离出发点的方向;经过连续4次行驶后,这辆车所在的位置(结果用表示);(2)这辆出租车一共行驶了多少路程(结果用表示);当x=8时,出租车行驶的路程是多少 .28.出租车司机小李某天上午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,记录他这天上午的行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)小李将最后一名乘客送到目的地时,他距出发地有多远?在出发地的东边或西边?(2)若汽车耗油量为0.41升/千米,这天上午小李的出租车耗油多少升?29.操作探究:已知在纸面上有一数轴左右对折纸面,折痕所在的直线与数轴的交点为“对折中心点”.(1)操作一:左右对折纸面,使1对应的点与-1对应的点重合,则-3对应的点与_____对应的点重合;(2)操作二:左右对折纸面,使-1对应的点与3对应的点重合,回答以下问题:①对折中心点对应的数为__________,对折后5对应的点与数_________对应的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧),且A、B两点经折叠后重合,通过计算求A、B两点对应的数分别是多少?(3)操作三:已知数轴上的点A对应的数是a,点B对应的数是b,对折中心点C对应的数是c,此时点A与点B对折重合,那么a,b,c三数满足的关系式为__________.参考答案1.B【解析】【分析】根据题目中给出的信息,对错误的举出反例即可解答本题.【详解】①0的相反数是0是正确的;②0没有倒数,故选项错误;③一个数的绝对值不可能是负数是正确的;④−(−3.8)的相反数是−3.8,故选项错误;⑤整数包括正整数、0和负整数,故选项错误;⑥没有最小的有理数,故选项错误.故正确的有2个.故选:B.【点睛】此题考查有理数、相反数、绝对值、倒数,解题关键在于掌握有理数、相反数、绝对值、倒数的定义即可.2.B【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“保”字相对的面上的汉字是“碳”.故选:B.【点睛】本题考查了正方体的展开图形,熟练掌握是解题的关键.3.C【解析】试题解析:∵BC=AB-AC=4,点D是线段BC的中点,∴CD=DB=12BC=2,∴AD=AC+CD=6+2=8;故选C.4.A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5.B【解析】【分析】先根据旋转的性质得AD=AC,∠BAE=∠CAD,再根据等腰三角形的性质和三角形内角和计算出∠CAD=50°,则∠BAE=50°,然后利用互余计算∠ABC的度数.【详解】∵△ABC绕点A旋转到△AED的位置,∴AD=AC,∠BAE=∠CAD,∵AD=AC,∴∠ACD=∠ADC=65°,∴∠CAD=180°-65°-65°=50°,∴∠BAE=50°,∵AE⊥BC,∴∠ABC=90°-∠BAE=40°,故选B.【点睛】本题主要考查了旋转的性质,解决本题的关键是要熟练掌握旋转的性质.6.D【解析】【分析】由于x=﹣2<0,则把x=﹣2代入x2+1中计算即可.【详解】解:当x=﹣2,x2+1=4+1=5.故选D.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.7.B【解析】【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC 是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.8.C【解析】【分析】根据直线、线段及射线的定义及特点可判断各项,从而可得出答案.【详解】A、射线AB和射线BA表示的不是同一条射线,因为顶点不同,错误;B、直线AB和直线BA表示的是一条直线,错误;C、线段AB和线段BA表示的是同一条线段,正确;D、点M在直线AB上,则点M不在射线AB上,错误;故选C.【点睛】本题考查直线、线段及射线的知识,属于基础题,关键是掌握基本概念.9.B【解析】【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,首先求出各个数的绝对值,然后进行计较即可.【详解】根据题意可得:1-33=133≈3.333,|π|=π≈3.14,|3.3|=3.3,所以1-33>|3.3|>|π|.故选:B.【点睛】本题主要考查了绝对值的性质,是需要熟练掌握的内容.10.A【解析】【分析】根据近似数的精确度求解.【详解】近似数41.8110精确到百位.所以A选项是正确的.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 11.110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠AOC=2∠AOE,∵∠BOE=∠AOB-∠AOE,∴2∠BOE-∠BOD=2(∠AOB-∠AOE) -∠BOD=2∠AOB-2∠AOE -∠BOD=2∠AOB-∠AOC -∠BOD=2∠AOB-(∠AOC +∠BOD)=2∠AOB-(∠AOB -∠COD)=∠AOB+∠COD=75°+35°=110°.故答案为:110°.【点睛】本题考查了角平分线的有关计算,以及角的和差,结合图形找出不同角之间的数量关系是解答本题的关键.12.-2017【解析】试题解析:∵-(-2017)=20172017的相反数是-2017.故-(-2017)的相反数是-2017.13.1.【解析】试题解析:本题的关键是要找出12个数一循环,然后再求2011被12整除后余数是多少来决定是哪个数.若余数为0,圆圈所标的数字是0;若余数为1,圆圈所标的数字是11;若余数为2,圆圈所标的数字是10;若余数为3,圆圈所标的数字是9;…;若余数为11,圆圈所标的数字是1.考点:规律型:数字的变化类.14.3.4×108【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:340000000=3.4×108.故答案为3.4×108.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.15.±9【解析】根据绝对值的定义,当x>0或x<0,x=9都成立,故x为9或-9. 【详解】当x>0,则x=9,当x<0,则x=-9,故9x=±.【点睛】本题主要考查了绝对值的代数定义,正确理解其定义是解题的关键.16.2 2 (2)4 nn n ++【解析】要找分数的规律,首先观察分子:显然第n个数的分子是(n+2)2;再观察分母:分母正好比分子小4.因此可求得第n个式子为:2222(2)(2) (2)44n nn n n++=+-+.17.2.85×104【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】28500米=2.85×104米.故答案为:2.85×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.45°【解析】OA=OA为正方形的对角线,∴角度45=︒.19.3a b-+【分析】通过数轴可以得出a>0,b<0,|a|<|b|,从而可以去掉绝对值符号,再去括号后合并同类项就可以了.【详解】通过数轴可以得出结论:a>0,b<0,且|a|<|b|,则原式=−(a+b)−2(a−b)=−a−b−2a+2b=−3a+b,故答案为−3a+b.【点睛】本题考查的是数轴和绝对值的综合应用,熟练掌握整式加减是解题的关键.20.15【解析】【分析】把x=1代入代数式得到a+b+c =-10,把x=-1代入代数式得到-a-b-c+5=-(a+b+c)+5,由a+b+c =-10即可求解.【详解】解:由题知,当x=1时,原式= a+b+c-5=-5,∴a+b+c =-10,当x=-1时,原式-a-b-c+5=-(a+b+c)+5=-(-10)+5=15.故答案为15.【点睛】本题主要考查代数式的求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先把x的值代入代数式,从题设中获取代数式-243a-27b-3c的值,然后利用“整体代入法”求代数式的值.21.-7;0,2018; 8.7; -0.5, - 13,-98%.【解析】【分析】根据实数的分类和性质进行判断即可.解:负整数集合: { -7, …};非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13,-98% ,…}.【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.22.(1)∠ACB=150°;(2)∠ACE=∠BCD,理由见解析;(3)∠ACB+∠DCE=180°,理由见解析【解析】【分析】(1)首先求出∠ACE,然后根据∠BCE=90°可得答案;(2)利用“同角的余角相等”得出结论;(3)根据角之间的关系,得出∠ACB与∠DCE的和等于两个直角的和,进而得出∠ACB+∠DCE=180°的结论.【详解】解:(1)∵∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=60°+90°=150°;(2)∠ACE=∠BCD,理由:∵∠ACD=∠BCE=90°,即∠ACE+∠ECD=∠BCD+∠ECD=90°,∴∠ACE=∠BCD;(3)∠ACB+∠DCE=180°,理由:∵∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE,且∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=90°+90°=180°.【点睛】本题考查互为余角、互为补角的意义,等量代换和恒等变形是得出结论的基本方法.23.(1)直角;(25;(3)详见解析.【解析】【分析】(1)根据矩形的性质和旋转的性质求得OA=OB=OC=OD=OA′,然后根据等腰三角形的性质得出∠OAA′=∠OA′A,∠OA′C=∠OCA′,进而得出∠CA′A=90°;(2)根据勾股定理求得AC,然后求得△AA′O是等边三角形,即可得出AA'的长;(3)根据旋转的性质和矩形的性质求得∠OAA′=∠OCD,AA′=CD,证得四边形A′ACD是等腰梯形,从而证得A′D∥AC.【详解】(1)解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵OA=OA′,∴OA′=OC,∴∠OAA′=∠OA′A,∠OA′C=∠OCA′,∴∠OA′C+∠OA′A=∠OCA′+∠OAA′,∴∠CA′A=90°,∴△AA′C是直角三角形,故答案为:直角;(2)解:∵AB=1,BC=2,∴AC2222125+=+AB BC5,∴OA=OA′∵∠α=60°,∴△AA′O是等边三角形,5;∴AA''=OA=(3)证明:∵∠α=∠AOB,OA=OB=OA′,∴AA′=AB,∠OAA′=∠OBA,∵四边形ABCD是矩形,∴∠OBA=∠OCD,AB=CD,∴∠OAA′=∠OCD,AA′=CD,∴四边形A′ACD是等腰梯形,∴A′D∥AC.【点睛】本题是四边形综合题目,考查了矩形的性质,旋转的性质,等腰三角形的判定和性质,等边三角形的判定与性质,等腰梯形的判定与性质、勾股定理的应用等,熟练运用旋转的性质是解题的关键.24.答案见解析【解析】【分析】根据两点之间线段最短解答.【详解】作A关于直线l的对称点A′,连结A′B,交直线l于点P,则点P就是所求的点.【点睛】本题考查了作图﹣﹣应用与设计作图.两点之间线段最短在解决实际问题中的灵活应用是考查重点.25.(1)﹣133;(2)﹣4.【解析】(1)原式合并同类项得到最简结果,把c的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:(1)原式=﹣10c 2﹣6c +3,当c=﹣4时,原式=﹣133;(2)原式=﹣a 2b+3ab 2﹣a 2b ﹣4ab 2+2a 2b=﹣ab 2,当a=1,b=﹣2时,原式=﹣4.26.(1)293-;(2)163. 【解析】【分析】(1)先计算乘除法,然后计算加减法即可;(2)先计算乘方,利用乘法分配律进行运算,然后计算除法运算,最后相减即可.【详解】解:(1)3112(3)(8)()43÷---⨯-+=1463--+=1103-+=293-; (2)23113132[()]123283⎧⎫-÷--+⨯⎨⎬⎩⎭=101314[]123883⎧⎫-÷--+⨯⎨⎬⎩⎭=912034432⎧⎫-÷--+⎨⎬⎩⎭=104(2)3-÷- =1023+ =163. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则进行运算.27.(1)正东;(182x -)km ;(2)(9162x -)km ;20km ; 【解析】【分析】(1)将前三次加起来判断其正负即可判断方向;将四次加起来即可.(2)求路程需要将代数的绝对值加起来;代入式子即可.【详解】(1)将前三次的和加起来:134422x x x x -+-=- ∵x >6且x <14 ∴3402x -> ∴第三次行驶完在离出发点的正东方向; 将四次的和加起来:()11426822x x x x x -+-+-=- 经过连续4次行驶后,这辆车所在的位置为:(182x -)km (2)出租车共行驶的路程为:()19|||||4||26|1622x x x x x +-+-+-=- 这辆出租车一共行驶了(9162x -)km 当x=8时,原式=36-16=20km【点睛】本题考查正负意义的应用,关键在于对式子正负的判断.28.(1)小李距出发地39千米,在出发地的东边;(2)这天上午小李的出租车共耗油26.65升.【解析】【分析】(1)把所有行车记录相加,然后根据和的正负情况确定最后的位置;(2)求出所有行车记录的绝对值的和,再乘以0.41即可.【详解】(1)15+(-2)+5(-1)+10+(-3)+(-2)+12+4(-5)+6=39(千米)答:小李距出发地39千米,在出发地的东边;(2)(|15|+|-2|+|5|+1|-1|+|10|+|-3|+|-2|+|12|+|4|+|-5|+|6|)×0.41=26.65(升)答:这天上午小李的出租车共耗油26.65升.【点睛】此题考查了正数和负数,以及有理数加减法的应用,弄清题意是解本题的关键. 29.(1)3;(2)①1,-3,②-4.5,6.5;(3)a+b=2c【解析】【分析】(1)1与-1重合,可以发现1与-1互为相反数,因此-3表示的点与3表示的点重合;(2)①-1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数-3表示的点重合;②由①知折痕点为1,且A 、B 两点之间距离为11,则A 表示1-5.5=-4.5,B 点表示1+5.5=6.5.(3)根据题意得2a b c +=,从而可得结论. 【详解】解:(1)∵1与-1重合,∴折痕点为原点,∴-3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示-1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数-3表示的点重合.故答案为:1,-3.②由题意可得,A 、B 两点距离折痕点的距离为11÷2=5.5, ∵折痕点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(3)根据题意得2a b c +=, ∴2a b c +=.【点睛】题目考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.。