纳米二氧化钛光催化
- 格式:docx
- 大小:3.23 KB
- 文档页数:2
纳米TiO2及其光催化性质研究实验方案意义背景:纳米TiO2粉体技术是近二十年来发展起来的一项高新技术。
它通常是指颗粒尺寸在1 —100纳米的固体颗粒材料。
因其具有强烈的表面效应、体积效应、量子效应和宏观量子隧道效应等特性使其在声、光、电、磁、热等许多方面具有独特的性能。
纳米技术的悄然兴起,引起世界各国的广泛关注和重视。
纳米TiO2具有许多独特性质,如大的比表面积和表面张力,熔点低,磁性强,光吸收性能好。
其吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。
基于上述特点,纳米TiO2具有广阔的应用前景,如作为光催化剂处理有机废水;利用其光电导性和光敏性开发感光材料。
实验仪器和药品清单:⑴VIS-7220型分光光度计(一台)50mL干燥小烧杯(6个)电子天平(209旁边用)5mg/L的甲基橙溶液(1000mL)20 W石英紫外灯(可调节光强3台)定性pH式纸81-2型恒温磁力搅拌器800B离心机⑵去离子水过氧化氢溶液氯化钠溶液硫酸亚铁溶液实验具体方案纳米二氧化钛光催化活性的检测:(I)二氧化钛光催化原理:光催化纳米材料的作用机理是在光量子的作用下,电子发生能带跃迁形成光生载流子,诱发氧化分解作用极强的活性氧及?OH自由基,使反应物降解。
TiO2作为一种新型的光催化材料更是引起研究者的极大兴趣。
纳米TiO2材料以良好的热稳定性、高效、无毒、成本低和不造成二次污染等优点,在光催化降解废水中的有机物方面应用前景广阔。
TiO2为N型半导体材料,含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开,带隙宽为 3.2eV,在受到波长小于或等于387.5nm的光照射时,价带的电子就会被激发到导带,形成空穴/电子对,此时空气中的C2和HbO与之作用便形成了很高活性的?O 2和?OH自由基。
研究证明,当pH=1 时锐钛矿型TiO2的禁带宽度为3.2eV,半导体的光吸收阈值入g与禁带宽度Eg的关系为A g(nm)=1240/Eg(eV),当用能量等于或大于禁带宽度的光(入<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。
纳米二氧化钛在物体表面的抗菌作用纳米TiO2问世于20世纪80年代后期,是一种有着普遍用途的无机材料。
因其独特的紫外线屏蔽、光催化作用、颜色效应等性能,在高级涂料、化妆品、废水处置、空气净化、杀菌和高效太阳能电池等方面有着广漠的应用前景。
纳米二氧化钛(TiO2)作为光催化半导体无机抗菌剂,具有广谱抗菌功能,能抑制和杀灭微生物,并有除臭、防霉、消毒的作用,其本身化学性质稳固且对人体和环境无害,光催化作用持久,因此愈来愈取得世人青睐。
纳米TiO2的结晶有两种晶态:即金红石型和锐钛型。
通常,金红石型的二氧化钛光催化能力差,而锐钛型的二氧化钛具有强光催化能力。
锐钛型纳米TiO2在H2O、O2体系中发生光催化反映,产生的羟基自由基(HO·),能和多种细菌和臭体反映,而有效地灭菌和排除臭味,因此能够制成纳米TiO2抗菌剂。
纳米TiO2抗菌剂具有将细菌及其残骸一路杀灭清除的能力,同时还能将细菌分泌的毒素也分解掉。
而且纳米TiO2作为杀菌剂还具有以下几个特点:一是即效性好,如银系列抗菌剂的成效约在24h左右发生,而纳米TiO2仅需1h左右;二是TiO2是一种半永久维持抗菌成效的抗菌剂,不像其它抗菌剂会随着抗菌剂的溶出而成效慢慢下降;三是有专门好的平安性,与皮肤接触无不良阻碍。
本实验采纳了四种新型的纳米TiO2喷液(原液、复合液1#、复合液2斡、复合液3#)喷涂在瓷片和纸片上,并对其在瓷片和纸片应用中的杀菌成效进行了实验观看;同时咱们对涂有纳米TiO2喷液的部份瓷片通太高温预处置以后对其灭菌成效进行了观看实验。
1 材料与方式菌种来源大肠杆菌华南理工大学食物科学与工程学院实验室提供。
材料培育基营养肉汤培育基(g/100mL):酪蛋白胨,牛肉浸膏,。
MR-VP培育基(g/100mL):(月示)胨,葡萄糖,K2HPO4,pH值。
瓷片和纸片瓷片:3cm×3cm的干净瓷片。
纸片:白度为85(%,ISO)的针叶木浆抄成定量为60g/m2的纸片,其中不加任何化学药品。
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
绿色建筑光催化材料二氧化钛研究进展随着社会经济的发展和人们对环境保护意识的提高,绿色建筑已成为一种趋势。
绿色建筑是一种可持续性建筑,其设计和建造考虑了减少对环境的影响,提高建筑能源效率,提高室内环境质量等因素。
绿色建筑需要使用环保、健康的建筑材料,而光催化材料二氧化钛是一种很有潜力的材料,能够用于室内和室外环境的净化。
二氧化钛具有很高的光催化活性,在受到紫外线或可见光照射时能够吸收水中的氧和有机物质、微生物,将其分解为CO2和H2O,从而达到清洁水和空气的目的。
二氧化钛的光催化能力是由于其表面具有活性位点,通过吸附反应活化两种物质,从而产生自由基,进而分解有机污染物,因此用于绿色建筑中的光催化材料是探索和应用的热点。
二氧化钛的催化性能可以通过修饰或改性来提高。
硫化二氧化钛、掺杂二氧化钛、纳米二氧化钛和复合二氧化钛等是目前研究的热点。
硫化二氧化钛的光催化性能比纯的二氧化钛更优秀,因为硫是一种与光催化反应有关的活性物质。
掺杂二氧化钛一般通过在其晶格中引入其他金属离子,从而形成掺杂二氧化钛。
掺杂的离子会影响二氧化钛的电子结构及其表面性质,可以提高催化性能,让其可使用于室内环境净化中。
纳米二氧化钛的光催化性能也比纯的二氧化钛更优秀,因为小尺寸的纳米颗粒有更大的比表面积和更短的电子传输路径。
在光照区域内,纳米二氧化钛能较好地吸收光线,提高了催化效率。
复合二氧化钛材料是指将二氧化钛复合到另一种材料中,如氧化锌、氧化铜等,可以增强催化性能,同时还可以对催化剂的电子能级结构有所调整,改进催化剂在光催化中的性能。
此外,改进二氧化钛的制备方法也为提高其光催化性能提供了新途径。
目前常使用的方法有溶胶-凝胶法、沉淀法和水热法等。
溶胶-凝胶法是一种干燥和烧结过程多的制备方法,可控性较好,且可以制备出更细致的二氧化钛微粒,通常能够得到更高的催化性能。
水热法是指以水为溶媒将反应物反应时制备二氧化钛的方法,该方法不需要多次烧结和洗涤,工艺简单,适用于制备较小颗粒的二氧化钛,并且可制备出不同形貌的二氧化钛粒子,如球形、链形、管状等。
摘要当今全球范围内都不同程度地出现了环境污染问题, 探索和研究经济有效的消除环境污染物的新技术和新方法具有重要的意义。
二氧化钛光催化作为一种先进的氧化技光催化剂有其自身的缺陷:量子术,在环境领域具有十分广阔的应用前景。
然而,TiO2产率低和太阳能利用率低。
研究表明,在TiO2中掺杂金属离子,不仅能影响电子--空穴对的复合率,提高表面羟基位,改善光催化效率,还可能使TiO2的吸收波长范围扩大到可见光区域,增加对太阳能的转化和利用。
但金属沉积量过大会使TiO2光催化性能下降。
此外,超声可以有效改善粒子的结构,提高其光催化性能。
本文针对不同金属(Ho、Gd、Zr、Ag)的不同含量(0.5%、1%、2%、3%、4%)进行掺杂改性超声制备,研究其对TiO的光2催化活性的改变。
首先,本文将概述TiO2的制备方法,光催化氧化的机理及应用,并且通过国内外对TiO2研究进展,阐述研究金属掺杂改性、超声浸渍制备TiO2的原因。
其次,本文将详细介绍制备纯TiO2和金属掺杂改性TiO2的超声制备溶胶-凝胶法。
再次,通过紫外光下样品的降解甲基橙实验,研究其光催化性能。
研究结果表明:溶胶-凝胶法成功制备TiO2,金属掺杂改性可以提高其光催化活性,并初步判断所选取金属元素的合适掺杂量。
关键词:TiO2,光催化活性,溶胶-凝胶,金属掺杂,超声AbstractNowadays,various degree of the problems of environmental pollution have been presenting in the global range. In order to eliminate environmental pollutants , it has significant meanings that effectively new technology methods are explored and studied Therefore, as an advanced photocatalysis technique, TiO2photocatalysis technique has an extremely wide application prospect in the domain of environment. However, TiO2has its own shortcomings : low quantum yield and low utilization of solar energy.Research shows that the TiO2-doped metal ions, can not only affect the electronic -- hole on the composite rate, improve surface hydroxyl groups and photocatalytic efficiency, but also result in the absorption wavelength range extended to the visible region and the increase of solar energy conversion and utilization. However excessive metal deposition will affect TiO2photocatalytic properties. Moreover, ultrasound can effectively improve the particle structure and enhance its photocatalytic properties. We study on TiO2,which is made by ultrasound ,photocatalytic activity changes on different metals (Ho, Gd, Zr, Ag) of different content (0.5%,1%,2%,3%.4%).First of all, this paper would summarize the making method of TiO2,the mechanism and the application of photocatalytic oxidation. Then it expounded the reason that researching metal-doped TiO2 made by ultrasound through the relative study internal and external.Secondly, this paper would particular introduce the Sol-Gel with ultrasound method to prepare pure TiO2 and metal-doped TiO2.Thirdly,this paper would study the photocatalytic activity through methyl orange degradation experiment by mercury lamp respectively.The results shows : sol-gel method is successful in the preparation of TiO2, and metal-doped can improve photocatalytic activity. At last, the appropriate metal doping can be judged and selected.Keywords :TiO2 , Photocatalytic activity, Sol-gel, Metal-doped, Ultrasound目录1.绪论 (1)1.1.纳米二氧化钛光催化概述 (1)1.1.1.纳米二氧化钛光催化机理及特性 (1)1.1.2.纳米二氧化钛光催化的应用 (3)1.2.影响纳米二氧化钛光催化活性的因素 (4)1.2.1.晶体结构的影响 (4)1.2.2.粒径的影响 (5)1.2.3.比表面积的影响 (6)1.2.4.表面羟基的影响 (6)1.2.5.载流子俘获剂的影响 (7)1.3.纳米二氧化钛的制备 (7)1.3.1.气相法制备纳米TiO2粉体 (7)1.3.2.液相法制备纳米TiO2粉体 (8)1.4.纳米T I O2的改性研究进展 (9)1.4.1.复合半导体 (9)1.4.2.贵金属沉积 (9)1.4.3.过渡金属离子掺杂 (10)1.4.4.稀土元素的掺杂 (11)1.4.5.非金属掺杂 (11)1.5.超声在制备纳米T I O2光催化剂方面的应用 (11)1.5.1.超声化学反应的基本原理——超声空化 (12)1.5.2.超声在TiO2基光催化剂制备中的应用 (12)1.6.课题研究的目的和意义 (14)2.纳米TIO2粉末的制备 (15)2.1.实验材料 (15)2.1.1.化学试剂 (15)2.1.2.实验仪器 (15)2.1.3.实验装置 (16)2.2.T I O2的制备方法 (17)2.2.1.溶胶-凝胶法制备TiO2原理 (17)2.2.2.制备步骤 (18)2.3.目标降解物的选择 (19)2.4.甲基橙的标准曲线 (21)2.5.T I O2光催化活性的评价 (21)2.6.空白实验 (22)3.金属元素掺杂纳米TIO2的实验研究 (24)3.1.纯T I O2的光催化性能研究 (24)3.1.1.制备方法 (24)3.1.2.纯TiO2的光催化性能 (24)3.2.掺杂H O的T I O2的光催化性能研究 (26)3.2.1.制备方法 (26)3.2.2.Ho-TiO2的光催化性能 (26)3.3.掺杂G D的T I O2的光催化性能研究 (27)3.3.1.制备方法 (27)3.3.2.Gd-TiO2的光催化性能 (27)3.4.掺杂Z R的T I O2的光催化性能研究 (29)3.4.1.制备方法 (29)3.4.2.Zr-TiO2的光催化性能 (29)3.5.掺杂A G的T I O2的光催化性能研究 (30)3.5.1.制备方法 (30)3.5.2.Ag-TiO2的光催化性能 (30)3.6.H O、G D、Z R和A G四种金属掺杂T I O2光催化活性比较 (33)结论 (35)参考文献 (36)致谢 (40)1.绪论1.1. 纳米二氧化钛光催化概述1.1.1.纳米二氧化钛光催化机理及特性半导体粒子具有能带结构,一般由填满电子的低能价带(valence band,VB)和空的高能导带(conduction band,CB)构成,价带和导带之间存在禁带。
TiO2光催化原理及应用一.前言在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。
根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。
长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。
水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。
常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。
包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。
臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。
这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。
自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。
这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。
光化学反应的过程与植物的光合作用很相似。
光化学反应一般可以分为直接光解和间接光解两类。
直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。
直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。
间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。
半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。
半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。
纳米二氧化钛光催化
纳米二氧化钛光催化是一种新型的环保技术,它利用纳米二氧化钛的光催化性质,将光能转化为化学能,从而实现对有害物质的降解和清除。
这种技术具有高效、低成本、易操作等优点,被广泛应用于环境治理、能源开发等领域。
纳米二氧化钛的光催化性质是指在光照下,纳米二氧化钛表面会产生电子和空穴,这些电子和空穴可以参与化学反应,从而实现对有害物质的降解。
这种光催化反应的原理类似于光合作用,但是它不需要光合色素和光合酶等复杂的生物分子,因此具有更高的效率和更广泛的适用性。
纳米二氧化钛光催化技术可以应用于水处理、空气净化、废气治理等领域。
例如,在水处理中,纳米二氧化钛可以将有机物、重金属等有害物质降解为无害的物质,从而实现水的净化和回收利用。
在空气净化中,纳米二氧化钛可以将空气中的有害气体如甲醛、苯等降解为二氧化碳和水,从而净化空气。
在废气治理中,纳米二氧化钛可以将废气中的有害物质如二氧化硫、氮氧化物等降解为无害物质,从而减少环境污染。
纳米二氧化钛光催化技术的应用还不仅限于环境治理领域,它还可以应用于能源开发领域。
例如,纳米二氧化钛可以作为太阳能电池的光敏材料,将太阳能转化为电能。
此外,纳米二氧化钛还可以应用于光催化水分解,将水分解为氢气和氧气,从而实现清洁能源的
生产。
纳米二氧化钛光催化技术是一种具有广泛应用前景的环保技术,它可以实现对有害物质的高效降解和清除,同时还可以应用于能源开发领域。
随着技术的不断发展和完善,相信纳米二氧化钛光催化技术将会在未来的环保和能源领域发挥越来越重要的作用。