高二数学三角函数练习题
- 格式:doc
- 大小:255.50 KB
- 文档页数:3
1高二数学《三角函数》综合练习题A .B . D . 2 2 2 2 2.已知一 ,si n(- ) 3 口 —,则 tan( 22 5 34 3 4 A .— B c . — D — 4 3 4 3uuu 3.已知三点 A(1 ,1)、B(-1 , 0)、 C(3,-1), 则确AB A . -2 B. -6 C . 2 D . 3 4.设 x € z , 则 f (x) cos — 3 x 的值域是( ) 1 1 1 A . {-1, } B . {-1, 5 -,1} C . {-1, ) 1 5.要得到函数 一、选择题1. sin480 等于()的值为( uur AC 等于( 1 1 2,0,1,1} 1 {}} y cos2x 的图象,只需将 y cos (2x -)的图象( A .向左平移8个单位长度B .向右平移i 个单位长度C .向左平移 一个单位长度D .向右平移 —个单位长度 4 4 r r r r r r r r 6.已知 | a |=3, | b |=4,(a + b )(a +3b )=33,则 a 与 b 的夹角为( ) 1 2 7.已知tan 2' tan() , 5 那么tan(2 1 1 33 A .B —C .D .- 12 12 2 18 A . 30 B . 60 C . 120 D . 150 )的值是( ) &若 且满足不等式 2 cos - 2(4,34 sin22,那么角 兀) 的取值范围是( 3 5 (“)9.若 cos2 sin( 4) 则cos sin 的值为( D . 10 .设函数f(x) sin(2x 2),x R,则 f (x)是(C .最小正周期为 —的奇函数D •最小正周期为 —的偶函数2 212 12A .B .C .D . 3 7 7 312. 在边长为.2的正三角形 ABC 中,设AB c , BC a , CA b ,则a b b c c a 等于() A . 0B . 1C . 3D . - 3 、填空题13 .若三点 A( 1,1),B(21 4),C(x, 14 .已知向量a 与b 的夹角为120,且|a |=|b |=4,那么|a -3b |等于 __________________ 。
第一章 三角函数一、选择题 1.已知为第三象限角,则2α所在的象限是(). A .第一或第二象限B .第二或第三象限 C .第一或第三象限D .第二或第四象限 2.若sin θcos θ>0,则θ在(). A .第一、二象限B .第一、三象限 C .第一、四象限D .第二、四象限 3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=(). A .-433B .433C .-43D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于(). A .2B .2C .-2D .±2 5.已知sin x +cos x =51(0≤x <π),则tan x 的值等于(). A .-43B .-34C .43D .34 6.已知sin >sin ,那么下列命题成立的是(). A .若,是第一象限角,则cos >cos B .若,是第二象限角,则tan >tan C .若,是第三象限角,则cos >cos D .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆B D .B ⊆C ⊆A8.已知cos(+)=1,sin =31,则sin的值是().A .31B .-31C .322D .-3229.在(0,2π),使sin x >cos x 成立的x 取值围为(). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫ ⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是(). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈R B .y =sin ⎪⎭⎫ ⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是.12.已知sin =552,2π≤≤π,则tan =. 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π=.14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为.15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是. 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y =4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y =f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________. 三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵sin θcos θ>0,∴sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos =21. (sin θ+cos θ)2=1+2sin θcos θ=2.sin +cos =±2.5.B解析:由得25cos 2x -5cos x -12=0. 解得cos x =54或-53. 又0≤x <π,∴sin x >0. 若cos x =54,则sin x +cos x ≠51,∴cos x =-53,sin x =54,∴tan x =-34.6.D 解析:若,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵cos(+)=1, ∴+=2k π,k ∈Z . ∴=2k π-.∴sin =sin(2k π-)=sin(-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x (第6题`)10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin =552,2π≤≤π⇒cos =-55,所以tan =-2.13.53. 解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴sin ⎪⎭⎫⎝⎛α - 2π=cos =53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω(ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ), ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:①f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .②T =22π=π,最小正周期为π.③令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. ∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π]. 二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2)±αcos 2. (第15题)(第17题)解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵y =sin x 的对称中心是(k π,0),k ∈Z ,∴令2x -6π=k π,得x =2πk +12π. ∴所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z .又y =sin x 的图象的对称轴是x =k π+2π, ∴令2x -6π=k π+2π,得x =2πk +3π. ∴所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ;(2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0, ∴k (cos x -1)≥0, 又 sin 2x ≥0,∴当 cos x =1,即x =2k (k ∈Z)时,f (x )=sin 2x +k (cos x -1)有最小值f (x )min =0.。
经典高中数学三角函数(练习题)
题目一
已知角A的弧度为π/6,求角A的正弦、余弦和正切值。
题目二
已知角B的弧度为π/4,求角B的正弦、余弦和正切值。
题目三
在直角三角形ABC中,∠C为90°,边AC的长度为5,边BC 的长度为3。
求∠A和∠B的正弦值、余弦值和正切值。
题目四
已知角θ的弧度为3π/2,求角θ的正弦、余弦和正切值。
题目五
已知角α的弧度为π/3,求角α的正弦、余弦和正切值。
题目六
已知角β的弧度为π/2,求角β的正弦、余弦和正切值。
题目七
已知角γ的弧度为π,求角γ的正弦、余弦和正切值。
题目八
在直角三角形XYZ中,∠Y为90°,边XY的长度为4,边XZ的长度为3。
求∠X和∠Z的正弦值、余弦值和正切值。
题目九
已知角φ的弧度为7π/6,求角φ的正弦、余弦和正切值。
题目十
已知角θ的弧度为5π/4,求角θ的正弦、余弦和正切值。
以上为经典高中数学三角函数的练习题,希望能帮助你加深对三角函数的理解。
请根据所学的数学知识,计算出每题的答案,并核对答案的正确性。
高二数学专题复习三角函数练习题(含答案)一、选择题(每题5分,共75分)1.若α是第三象限角,则 2所在的象限是()A.第一或第二象限;B.第三或第四象限;C.第一或第三象限;D.第二或第四象限.)2.(3.()4.()5.()6.将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再将所得的图象向右平移 12个单位长度,得到函数的图象,则()7.已知函数f(x)=Atan(ωx+φ)y=f(x)的部分图象如图,则f()=()8.=()9.在中,则是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形10.已知函数的图象如图所示,则φ的值是()11.已知sinα+cosα=2,则tanα=()12.已知sin(﹣x)=cos(x﹣),则tan(x﹣)等于()13.在中,分别是角的对边,且()14.已知角在第四象限内,()15.()二、解答题(共15题,共75分)16.已知中,角,,所对的边分别为,,,满足,且。
(1)求角的大小;(2)点在线段的延长线上,且,若,求的面积.17.函数的部分图像如图所示,把函数的图像向右平移个单位,得到函数的图像.(1)当x∈R时,求函数的单调递增区间;(2)对于,是否总存在唯一的实数,使得成立?若存在,求出实数m的值或取值范围;若不存在,说明理由18.已知中,内角,,所对的边分别为,,,且满足.。
(1)求角的大小;(2)设是边上的高,且求面积的最小值.19.(1)求函数的单调递减区间;(2)求实数的取值范围.20.在中,角A,B,C 的对边分别为a,b,c,.(1)求A;(2)若的面积为,点D 在线段AC 上,且,求BD的最小值.参考答案一、选择题第1题第2题第3题第4题第5题DBACB二、解答题第16题(1)将sinA =3sinB 代入33sinAsinB -cosBcisC=12得:sinBsinC -cosBcisC=12-cos (B +C )=12第6题第7题第8题第9题第10题CBDCA第11题第12题第13题第14题第15题DBDDB-cos(π-A)=12A= 3(2)将A= 3,a=3b,c=2代入a²=b²+c²-2bccos A,得(b+2)(b-1)=0所以:b=1S△ABC=3+34第17题(1)单调递增区间:-512 + ≤ ≤ +112 (2)当m∈(1,3]时,使得成立。
高中数学三角函数专项练习(含答案)一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()333f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________3.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 4.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________. 5.在ABC 中,7AB =3BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △3②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______. 6.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.7.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .8.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________ 9.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且222a c b ac +-=,则sin cos A C 的最大值为______.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A B C D .3412.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( )A B C D 13.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A B C .113D .1114.已知向量a 与b 的夹角为120︒,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .现有两个结论:①若13λ=,则2a b =;②22x y xy ++的最大值为34.则正确的判断是( ) A .①成立,②成立 B .①成立,②不成立 C .①不成立,②成立D .①不成立,②不成立15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C .105D .25516.已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C .32D .3317.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .918.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()33f π=,且()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1419.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=,且3sin cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43⎤⎦C .(23,43⎤⎦D .(6,43⎤⎦20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.23.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.24.已知函数()2212cos f x x x +-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.25.已知向量33cos ,sin 22x a x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫- ⎪⎝=⎭,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)用含x 的式子表示a b ⋅及a b +; (2)求函数的()f x a b a b =⋅-+值域.26.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 27.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()132262g x f x π⎛⎫=-+ ⎪⎝⎭,求()g x 在区间[],3ππ-内的所有零点之和.28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac 的值.30.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.【参考答案】一、填空题1.6π2.π6∞⎛⎤- ⎥⎝⎦,3.⎛ ⎝⎭4 5.①③6.[ 78.②③④9.12+10.⎡⎢⎣⎦二、单选题 11.C 12.D 13.A 14.C 15.C 16.C 17.A 18.C 19.D 20.C 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论.(3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan θ∴=,sin θ∴=,故边长3a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题. 22.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.23.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.24.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴; (2)先求平移后的函数解析式,再求值域. 【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2. 【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.25.(1)cos 2x a b ⋅=;2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦(2)()3,12f x ⎡⎤∈--⎢⎥⎣⎦【解析】(1)根据平面向量数量积的坐标表示以及三角恒等变换公式可得a b ⋅,根据a b +=2||a b +可求得结果;(2)利用二倍角的余弦公式化为关于cos x 的二次函数可求得结果. 【详解】(1)因为向量33cos ,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以23||cos 1a =,2||cos 12x b ==, 所以333coscos sin sin cos()cos 2222222x a x x b x x xx -=+==⋅, ()2222212cos 2121cos 24cos a a b b x a b x x =+⋅+=++++==,2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦;(2)()2cos22cos 2cos 2cos 1x x x f x x =-=--,又0,2x π⎡⎤∈⎢⎥⎣⎦,∴[]cos 0,1x ∈,()3,12f x ⎡⎤∈--⎢⎥⎣⎦.【点睛】本题考查了平面向量的数量积的坐标运算,考查了求平面向量的模,考查了二倍角的余弦公式,考查了整体换元化为二次函数求值域,属于基础题. 26.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭,从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 27.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 28.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8153)m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222(503)m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,625(83cos 8sin 64sin cos 3)S θθθθ=-+- ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()83cos 8sin 64sin cos 3f θθθθθ=-+-,0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-8sin 64sin cos θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()8cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()164062f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(Ⅰ)证明见解析;(Ⅱ)2 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识. 30.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.。
高二数学三角函数试题1.已知,且是钝角,则等于A.B.C.D.【答案】C【解析】由题设可得,故应选答案C。
2.若,且为锐角,则的值等于( )A.B.C.D.【答案】A【解析】由题意得,因为,且为锐角,所以根据三角函数的基本关系式可得,所以,故选A.【考点】三角函数的基本关系式的应用.3.函数f(x)=A sin(ωx+φ)的图象如图所示,则f(0)=______.【答案】【解析】由已知可得.4.已知角的终边经过点,则 ( )A.B.-C.D.-【答案】B【解析】,故选B.5.设扇形的周长为,面积为,则扇形的圆心角的弧度是_________.【答案】2【解析】设扇形的半径为,圆心角的弧度数为,则弧长,为由题意得:+2=8;,由上面两式得:.【考点】1.弧度制下的扇形的弧长公式;2.弧度制下的扇形的面积公式;6.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增【答案】B【解析】将函数的图象向右平移个单位长度,得,∵,∴,∴函数为增函数.【考点】函数图象的平移、三角函数的单调性.7.设函数,若存在实数,使函数的图像关于直线对称且不等式成立,则的取值范围是()A.B.C.D.【答案】D【解析】函数的对称轴为:,所以,得成立,而的最小值为,k=0或k=-1,所以所以,故选择D【考点】1.正弦函数的图象与性质;2.不等式的解法8.已知,其中,,.(1)求的单调递减区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值。
【答案】(1);(2).【解析】(1)化简得,代入,求得增区间为;(2)由求得,余弦定理得.因为向量与共线,所以,由正弦定理得,解得.试题解析:(1)由题意知, ,在上单调递增, 令,得,的单调递增区间.(2),又,即.,由余弦定理得.因为向量与共线,所以,由正弦定理得.【考点】三角函数恒等变形、解三角形.9.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.求:(1)tan(α+β)的值;(2)α+2β的大小.【答案】(1)-3;(2) α+2β=.【解析】(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.试题解析:15.解:(1)∵,从而.又∵,∴.…利用同角三角函数的基本关系可得sin2(α﹣β)+cos2(α﹣β)=1,且,解得由条件得cosα=,cosβ=.∵ α,β为锐角,∴ sinα==,sinβ==.因此tanα==7,tanβ==.(1) tan(α+β)===-3.(2) ∵ tan2β===,∴ tan(α+2β)===-1.∵ α,β为锐角,∴ 0<α+2β<,∴ α+2β=10.已知,其中,,.(1)求的单调递减区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值。
高二数学三角函数应用练习题及答案一、选择题1. 下列函数中,不是周期函数的是:A. y = 2sin(x + π)B. y = 3cos(2x)C. y = 4tan(x)D. y = 5cot(3x)答案:C2. 函数y = 2sin(3x)的最小正周期是:A. 2πB. π/3C. π/2D. 2π/3答案:B3. 函数y = 4cos(2x + π/4)的最大值和最小值之差是:A. 4B. 2C. 8D. 6答案:C4. 若点P(x, y)在单位圆上,则函数y = 3sinθ的图象中,点P的坐标满足:A. x^2 + y^2 = 1B. x^2 + y^2 ≦ 1C. x^2 + y^2 > 1D. x^2 + y^2 < 1答案:A5. 已知三角函数f(x) = a sin(bx + c),其中a > 0,且|a| ≠ 1,下列说法正确的是:A. 当a > 1时,函数f(x)的图象在x轴上有两个非重合的零点;B. 当a < 0时,函数f(x)的图象在x轴上有两个非重合的零点;C. 当|a| < 1时,函数f(x)的图象在x轴上没有零点;D. 当|a| > 1时,函数f(x)的图象在x轴上有两个非重合的零点。
答案:D二、填空题1. 函数y = 2sin(3x)的一个零点是________。
答案:π/62. 完全图f(x) = a sin(bx + c)的一个最大值点是(π/4, 3),则a的值为________。
答案:33. 函数f(x) = 5cos(x)中,最小正周期的长度为________。
答案:2π4. 函数f(x) = 2tan(2x - π/4)的最值之差为________。
答案:45. 若图像y = sin^2(x + a)与y = cos^2(x + b)重合,则a + b =________。
答案:π/2三、计算题1. 将函数y = 2sin(3x)的图象向左平移3个单位得到图象y = 2sin(3x + k),求k。
高中数学三角函数练习题及答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________.3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.在ABC 中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.5.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________6.在ABC 中,角A 、B 、C 的对边a 、b 、c 为三个连续偶数且2C A =,则b =__________.7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭12.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,213.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1214.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .415.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦16.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5417.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π18.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④19.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .120.将方程23sin cos 3sin 3x x x +=的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .34-B .24-C .36-D .26-三、解答题21.在海岸A 处,发现北偏东45︒方向,距离A 为31-海里的B 处有一艘走私船,在A 处北偏西75︒方向,距离A 为2海里的C 处有一艘缉私艇奉命以103海里/时的速度追截走私船,此时,走私船正以10海里/时的速度从B 处向北偏东30方向逃窜.(1)问C 船与B 船相距多少海里?C 船在B 船的什么方向? (2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间. 22.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在52x ⎡∈⎢⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.23.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π-⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.24.如图,某市一学校H 位于该市火车站O 北偏东45︒方向,且42OH km =,已知, OM ON 是经过火车站O 的两条互相垂直的笔直公路,CE ,DF 及圆弧CD 都是学校道路,其中//CE OM ,//DF ON ,以学校H 为圆心,半径为2km 的四分之一圆弧分别与, CE DF 相切于点, C D .当地政府欲投资开发AOB 区域发展经济,其中,A B 分别在公路, OM ON 上,且AB 与圆弧CD 相切,设OAB θ∠=,AOB 的面积为2Skm .(1)求S 关于θ的函数解析式;(2)当θ为何值时,AOB 面积S 为最小,政府投资最低? 25.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知33sin cos 022b A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.26.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.27.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若32PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .28.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.29.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.30.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.【参考答案】一、填空题1.982.23⎛ ⎝⎭3.3(21)24.①③5.12(,)369-6.107.742ω<<或91322ω<≤.8.π3##60°9.(10.⎡⎢⎣⎦二、单选题 11.A 12.A 13.A 14.B 15.A 16.B 17.A 18.B 19.C 20.C 三、解答题21.(1)=BC C 船在B 船的正西方向;(2)缉私艇沿东偏北30才能最快追上走私船. 【解析】(1)在ABC 中根据余弦定理计算BC ,再利用正弦定理计算ABC ∠即可得出方位; (2)在BCD △中,利用正弦定理计算BCD ∠,再计算BD 得出追击时间. 【详解】解:(1)由题意可知1=AB ,2AC =,120BAC ∠=︒, 在ABC 中,由余弦定理得:2222cos1206BC AB AC AB AC =+-︒=,BC ∴,由正弦定理得:sin sin AC BCABC BAC=∠∠,即2sin ABC∠解得:sin ABC ∠=, 45ABC ∴∠=︒,C ∴船在B 船的正西方向.(2)由(1)知=BC 120DBC ∠=︒, 设t 小时后缉私艇在D 处追上走私船,则10BD t =,CD =,在BCD △10sin tBCD∠, 解得:1sin 2BCD ∠=, 30BCD ∴∠=︒,BCD ∴△是等腰三角形,10t ∴=,即t =∴缉私艇沿东偏北30【点睛】本题考查了正余弦定理解三角形,以及解三角形的实际应用,考查转化能力和运算能力,属于中档题. 22.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为42π⎛ ⎝⎭,5,42π⎛- ⎝⎭,94π⎛ ⎝⎭,13,42π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=; 52553244T T =⋅<,∴两图象不可能四个交点;由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.23.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点AABC ∆为等边三角形,所以三角形边长为2, 所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭, 将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =. (Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.24.(1)2[2(sin cos )1]2,0,sin cos 2S θθπθθθ+-⎛⎫=⋅∈ ⎪⎝⎭;(2)4πθ=. 【解析】 【分析】(1)以点O 为坐标原点建立如图所示的平面直角坐标系,则(4,4)H ,在Rt ABO 中,设AB l =,又OAB θ∠=,故cos OA l θ=,sin OB l θ=,进而表示直线AB 的方程,由直线AB 与圆H 相切构建关系化简整理得4(sin cos )2sin cos l θθθθ+-=,即可表示OA ,OB ,最后由三角形面积公式表示AOB 面积即可;(2)令2(sin cos )1t θθ=+-,则223sin cos 8t t θθ+-=,由辅助角公式和三角函数值域可求得t 的取值范围,进而对原面积的函数用含t 的表达式换元,再令1m t=进行换元,并构建新的函数2()321g m m m =-++,由二次函数性质即可求得最小值. 【详解】解:(1)以点O 为坐标原点建立如图所示的平面直角坐标系,则(4,4)H ,在Rt ABO 中,设AB l =,又OAB θ∠=,故cos OA l θ=,sin OB l θ=. 所以直线AB 的方程为1cos sin x yl l θθ+=,即sin cos sin cos 0x y l θθθθ+-=. 因为直线AB 与圆H 相切, 所以22|4sin 4cos sin cos |2sin cos l θθθθθθ+-=+.(*)因为点H 在直线AB 的上方, 所以4sin 4cos sin cos 0l θθθθ+->,所以(*)式可化为4sin 4cos sin cos 2l θθθθ+-=,解得4(sin cos )2sin cos l θθθθ+-=.所以4(sin cos )2sin OA θθθ+-=,4(sin cos )2cos OB θθθ+-=. 所以AOB 面积为21[2(sin cos )1]2,0,2sin cos 2S OA OB θθπθθθ+-⎛⎫=⋅=⋅∈ ⎪⎝⎭.(2)令2(sin cos )1t θθ=+-,则223sin cos 8t t θθ+-=,且2(sin cos )111]4t πθθθ⎛⎫=+-=+-∈ ⎪⎝⎭,所以222162322318t S t t t t =⋅=+--++,1]t ∈.令1m t ⎫=∈⎪⎣⎭,2214()321333g m m m m ⎛⎫=-++=--+ ⎪⎝⎭,所以()g m在⎫⎪⎣⎭上单调递减.所以,当m =4πθ=时,()g m 取得最大值,S 取最小值.答:当4πθ=时,AOB 面积S 为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题. 25.(1)3A π=;(2)λ=. 【解析】 【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan A =(0,)A π∈,可得A 的值;(2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值. 【详解】(13sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭cos sin 0A a B ⇒+=,cos sin sin 0B A A B ⇒+=(0,)sin 0B B π∈∴≠,tan (0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈, 22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴=【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.26.(1)()fx 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.27.(12 【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α, 在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.28.(1)π6θ=(2)当π12θ=,CH CP +【解析】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=,计算得到2sin sin 1AC CP θθ+=-++,计算最值得到答案.(2)计算sin cos CH θθ=⋅,得到πsin 23CH CP θ⎛⎫+=+ ⎪⎝⎭.【详解】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=. 在直角ΔPBC 中,2cos cos cos cos PC BC θθθθ=⋅=⋅=, sin sin cos sin cos PB BC θθθθθ=⋅=⋅=.22sin cos sin 1sin AC CP θθθθ+=+=+-2sin sin 1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅.在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 29.(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即22a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得221a a b a a b ⎧⎛⨯-++=⎪ ⎨⎝⎭⎪⨯++=⎩,即222a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力 30.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.。
高中数学三角函数公式练习(答案)1.sin(29π/6)的值为()A。
-1133B。
-C。
D。
2222答案】C解析】考点:任意角的三角函数2.已知sin(α-π/4)=7/√5301,cos2α=71/2525,sinα=5/13,求cosα的值。
A。
-/6662B。
-1025/4433C。
-727/5555D。
5555/2553答案】D解析】考点:两角和与差的三角函数,二倍角公式3.cos690°的值为()A。
-1133B。
C。
-2222D。
-答案】C解析】考点:三角函数的诱导公式4.tan(π/3)的值为()A。
-33B。
C。
3D。
-333答案】C解析】考点:三角函数的求值,诱导公式5.若-π<β<α<π,且cos(β+π/4)=5/√5301,则cos(α+β)的值为()A。
-B。
-3399C。
D。
-答案】C解析】考点:诱导公式,三角函数的化简求值。
6.若角 $\alpha$ 的终边在第二象限且经过点 $P(-1,3)$,则$\sin\alpha$ 等于 $\dfrac{3}{2}$。
7.$\sin7^\circ\cos37^\circ-\sin83^\circ\cos53^\circ$ 的值为$-\dfrac{1}{3}$。
8.已知 $\cos(-x)=\dfrac{\sqrt{3}}{2}$,那么 $\sin2x=-\dfrac{1}{2}$。
9.已知 $\sin\dfrac{5\pi}{2}+\alpha=\dfrac{1}{23}$,则$\cos2\alpha=-\dfrac{5}{9}$。
10.已知 $\sin(\dfrac{\pi}{2}+a)=\dfrac{1}{27}$,则$\cos2a=-\dfrac{1}{9}$。
11.已知点 $P(\tan\alpha,\cos\alpha)$ 在第三象限,则角$\alpha$ 在第二象限。
12.已知 $\alpha$ 是第四象限角,$\tan\alpha=-\dfrac{5}{22}$,则 $\sin\alpha=-\dfrac{12}{13}$。
一、选择题
1.下列选项中叙述正确的是()
A .180的角是第二象限角
B .第二象限的角大于第一象限的角
C .终边不同的角同一三角函数值不相等
D .在ABC ∆中,sin sin A B A B >⇔>
2.若3sin 5
θ=,sec θ=-4
5,则θ在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.若7(
,2)4
π
θπ∈=() A .cos sin θθ- B .sin cos θθ+ C .sin cos θθ- D .cos sin θθ-- 4.α为第三、四象限角,且m
m --=
43
2sin α,则m 的取值范围为() A .(1,0)-B .)2
1,1(-C .)2
3,1(-D .(1,1)-
5.已知θ为第一象限角,若将角θ的终边逆时针旋转2
π,则它与单位圆的交点坐标是( )
A .(cos ,sin )θθ
B .(cos ,sin )θθ-
C .(sin ,cos )θθ-
D .(sin ,cos )θθ-
6.已知5
2cos sin =
⋅θθ,且θθcos cos 2
-=,则θθcos sin +的值是() A .553-
B .553±
C .55-
D .5
5
± 7.已知tan(α+β)=5
2,tan(β-4
π)=4
1,那么tan(α+4
π)的值是( )
A .1813
B .
22
3
C .2213
D .
18
3 8、下列四个命题中可能成立的一个是() A 、2
1cos 2
1sin ==αα且B 、1cos 0sin -==αα且
C 、1cos 1tan -==αα且
D 、α是第二象限时,α
α
αcos tan sia -
= 9.若5
4sin =α,且α是第二象限角,则αtan 的值为()
A 、34
-B 、43C 、43±D 、3
4±
10.ββαββαsin )sin(cos )cos(---化简是()
A 、)2sin(βα+
B 、)2cos(βα-
C 、αcos
D 、βcos 11、)20tan 10(tan 320tan 10tan ︒︒︒︒++的值是() A 、
3
1
B 、1
C 、3
D 、6 12、若231sin sin -
=-βα,2
1
cos cos -=-βα,则)cos(βα-的值为() A 、2
1B 、
23C 、4
3
D 、1 13.已知3
1)4
tan(,2
1
)tan(-=-=+π
αβα,则)4
tan(π
β+的值为()
A .2B.1C.
2
2
D.2 14、cot(α-4π)·cos(α+π)·sin 2(α-3π)tan(π+α)·cos 3(-α-π)
的结果是( )
A .1
B .0
C .-1
D .1
2 15.︒-︒225600cos tg 的值是.
16.若角α的终边落在直线x y 3=上,则αcos 的值是. 17.若2
1cos sin =-θθ,则=-θθ33cos sin .
18.已知5
1cos sin =+θθ,πθ<<0,则cot θ的值是.
19、化简=+-+βαβαβα222222cos cos sin sin sin sin .
20、若0cos 3sin =+αα,则α
αα
αsin 3cos 2sin 2cos -+的值为
21、若)23,(,1312cos ππθθ∈-
=,则)4
cos(πθ+的值为. 22、已知βα,为锐角,,7
1
)4
cos(=-π
α则α=
23.求tan200+tan400+
3tan20
tan400的值.
24.若sin(α+β)=2
1,sin(α-β)=3
1,则tan α•cot β=. 25、已知2
1)cos(,31)cos(=-=+βαβα,则=)tan (tan log 5βα。
26.化简
︒
--︒︒⋅︒-170cos 1350cos 10cos 10sin 212
.
27.x
28、化简:(1)︒
︒
︒
⋅-50
sin 10cos )310(tan . (2))
(cos )tan()
2cot()cos()(sin 3
2πααππααππα--⋅+--⋅+⋅+ 29、在△ABC 中,已知A 、B 、C 成等差数列,求
2
t a n 2t a n 32t a n 2t a n C
A C A ++的值. 30、已知)
,(、2
2π
πβα-∈,且αta n 、βtan 是方程04332=++x x 的两个根,试求βα+的值.
31.已知4
3
tan -=θ,求θθθ2cos cos sin 2-+的值。
32.已知,3
2)2
sin(,9
1)2
cos(=--=-βα
β
α且
2
0,2
π
βπαπ
<
<<<,求)c o s (
βα+的值。