多履带车辆转向性能分析
- 格式:pdf
- 大小:497.22 KB
- 文档页数:9
履带车辆转向动力学仿真知识履带车辆转向动力学仿真是指通过计算机模拟履带车辆转向过程中的动力学特性。
这项仿真技术可以帮助工程师更好地理解和研究履带车辆在不同转向条件下的行为,并优化车辆设计和控制系统。
在履带车辆转向动力学仿真中,需要考虑的关键因素包括车辆的质量、转向系统的特性、轮胎与地面的摩擦系数等。
通过对这些因素进行建模和仿真,可以模拟出车辆在不同道路状况下的转向性能,包括转弯半径、侧滑角度、抓地力等。
在履带车辆转向动力学仿真中,常用的模型包括单轨模型和双轨模型。
单轨模型认为车辆仅在一个垂直于轨道的平面上运动,忽略车辆的纵向运动。
双轨模型则包括车辆的纵向运动,并考虑左右两侧履带之间的转弯差速。
履带车辆转向动力学仿真中,常用的仿真软件包括CarSim、ADAMS等。
这些软件提供了丰富的车辆模型和分析工具,可以模拟车辆在各种道路条件下的转向动力学,如直线行驶、转弯、制动等。
通过履带车辆转向动力学仿真,工程师可以评估不同转向系统设计的性能,并进行优化。
例如,可以通过仿真研究不同转向系统的刚度、行程、空转角度等参数对车辆的转向性能的影响。
此外,还可以研究不同摩擦系数下车辆的侧滑情况,并通过调整控制策略提高车辆的稳定性和灵活性。
总之,履带车辆转向动力学仿真是一项重要的技术,可以帮助工程师更好地理解和研究履带车辆的转向特性。
通过仿真研究,可以优化车辆的设计和控制系统,提高车辆的性能和可靠性。
履带车辆转向动力学仿真是一项复杂而关键的技术,对于履带车辆的设计、性能分析和控制优化具有重要意义。
本文将继续介绍履带车辆转向动力学仿真的相关内容,包括仿真模型、评估参数以及仿真结果的分析等。
一、仿真模型在履带车辆转向动力学仿真中,最基本的模型分为单轨模型和双轨模型。
单轨模型是将履带车辆简化为一个刚性运动体,并在一个垂直于车辆运动平面内进行建模,该模型忽略了车辆的纵向运动。
而双轨模型则考虑了车辆的纵向运动,并通过差速控制来模拟履带车辆的转向情况。
湖南农业大学全日制普通本科生毕业论文(设计)开题报告学生姓名学号年级专业及班级2009级汽车服务工程(1)班指导教师及职称学院工学院20 年月日毕业论文(设计)履带式行走底盘设计题目文献综述(选题研究意义、国内外研究现状、主要参考文献等,不少于1000字)1.履带式行走底盘设计研究意义履带式底盘的结构特点和性能决定了它在农田机耕作业中具有明显的优势。
履带式底盘的拖拉机不会对翻耕过的土壤造成多次反复的碾压,而轮式底盘在整地和耙地作业时轮胎在翻耕过的土壤上反复碾压,造成对土壤的多次压实,不利于播种后种子的生长发育。
因此,研究履带底盘的性能具有极其重要的意义。
下面我们以履带式拖拉机为例来加以解释说明。
履带式拖拉机的接地比压相对较低,从 51.8kW 到 118.4 kW 的各型拖拉机的接地比压为 30~50kPa,而同级别的轮式拖拉机接地比压要大的多。
以 96.2 kW 拖拉机为以例: 东方红 1302 履带机接地比压(装推土铲)为 47.7kPa;东方红1304 轮式机的接地比压约为104 kPa,相当于履带拖拉机的二倍多计。
无论是整地耙地作业还是播种作业履带式拖拉机比轮式拖拉机都占有绝对优势。
几乎所有山区种植粮油作物的农户毫无例外的选择履带式拖拉机。
2.履带式行走底盘设计的国内外研究状况底盘的作用是支承、安装发动机及其各部件、总成,形成车辆的整体造型,并动力,使整车产生运动,保证正常行驶。
在国外,履带式行走底盘研发较早。
1986 年 W. C. Evans 和 D. S. Gove 公布了在硬地面和已耕地上,1种橡胶履带与1种四轮驱动拖拉机牵引性能的实验结果。
在相同的底盘结构情况下,橡胶履带牵引效率与动态牵引比高,在已耕地和硬地面上其最大牵引效率是 85%~90%,四轮驱动拖拉机是70%~85%。
此后又有许多橡胶履带拖拉机与四轮驱动拖拉机性能试验的研究。
国外生产的履带拖拉机在技术水平、生产能力等性能方面具备较强的竞争能力。
履带式起重机编辑履带式起重机(crawler crane),是一种高层建筑施工用的自行式起重机。
是一种利用履带行走的动臂旋转起重机。
履带接地面积大,通过性好,适应性强,可带载行走,适用于建筑工地的吊装作业。
可进行挖土、夯土、打桩等多种作业。
但因行走速度缓慢,转移工地需要其他车辆搬运。
目录1概述2组成3参数W1一50型W1一100型W1一200型4稳定性5构造组成6保养7故障装置操作1概述履带式起重机(crawler crane),是一种高层建筑施工用的自行式起重机。
是一种利用履带行走的动臂旋转起重机。
履带接地面积大,通过性好,适应性强,可带载行走,适用于建筑工地的吊装作业。
可进行挖土、夯土、打桩等多种作业。
但因行走速度缓慢,转移工地需要其他车辆搬运。
[1]2组成履带式起重机由动力装置、工作机构以及动臂、转台、底盘等组成。
动臂为多节组装桁架结构,调整节数后可改变长度,其下端铰装于转台前部,顶端用变幅钢丝绳滑轮组悬挂支承,可改变其倾角。
也有在动臂顶端加装副臂的,副臂与动臂成一定夹角。
起升机构有主、副两卷扬系统,主卷扬系统用于动臂吊重,副卷扬系统用于副臂吊重。
转台通过回转支撑装在底盘上,可将转台上的全部重量传递给底盘,其上装有动力装置、传动系统、卷扬机、操纵机构、平衡重和机棚等。
动力装置通过回转机构可使转台作360°回转。
回转支承由上、下滚盘和其间的滚动件(滚球、滚柱)组成,可将转台上的全部重量传递给底盘,并保证转台的自由转动。
底盘包括行走机构和行走装置:前者使起重机作前后行走和左右转弯;后者由履带架、驱动轮、导向轮、支重轮、托链轮和履带轮等组成。
动力装置通过垂直轴、水平轴和链条传动使驱动轮旋转,从而带动导向轮和支重轮,使整机沿履带滚动而行走。
[1]3参数有起重量或起重力矩。
选用时主要取决于起重量、工作半径和起吊高度,常称“起重三要素”,起重三要素之间,存在着相互制约的关系。
其技术性能的表达方式,通常采用起重性能曲线图或起重性能对应数字表。
《履带式特种车辆精细化动力学建模与仿真》篇一一、引言随着科技的进步和军事需求的不断升级,履带式特种车辆在各种复杂环境下的作业能力受到了广泛关注。
为了更好地研究其运动性能、动力学特性和优化设计,精细化动力学建模与仿真成为了必要手段。
本文旨在探讨履带式特种车辆精细化动力学建模的方法,以及仿真结果的分析与应用。
二、履带式特种车辆动力学建模1. 模型假设与简化在建立履带式特种车辆动力学模型时,首先需要对实际车辆进行合理的假设与简化。
包括假设车辆行驶在平坦地面上,忽略空气阻力等因素的影响。
此外,还需将复杂的履带系统简化为数学模型中的传动机构,以便进行后续的动力学分析。
2. 动力学方程的建立根据履带式特种车辆的构造和工作原理,可以建立包括发动机动力系统、传动系统、履带系统等在内的动力学方程。
其中,发动机动力系统主要考虑发动机的输出功率和扭矩;传动系统则涉及变速器、差速器等部件的传动效率;履带系统则需考虑履带的摩擦力、接地比压等因素。
通过这些方程,可以描述车辆在不同工况下的运动状态。
三、仿真分析与验证1. 仿真软件的选择与应用为了进行精细化动力学仿真,需要选择合适的仿真软件。
本文选用多体动力学仿真软件,该软件具有强大的建模和求解能力,能够准确模拟履带式特种车辆在不同地形和环境下的运动状态。
2. 仿真结果分析通过仿真软件,可以得到履带式特种车辆在不同工况下的速度、加速度、力等参数。
对这些参数进行分析,可以了解车辆的动力学特性,如牵引性能、爬坡能力等。
此外,还可以通过仿真结果对车辆的设计进行优化,提高其性能。
3. 仿真结果验证为了验证仿真结果的准确性,可以将仿真结果与实际试验数据进行对比。
通过对比分析,可以评估仿真模型的可靠性,为后续的优化设计提供依据。
四、仿真结果的应用1. 战场环境适应性分析通过仿真分析,可以了解履带式特种车辆在不同战场环境下的运动性能和适应性。
这有助于为军事决策提供依据,如选择合适的作战地域、制定作战计划等。
一、双履带车辆的转向理论对于双履带式车辆各种转向机构就基本原理来说是相同的,都是依靠改变两侧驱动轮上的驱动力,使其达到不同时速来实现转向的。
(一)双履带式车辆转向运动学履带车辆不带负荷,在水平地段上绕转向轴线O作稳定转向的简图,如图7-12所示。
从转向轴线O到车辆纵向对称平面的距离R,称为履带式车辆的转向半径。
以代表轴线O在车辆纵向对称平面上的投影,的运动速度代表车辆转向时的平均速度。
则车辆的转向角速度为:图7-12 履带式车辆转向运动简图(7-37)转向时,机体上任一点都绕转向轴线O作回转,其速度为该点到轴线O的距离和角速度的乘积。
所以慢、快速侧履带的速度和分别为:(7-38)式中:B—履带车辆的轨距。
根据相对运动原理,可以将机体上任一点的运动分解成两种运动的合成:(1)牵连运动,;(2)相对运动。
由上可得:(二)双履带式车辆转向动力学1、牵引平衡和力矩平衡图7-13给出了带有牵引负荷的履带式车辆,在水平地段上以转向半径R作低速稳定转向时的受力情况(离心力可略去不计)。
转向行驶时的牵引平衡可作两点假设:(1)在相同地面条件下,转向行驶阻力等于直线行驶阻力,且两侧履带行驶阻力相等,即:(2)在相同的地面条件和负荷情况下,相当于直线行驶的有效牵引力,即:图7-13 转向时作用在履带车辆上的外力所以回转行驶的牵引平衡关系为:(7-39)设履带车辆回转行驶时,地面对车辆作用的阻力矩为,在负荷作用下总的转向阻力矩为:(7-40)式中:—牵引点到轴线的水平距离。
如前所述履带车辆转向是靠内、外侧履带产生的驱动力不等来实现的,所以回转行驶时的转向力矩为:(7-41)稳定转向时的力矩平衡关系为:(7-42)为了进一步研究回转行驶特性,有必要对内、外侧驱动力分别加以讨论。
由上可得:(7-43)式中:为在作用下,土壤对履带行驶所增加的反力,亦即转向力,作用方向与驱动力方向相同,以表示。
变形得式:(7-44)令所以。
轻型履带车辆行走系的结构设计与选型计算
李绍武;郭春阳;杜元鹏;于春伟;朱文娟;魏磊
【期刊名称】《拖拉机与农用运输车》
【年(卷),期】2024(51)2
【摘要】随着辣椒种植规模的扩大,缺乏适宜的套种作业机械、人工成本高及作业效率低的问题严重制约了辣椒产业的发展。
开发一种适应“麦椒套种”的轻型履带车辆显得尤为重要。
本文结合轻型履带车辆的使用环境、工作目标及工作性能,确定轻型履带车辆的行走系结构,并对行走系的关键部件和参数进行了选型设计;通过对轻型履带行走系转向受力分析,计算出转向时所需的最大驱动力矩,并以此选择静液压装置;为行走系设计提供依据并为后续变形设计积累技术资料。
【总页数】4页(P95-98)
【作者】李绍武;郭春阳;杜元鹏;于春伟;朱文娟;魏磊
【作者单位】智能农业动力装备全国重点实验室;洛阳拖拉机研究所有限公司【正文语种】中文
【中图分类】S219.2
【相关文献】
1.履带行走机构的计算与选型设计
2.高温高辐射环境履带行走式机器人行走部分的结构设计
3.一种履带拖拉机行走系涉及的履带、驱动轮、支重轮及托链轮的设计与有限元分析
4.橡胶履带底盘行走机构选型设计计算
5.肝硬化并发上消化道出血患者应用针对性护理的效果研究
因版权原因,仅展示原文概要,查看原文内容请购买。
履带车辆的转向理论一、双履带车辆的转向理论对于双履带式车辆各种转向机构就基本原理来说是相同的,都是依靠改变两侧驱动轮上的驱动力,使其达到不同时速来实现转向的。
(一)双履带式车辆转向运动学履带车辆不带负荷,在水平地段上绕转向轴线O 作稳定转向的简图,如图7-12所示。
从转向轴线O 到车辆纵向对称平面的距离R ,称为履带式车辆的转向半径。
以T O 代表轴线O 在车辆纵向对称平面上的投影,T O 的运动速度v '代表车辆转向时的平均速度。
则车辆的转向角速度Z ω为:图7-12 履带式车辆转向运动简图R v Z '=ω (7-37)转向时,机体上任一点都绕转向轴线O 作回转,其速度为该点到轴线O 的距离和角速度Z ω的乘积。
所以慢、快速侧履带的速度1v '和2v '分别为:Z Z Z Z B v B R v B v B R v ωωωω5.0)5.0(5.0)5.0(21+'=+='-'=-=' (7-38)式中:B —履带车辆的轨距。
根据相对运动原理,可以将机体上任一点的运动分解成两种运动的合成:(1)牵连运动,;(2)相对运动。
由上可得:B R B R v v 5.05.021+-=''(二)双履带式车辆转向动力学 1、牵引平衡和力矩平衡图7-13给出了带有牵引负荷的履带式车辆,在水平地段上以转向半径R 作低速稳定转向时的受力情况(离心力可略去不计)。
转向行驶时的牵引平衡可作两点假设:(1) 在相同地面条件下,转向行驶阻力等于直线行驶阻 力,且两侧履带行驶阻力相等,即:ff f F F F 5.021='='(2)在相同的地面条件和负荷情况下,γcos x F 相当于直 线行驶的有效牵引力KP F ,即:图7-13 转向时作用在履带车辆上的外力γcos x KP F F =所以回转行驶的牵引平衡关系为:K KP f K Kx f f K KF F F F F F F F F F =+='+'+'+'='+'212121cos γ (7-39)设履带车辆回转行驶时,地面对车辆作用的阻力矩为μM ,在负荷xF 作用下总的转向阻力矩为:γμsin x T C F a M M += (7-40)式中:T a —牵引点到轴线21O O 的水平距离。
河南科技大学硕士学位论文履带拖拉机差速转向机构性能分析姓名:曹付义申请学位级别:硕士专业:车辆工程指导教师:周志立2003.4.28履带拖拉机差速转向机构性能分析摘要履带拖拉机的转向机构是其重要的总成之一,其性能的优劣直接影响着履带拖拉机的转向机动性和生产效率。
本文在分析了履带拖拉机差速转向机构传动原理和不同类型的转向机构基础上,重点介绍了履带拖拉机双功率流转向机构的工作原理及其特点。
以东方红l302R履带拖拉机差速转向机构的转向原理、运动学特性、动力学特性(包括功率及效率)分析为特例,给出了实际工况下的设计参数,从而为转向装置总图设计的结构强度和刚度分析奠定了基础,提出的差速转向机构参数(行星排特性参数、液压泵和液压马达的系统压力及排量)的选取原则,为差速转向机构的设计提供了理论方法,并通过对不同类型的差速转向机构的性能分析比较,为转向机构的进一步改进设计提供了建议。
关键词:履带车辆,差速转向机构,运动学,动力学,特性分析塑旦型垫奎兰堡主兰垒笙奎——PERFORMANCEANALYSISOFDIFFERENTIALTURNINGMECHANISMOFCRAWLERABSTRACTTheturningmechanismofthecrawlerisoneoftheimportantassemblies.Theperformancesoftheturningmechanismdirectlyaffectitsmobilityandproductivity.BasedontheanalysisoftransmissiOntheoryofdifferentialturningmechanismofthec姐wleranddifferentkindsofturningmechanism,thispaperemphaticallypresentstherunningtheoryandspecialtiesofdoublepowerflowingturningmechanismofthecrawler.Takingexamplebyturningtheory、kinematicsperformancesandkineticsperformances(includingpowerandefficiency)analysisofdifferentialmechanismofdongfan曲ongl302Rcrawler,thispapergivesoutitsdevisingparametersunderthepracticalcircumstances.Accordinglythepaperestablishsthebaseofmachinerydesignofturningequipmentanditsintensity、rigidityanalysis.Byputtingforwardtheselectingprinciplesofparametersofturningmechanism(parameterofplanetgear、thesystemicpressureanddischargingamountofhydraulicpumpandhydraulicmotor),thepaperpresentsthetheoricalmeansofthisdifferentialmechanismdesign.BythecompareofperformanceanaIysisofdiffbrentkindsofdifferentialmechanism,thispaperofferstheadvicestoitsfurtherimprovingdesign.KEYWoRDS:thecrawler,differentialturningmechanism,kinematics,kinetics,performanceanatysis第一章绪论第一章绪论§1.1履带拖拉机及其转向我国是一个人口众多的农业大国,农业在国民经济发展中始终起着举足轻重的作用。
摘要为了适应现代化生产的需要,履带拖拉机不断提高了行驶速度。
为了增强履带拖拉机的机动性能,要求其能够进行任意半径转向。
为了避免拖拉机履带对路面的滑磨,又要求两条履带能够实现差速。
这就需要有一种机构来实现拖拉机的这些使用要求。
此时,机械液压双功率流差速式转向机构的优点就体现出来了。
这种转向机构在保证连续无级输出转速的前提下应用较小的液压元件功率大幅度提高车辆输出的总功率,并且其传动效率远远超过纯液压转向机构的传动效率。
对此,基于双功率流传动原理,利用液压元件的无极调速特性,对适合履带车辆的液压机械双功率流差速转向机构的转向原理进行了分析。
并且从履带拖拉机机械液压双功率差速式转向机构的转向特点入手,分析了三种有代表性的液压机械双功率差速式转向机构的转向性能和转向指标。
最后,选择了一拖公司设计的行星排机构进行设计计算,提出了转向机构行星排特性参数的确定原则,并结合东方红1302R型橡胶履带拖拉机进行了参数设计和转向运动性能分析,所选参数满足整机性能的要求。
关键词:拖拉机机械液压双功率流差速转向机构设计AbstractProduction in order to meet the needs of modernization, crawler tractors continuously improve the speed. To enhance tractor mechanical functions required to carry out arbitrary radius steering. To avoid crawler tractor on the road friction and also requires two tracks to achieve differential. This need for a body to achieve these tractor use requirements. At this time, the mechanical-hydraulic power flow Differential Steering institutions on the merits of the reflected. This shift in the level of continuous output speed without the prerequisite of the application of smaller hydraulic components significantly improve power transmission The total power, and its transmission efficiency far exceed net hydraulic steering mechanism of transmission efficiency. In this regard, based on the popular action-power principle, the use of hydraulic components of limitless speed characteristics, Tracked vehicles suitable for themechanical-hydraulic differential power flow shifted to the principle of analysis. Tractor and machinery from the two hydraulic power differential steering the steering characteristics, Analysis of three representative mechanical-hydraulic power-shift differential to the performance indicators and steering. Finally, the choice of a trailer company in the planetary bodies arrangements for the design, made arrangements to planetary bodies characteristic parameters of the principles, and the combination of the East-1302 R-rubber track tractor parameters for the design and performance analysis to campaign, Whole selected parameters to meet performance requirements.Keywords : tractor-mechanical hydraulic power flow differential steering mechanism design目录第一章绪论........... ...... .. (1)第二章方案分析 (4)§2.1转向性能........... ...... ............... (4)§2.2评价指标........... ...... ............... (4)§2.3卡特.小松.一拖公司三种产品方案的比较........ ..5第三章设计计算 (7)§3.1行星齿轮的设计计算. .... (7)§3.1.1选取行星齿轮传动的传动类型和传动简图 (7)§3.1.2进行行星齿轮传动的配齿计算......... ...... (7)§3.1.3初步计算齿轮的主要参数........ .. ........ . (8)§3.1.4几何尺寸计算... .... ... ... .... ... ... .... .9§3.1.5行星齿轮传动装配条件的验算. ... ... .... .. . .. .11§3.1.6计算行星齿轮传动的效率 ... ... .. ... . ... .11 §3.2 最终传动部分的设计计算.. (12)§3.2.1最终传动比齿轮的设计计算.............. (12)§3.2.2最终传动比齿轮的尺寸计算............... (13)§3.2.3最终传动齿轮上短支撑轴的设计计算 (14)§3.3 液压马达部分的设计计算......... . (14)§3.3.1液压马达输出端齿轮的设计计算 (14)§3.3.2液压马达输出端齿轮的尺寸计算......... (15)第四章校核计算.. .. ... ... .. .. ... ... .. .. ... (17)§4.1 行星齿轮传动的校核计算... ... .. ... .. .. ... (17)§4.2 最终传动部分的校核计算... ... .. ... .. .. ... (19)参考文献 (21)致谢 (22)第一章绪论履带作为车辆的行走机构既加强了车辆离开道路的越野能力,也增大了车辆的负重能力。