推荐中考数学专题复习卷有理数(含解析)
- 格式:doc
- 大小:140.50 KB
- 文档页数:7
2019届中考数学复习单元测试卷:第一单元--有理数(解析版)(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一单元有理数一、填空题(本大题共4小题,每小题5分,共20分)1.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破0000元,将数字0000用科学记数法表示为.2.某商店出售的某种品牌的面粉袋上,标有质量为(50±)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.3.p在数轴上的位置如图所示,化简:|p+1|﹣|p﹣2|=.4.若x与y互为相反数,m是绝对值最小的数,则2019x+2019y+m=.二、选择题(本大题共10小题,每小题4分,共40分)5.﹣2019的相反数是()A.﹣2019 B.﹣C.2019 D.6.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个7.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元8.下列计算正确的是()A.﹣(﹣3)=﹣3 B.﹣|﹣3|=﹣3 C.﹣(+3)=3 D.﹣|﹣3|=3 9.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1 B.5 C.6 D.810.下列计算正确的是()A.﹣6+4=﹣10 B.0﹣7=7C.﹣﹣(﹣)=D.4﹣(﹣4)=011.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450 D.2!12.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大13.定义一种新运算:a※b=,则2※3﹣4※3的值()A.5 B.8 C.7 D.614.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是63,则m的值是()A.5 B.6 C.7 D.8三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27).(2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣,﹣21,π,,,15%;正数集合:{…},负整数集合:{…},分数集合:{…}非正数集合:{…}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地为什么20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:船型两人船(仅限两人)四人船(仅限四人)六人船(仅限六人)八人船(仅限八人)每船租金(元/小时)100130(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.填空题(共4小题)1.【解答】解:将0000用科学记数法表示为:×1011.故答案为:×1011.2.【解答】解:根据题意得:标有质量为(50±)的字样,∴最大为50+=,最小为50﹣=,故他们的质量最多相差千克.故答案为:.3.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.4.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.二.选择题(共10小题)5.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.6.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.7.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.8.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.9.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.10.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣﹣(﹣)=﹣+=,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.11.【解答】解:==50×49=2450 故选:C.12.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.13.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.14.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣,,,15%…}非正数集合:{﹣2,﹣2,0,﹣,﹣21…}故答案为:5,π,,,15%,﹣2,﹣21,﹣2,﹣,,,15%,﹣2,﹣2,0,﹣,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:两人船四人船六人船八人船共花费方案一9810方案二3390方案三14490方案四12390…两人船四人船六人船八人船共花费最省钱方案11138011。
中考数学专题复习:有理数一.选择题(共10小题)1.下列各式中,结果是100的是( )A .-(+100)B .-(-100)C .-|+100|D .-|-100| 2.近似数1.7万精确到( ) A .百位B .千位C .十分位D .百分位3.将数据9899万用科学记数法表示为( )A .98.99×105B .9.899×106C .9.899×107D .0.9899×108 4.一张厚度为1mm 的足够大的正方形纸,假设能对折24次,那么折纸后的高度就远远超过珠穆朗玛峰.如果将上述正方形纸对折12次,那么折纸后的总厚度为( )A .234mmB .1×1012mmC .2×1012mmD .212mm5.A 点为数轴上表示-2的点,则距A 点4个单位长度的点所表示的数为( ) A .2 B .-6 C .2或-6 D .-4或4 6.数轴上,点A 对应的数是-6,点B 对应的数是-2,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .PQ=2OQB .OP=2PQC .3QB=2PQD .PB=PQ 7.81-的倒数的相反数是( ) A .8 B .-8 C .81 D .81-8.52的倒数是( )A .0.4B .2.5C .4D .52-9.下列计算中,结果等于5的是( )A .|(-9)-(-4)|B .|(-9)+(-4)|C .|-9|+|-4|D .|-9|+|+4|10.计算(-9)×31的结果是( )A .3B .27C .-27D .-3二.填空题(共7小题)11.如果80m 表示向东走80m ,则向西走60m 表示为________m .12.已知整数a ,b ,c ,d 的绝对值均小于5,且满足1000a+100b 2+10c 3+d 4=2021,则abcd 的值为________.13.近似数5.50万精确到________位,有________个有效数字.14.计算:35×()552-÷⎪⎪⎭⎫ ⎝⎛-=________.15.若m 、n 互为相反数,x 、y 互为倒数,则2021m+2021n-xy2022=________. 16.|2x-4|+|x+2y-8|=0,则(x-y )2021=________.17.有理数a 、b 在数轴上的位置如图所示,|a-b|-|b|化简的结果为________.三.解答题(共5小题) 18.计算:(1)-(-4)+(-1)-(+5); (2)⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛-÷316525; (3)-14+|5-8|+27÷(-3)×31; (4)()36436531-⨯⎪⎪⎭⎫⎝⎛+-; (5)(5)[2-(2-2.4×32)]×[-32-(-2)3].19.在学习有理数时我们清楚,|3-(-1)|表示3与-1的差的绝对值,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离;同理|x 一5|也可以理解为x 与5两数在数轴上所对应的两点之间的距离,试探索并完成以下题目. (1)分别计算|8-(-3)|,|-3-5|的值.(2)如图,x 是1到2之间的数(包括1,2),求|x-1|+|x-2|+|x-3|的最大值.20.已知a 、b 互为相反数,m 、n 互为倒数,求3mn 8b225a 2-+-的值.21.光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,地球与太阳的距离约是多少米?22.观察下列两个等式:2+2=2×2,3×23 =3+23,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a ,b 为“有趣数对”,记为(a ,b ),如:数对(2,2),⎪⎪⎭⎫⎝⎛23,3都是“有趣数对”. (1)数对(0,0),(5,35)中是“有趣数对”的是________;(2)若(a ,43)是“有趣数对”,求a 的值; (3)若(a 2+a ,4)是“有趣数对”,求3-2a 2-2a 的值.参考答案11.-6012.±413.百31414.515.-202216.-117.-a18.(1)-2;(2)1;(3)-1;(4)-9;(5)-1.6.19.(1)11;8;(2)3.20. -521.1.5×1011米.122.(1)(0,0);(2)-3;(3)3。
益阳中考)四个实数﹣,,中,比.﹣.解:根据负数都小于零可得,﹣<.﹣2.倒数3.相反数(1)概念:只有符号不同的两个数叫做互为相反数。
(2)意义:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”结果为负,有偶数个“﹣”,结果为正。
(4)规律方法总结:求一个数相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
【热点题型精练】7.(2022•黄石中考)的绝对值是( )A.1﹣B.﹣1C.1+D.±(﹣1)解:1﹣的绝对值是﹣1;答案:B.8.(2022•无锡中考)﹣的倒数是( )A.﹣5B.C.﹣D.5解:﹣的倒数为﹣5.答案:A.9.(2022•宁波中考)﹣2022的相反数是( )A.﹣B.C.﹣2022D.2022解:﹣2022的相反数是2022,答案:D.10.(2022•黔东南州中考)下列说法中,正确的是( )A.2与﹣2互为倒数B.2与互为相反数C.0的相反数是0D.2的绝对值是﹣2解:A选项,2与﹣2互为相反数,故该选项不符合题意;B选项,2与互为倒数,故该选项不符合题意;C选项,0的相反数是0,故该选项符合题意;D选项,2的绝对值是2,故该选项不符合题意;答案:C.四、有理数比较大小及运算【高频考点精讲】1.有理数比较大小(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数。
两个负数比较大小,绝对值大的反而小。
(2)数轴比较:在数轴上,右边的点表示的数大于左边的点表示的数。
(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b。
2.有理数运算(1)运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。
中考数学有理数解答题(附答案)(1)一、解答题1.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足(1)A、B两点对应的数分别为 ________, ________;(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.2.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.5.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.6.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.7.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.8.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.9.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点(点C在线段AB上).例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.(1)数________所表示的点是(M,N)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?10.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)11.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.12.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。
中考数学有理数解答题专题练习(含答案)100一、解答题1.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足(1)A、B两点对应的数分别为 ________, ________;(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.4.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.5.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.6.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.7.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.8.(阅读理解):A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB 的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离CA是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.(知识运用):(1)如图1,表示数______和_______的点是(A,B)的好点;9.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019−x也必是这个集合的元素,这样的集合我们又称为黄金集合,例如{0,2019}就是一个黄金集合,(1)集合{2019}________黄金集合,集合{−1,2020}________黄金集合.(填“是”或“不是”) (2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.10.第1个等式:1- = ×第2个等式:(1- )(1- )= ×第3个等式:(1- )(1- )(1- )= ×第4个等式:(1- )(1- )(1- )(1- )= ×第5个等式:(1- )(1- )(1- )(1- )(1- )= ×······(1)写出第6个等式;(2)写出第n个等式(用含n的等式表示),并予以证明.11.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .12.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)13.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.14.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.15.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?16.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:17.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).18.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.19.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果: =________.20.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O 是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)-8;6(2)-2(3)解:①相遇前相距2个单位长度:t=[6-(-8)-2]÷(4+2)=1.5(秒)②相遇后相距2个单位长度:t=[6-(-8)+2]÷(4+2)=2(秒)解析:(1)-8;6(2)-2(3)解:①相遇前相距2个单位长度:t=[6-(-8)-2]÷(4+2)=1.5(秒)②相遇后相距2个单位长度:t=[6-(-8)+2]÷(4+2)=2(秒)综上所述:1.5秒或2秒后A、B两点相距2个单位长度.(4)解:AP+2OB-OP的值不会发生变化.∵OP=7t,OA=-8+4t,∴AP=7t-(-8+4t)=3t+8,∵OB=6+2t,∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,∴AP+2OB-OP的值不会发生变化,定值为20.【解析】【解答】(1)∵,∴a+8=0,b-6=0,解得:a=-8,b=6,故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,∴对折点表示的数是[6+(-8)]÷2=-1,∵-1与原点的距离是1,∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,故答案为:-2【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.2.(1)-9(2)5或-3(3)解: b+5 为负号,理由如下:∵点 A 在点 B 的右边且 ab<0 ,∴ b<0,a>0 ,∵ AB=8 ,∴,∴,∵ |a|<3解析:(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.3.(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案解析:(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.4.(1)解:以 B 为原点,点 A,C 所对应的数分别是, 1 ,以 C 为原点,;(2)解:【解析】【分析】(1)根据题意,若以 B 为原点时,分别写出点解析:(1)解:以为原点,点所对应的数分别是,,以为原点,;(2)解:【解析】【分析】(1)根据题意,若以为原点时,分别写出点A、C所表示的数,从而求出m;若以为原点,分别写出A、B所表示的数,从而求出m;(2)根据题意,分别求出A、B、C所表示的数,即可求出n的值.5.(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得, m=72 ,所以,OA= 212 ,点A在原点O的右侧,a的值为 212 .解析:(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,,所以,OA= ,点A在原点O的右侧,a的值为 .当A在原点的左侧时(如图),a=-综上,a的值为± .(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c= .当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,± .【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.6.(1)﹣24;﹣10;10(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,③当点P在AC的延长解析:(1)﹣24;﹣10;10(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,∴t=2s或5s时,P到A、B、C的距离和为40个单位.(3)解:当点P追上T的时间t1= .当Q追上T的时间t2= .当Q追上P的时间t3= =20,∴当<t<时,位置如图,∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,故答案为﹣24,﹣10,10.【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.7.(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a解析:(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值. 8.1|5(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①表示数________的点是(M,N)的好点;②表示数________的点是(N,M)的好点;(2)解析:1|5(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①表示数________的点是(M,N)的好点;②表示数________的点是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动.当t为何值时,P、A和B中恰有一个点为其余两点的好点?(1)2或10;0或(2)解:设点P表示的数为n,则①P为(A,B)的好点时,有:,解得:,则秒;②P为(B,A)好点时,有两种情况:当点P在A、B之间时,有:,解得:,则秒;当点P在A点左边时,有:,解得:,则秒;③点B是(A、P)的好点时,有:,解得:,则秒;④点A是(B,P)的好点时,有:,解得:,则秒;⑤点A是(P,B)的好点时,有:,解得:,则秒.综合上述,当t为10秒或15秒或20秒或50秒或60秒或80秒时,P、A和B中恰有一个点为其余两点的好点.【解析】【解答】解:(1)设所求数为x,则①当好点在A、B之间时,有:,解得:;②当好点在B的右边时,有:,解得:;∴表示数1和数5的点是(A,B)的好点;故答案为:1;5.当好点在M、N之间时,有:,解得:;当好点在N的右边时,有:,解得:;∴表示数2或10的点是(M,N)的好点;故答案为:2或10;②设所求数为z,则当好点在M、N之间时,有:,解得:;当好点在M的左边时,有:,解得:;∴表示数0或的点是(N,M)的好点;故答案为:0或;【分析】(1)设所求数为x,可分为:①当好点在A、B之间;②当好点在B点右边,根据好点的定义,列出方程,解方程即可;(2)①与(1)同理,可分为好点在M、N之间和N的右边,两种情况进行计算即可;②与(1)同理,可分为好点在M、N之间和点M 的左边,两种情况进行计算即可;(3)根据好点的定义可知分五种情况:①P为(A,B)的好点;②P为(B,A)的好点;③点B是(A、P)的好点;④点A是(B,P)的好点;⑤点A是(P,B)的好点;设点P表示的数为n,根据好点的定义列出方程,进而得出t的值.9.(1)不是;是(2)解:一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是−2000.∵2019−a中a的值越大,则2019−a的值越小,∴一个黄金集合中解析:(1)不是;是(2)解:一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是−2000.∵2019−a中a的值越大,则2019−a的值越小,∴一个黄金集合中最大的一个元素为4019,则最小的元素为:2019−4019=−2000.(3)解:该集合共有16个元素。
有理数一.选择题1. (xx·广西梧州·3分)﹣8的相反数是()A.﹣8 B.8 C.D.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2. (xx·广西梧州·3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. (xx·湖北江汉·3分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.4. (xx·湖北江汉·3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.5. (xx·湖北荆州·3分)如图,两个实数互为相反数,在数轴上的对应点分别是点A.点B,则下列说法正确的是()A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上【解答】解:∵点A.点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A.点B的距离相等,∴原点在线段AB的中点处,故选:B.6. (xx·湖北十堰·3分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.(xx·四川省攀枝花·3分)如图,实数﹣3.x、3.y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.8.(xx·云南省曲靖·4分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.9.(xx·云南省曲靖·4分)截止xx年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.10.(xx·辽宁省沈阳市)(2.00分)辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将81000用科学记数法表示为:8.1×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(xx·重庆市B卷)(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A.﹣1是负整数,故选项错误;B.0是非正整数,故选项错误;C.是分数,不是整数,错误;D.1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.12.(xx·辽宁省盘锦市)﹣的绝对值是()A.2 B.C.﹣D.﹣2【解答】解:||=.故选B.13.(xx·辽宁省盘锦市)某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5【解答】解:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6.故选A.14.(xx·辽宁省葫芦岛市) 据旅游业数据显示,xx年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 1.29×108.【解答】解:129000000=1.29×108.故答案为:1.29×108.15.(xx·辽宁省葫芦岛市) 如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选D.16.(xx·辽宁省抚顺市)(3.00分)﹣的绝对值是()A.﹣ B.C.﹣ D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣的绝对值是:.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.17.(xx·辽宁省阜新市)﹣xx的相反数是()A.﹣xx B.xx C.±xx D.﹣【解答】解:﹣xx的相反数是xx.故选B.18. (xx•呼和浩特•3分)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.19. (xx•呼和浩特•3分)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.20. (xx•乐山•3分)﹣2的相反数是()A.﹣2 B.2 C.D.﹣解:﹣2的相反数是2.故选B.21. (xx•广安•3分)﹣3的倒数是()A.3 B.C.﹣ D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.22. (xx•广安•3分)近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:65 000 000=6.5×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23. (xx•莱芜•3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.24. (xx•莱芜•3分)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()A.14.7×107B.1.47×107C.1.47×108D.0.147×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.47亿用科学记数法表示为1.47×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.25. (xx•陕西•3分)-的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.26.(xx·湖北咸宁·3分)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.27.(xx·吉林长春·3分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.28.(xx·吉林长春·3分)长春市奥林匹克公园即将于xx年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010 C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(xx·江苏常州·2分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.30.(xx·辽宁大连·3分)﹣3的绝对值是()A.3 B.﹣3 C.D.解:|﹣3|=﹣(﹣3)=3.故选A.31.(xx·江苏镇江·3分)0.000182用科学记数法表示应为()A.0182×10﹣3B.1.82×10﹣4C.1.82×10﹣5D.18.2×10﹣4【解答】解:0.000182=2×10﹣4.故选:B.32.(xx·湖北咸宁·3分)xx年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】123500000000的小数点向左移动11位得到1.235,所以 123500000000用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.填空题1. (xx·广西贺州·3分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为mm.【解答】解:0.00000029=2.9×10﹣7,故答案为:2.9×10﹣7.2. (xx·湖北十堰·3分)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为3.6×104km .【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:36000km=3.6×104km.故答案为:3.6×104km.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(xx·云南省昆明·3分)在实数﹣3,0,1中,最大的数是 1 .【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.4.(xx·云南省昆明·3分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(xx·云南省曲靖·3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m 时,水位的变化情况是﹣3m .【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.6.(xx·云南省·3分)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.(xx·云南省·3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(xx·浙江省台州·4分)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.9.(xx·辽宁省抚顺市)(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为8.27×109.【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8270000000=8.27×109,故答案为:8.27×109.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10. (xx•乐山•3分)计算:|﹣3|= .解:|﹣3|=3.故答案为:3.11. (xx•乐山•3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B 关于点A的对称点,则点C表示的数为.解:设点C所表示的数为x.∵数轴上A.B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.12.(xx·江苏镇江·2分)﹣8的绝对值是8 .【解答】解:﹣8的绝对值是8.13.(xx·江苏常州·2分)计算:|﹣3|﹣1= 2 .【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.(xx·江苏常州·2分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三.解答题1.2.3.4.5.6.7.8.9.10.11 / 11文档可自由编辑打印。
有理数一、单选题1.【湖南省娄底市中考数学试题】的相反数是()A. B. C. - D.【答案】C2.【山东省德州市中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市中考数学试题】计算的结果是()A. 0B. 1C. )1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省中等学校招生考试数学试题】)2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D8.【江苏省连云港市中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8.所以-8的绝对值是8.故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2.故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市中考数学试卷】)3的相反数是()A. 3B. )3C.D. )【答案】A14.【浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+))2)B. 2)))2)C. ))2)+2D. ))2))2【答案】B17.【江苏省连云港市中考数学试题】)8的相反数是()A. )8B.C. 8D. )【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市中考数学试题】-的相反数是()A. B. - C. D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-的相反数是.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市中考数学试题】-的相反数是) )A. -B. -C.D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市中考数学试题】3的相反数是()A. B. 3 C. )3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市中考数学试题】5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市中考数学试题】计算:=__________)分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)三、解答题28.【江苏省南京市中考数学试卷】如图,在数轴上,点)分别表示数).)1)求的取值范围.)2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。
中考数学有理数选择题(含答案)100一、选择题1.设实数a,b,c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x-a|+|x+b|+|x-c|的最小值为()A. B. |b| C. a+b D. -c-a 2.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A. 1个B. 2个C. 3个D. 4个3.a、b在数轴上的位置如图所示,则等于()A. -b-aB. a-bC. a+bD. -a+b4.已知有理数a,b,c,在数轴上的位置如图,下列结论错误的是()A. |a-b|=a-bB. a+b+c<0C. D. |c|-|a|+|-b|+|-a|=-c-b5.若x<0,则-│-x│+|-x-x|等于()A. 0B. xC. -xD. 以上答案都不对6.在数轴上表示有理数a,﹣a,﹣b-1的点如图所示,则()A. ﹣b<﹣aB. <C. >D. b-1<a 7.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( )A. 32019-1B. 32018-1C.D.8.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A. 1个B. 2个C. 3个D. 4个9.若a是负数,且|a|<1,则的值是()A. 等于1B. 大于-1,且小于0C. 小于-1D. 大于110.下列说法:①平方等于64的数是8;②若a.b互为相反数,则;③若|-a|=a,则(-a)3的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A. 0个B. 1个C. 2个D. 3个11.已知为实数,且,则代数式的最小值是()A. B. C. D.12.不相等的有理数a,b,c在数轴上的对应点分别是A,B,C,如果,那么点BA. 在A,C点的左边B. 在A,C点的右边C. 在A,C点之间D. 上述三种均可能13.已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B.C. ﹣2D.14.有理数a、b在数轴上的位置如图所示,且|a|<|b|,下列各式中正确的个数是()①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.A. 2个B. 3个C. 4个D. 5个15.已知有理数a,b,c在数轴上的位置如图所示,下列错误的是( )A. b+c<0B. −a+b+c<0C. |a+b|<|a+c|D. |a+b|>|a+c|16.2017减去它的,再减去余下的,再减去余下的,…依次类推,一直减到余下的,则最后剩下的数是( )A. B. C. D.17.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…,那么3+32+33+…+302018+32019的个位数字是( )A. 9B. 3C. 2D. 018.已知,,则的大小关系是()A. B. C. D.19.若,都是不为零的数,则的结果为()A. 3或-3B. 3或-1C. -3或1D. 3或-1或1 20.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20, 20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A. 1990B. 2068C. 2134D. 3024【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析: C【解析】【解答】解:∵ac<0,∴a,c异号,∴a<0,c>0又∵a>b>c,以及|c|<|b|<|a|,∴a>b>0>c>-b,又∵|x-a|+|x+b|+|x-c|表示到a,-b,c三点的距离的和,当x在表示c点的数的位置时距离最小,即|x-a|+|x+b|+|x-c|最小,最小值是a与-b之间的距离,即a+b.故答案为:C.【分析】根据有理数的乘法法则,由ac<0,得出a,c异号,再根据a>b>c,以及|c|<|b|<|a|,即可确定出a>b>0>c>-b,而|x-a|+|x+b|+|x-c|表示到a,-b,c三点的距离的和,根据数轴上所表示的数的特点即可得出当x在表示c点的数的位置时距离最小,从而即可得出答案.2.B解析:B【解析】【解答】①的绝对值是0,不是正数,也不是负数,命题错误;②正确;③对顶角相等,但相等的角不一定是对顶角,命题错误;④正确;⑤在同一平面内,不相交的直线叫做平行线,命题错误.选B【分析】根据绝对值的意义,以及对顶角的性质,垂线的性质即可作出判断3.D解析:D【解析】【解答】根据数轴可得:a-b<0,则 =-a+b.故D符合题意.故答案为:D.【分析】由数轴可知a<0,b>0,且|a|>b,可得a-b<0,再根据负数的绝对值等于它的相反数化简.4.C解析:C【解析】【分析】根据数轴上a,b,c的位置,分别分析可得.【解答】解:由已知可得:|a-b|=a-b;a+b+c<0;-c-b+a>0;|c|-|a|+|-b|+|-a|=-c-a-b+a=-c-b.故答案为:C【分析】根据数轴上a,b,c的位置,得到a-b>0;a+b+c<0;−c−b+ a>0;|c|=-c,|a|=a,|-b|=-b,|-c|=-c,再合并即可.5.C解析:C【解析】【解答】解:若x<0,则-x>0,-x-x>0所以,-│-x│+|-x-x|=-(-x)+(-2x)=-x故答案为:C【分析】根据绝对值的性质由x<0,得到=-x,=-2x,再化简即可.6.D解析: D【解析】【解答】解:观察数轴可知:a<-a<-b-1,∴a<0,a>b+1,,∴,故B错误;∵a>b+1,∴a>b,∴-a<-b,故A错误;∵0>a>b,∴,故C错误;∵a>b+1,∴a>b-1,∴b-1<a,故D正确.故选D.【分析】根据数轴上互为相反数的两个数分别位于原点的两侧,并且到原点的距离相等,数轴上所表示的数,右边的总比左边的大得出:b+1<a<0<-a<-b-1,再根据绝对值的几何意义,数轴上所表示的数离开原点的距离就是该数的绝对值,从而得出,再根据互为相反数的两个数的绝对值相等得出,根据所得出的结论即可一一判断四个答案。
【中考数学】有理数解答题专题练习(含答案)一、解答题1.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________2.大家知道,它在数轴上表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|= .根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是________;数轴上表示-2和-5的两点之间的距离是________.(2)点A、B在数轴上分别表示实数x和-1.①用代数式表示A、B两点之间的距;②如果 ,求x的值.(3)直接写出代数式的最小值.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.5.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.6.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.7.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.8.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。
中考数学真题知识分类练习试卷:有理数(含解析)【一】单项选择题1.【湖南省娄底市2019年中考数学试题】2019的相反数是〔〕A. B. 2019 C. -2019 D.2.【山东省德州市2019年中考数学试题】3的相反数是〔〕A. 3B.C. -3D.分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.应选C、点睛:此题考查了相反数,解决此题的关键是熟记相反数的定义.3.【山东省淄博市2019年中考数学试题】计算的结果是〔〕A. 0B. 1C. ﹣1D.【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,应选:A、点睛:此题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法那么.4.【山东省潍坊市2019年中考数学试题】( )A. B. C. D.分析:根据绝对值的性质解答即可.详解:|1-|=.应选B、点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2019年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.6.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是〔〕A. 0B. 1C.D. ﹣1分析:根据有理数的大小比较法那么〔正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小〕比较即可.详解:∵-1<-<0<1,∴最小的数是-1,应选D、点睛:此题考查了对有理数的大小比较法那么的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是〔〕A. 0B. 1C.D. ﹣18.【江苏省连云港市2019年中考数学试题】地球上陆地的面积约为150 000 000km2.把〝150 000 000〞用科学记数法表示为〔〕A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,应选:A、点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2019年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146 000用科学记数法表示为〔〕A. B. C.D.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.应选:A、点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2019年中考数学试题】的倒数是〔〕A. 4B. -4C.D. 16分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.应选:B、点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2019年中考数学试题】的绝对值是〔〕A. B. 8 C. D.【分析】根据绝对值的定义〝一个数的绝对值是数轴上表示这个数的点到原点的距离〞进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,应选B.【点睛】此题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【2019年重庆市中考数学试卷〔A卷〕】的相反数是〔〕A. B. C. D.【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,应选A.【点评】此题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2019年中考数学试卷】﹣3的相反数是〔〕A. 3B. ﹣3C.D. ﹣14.【2019年浙江省绍兴市中考数学试卷】如果向东走记为,那么向西走可记为〔〕A. B. C. D.分析首先审清题意,明确〝正〞和〝负〞所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.应选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2019年中考数学试题】计算的结果等于〔〕A. 5B.C. 9D.分析:根据有理数的乘方运算进行计算.详解:〔-3〕2=9,应选C、点睛:此题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2019年中考数学试题】假设数轴上点A、B分别表示数2、﹣2,那么A、B两点之间的距离可表示为〔〕A. 2+〔﹣2〕B. 2﹣〔﹣2〕C. 〔﹣2〕+2D. 〔﹣2〕﹣217.【江苏省连云港市2019年中考数学试题】﹣8的相反数是〔〕A. ﹣8B.C. 8D. ﹣详解:-8的相反数是8,应选:C、点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2019年中考数学试题】-2019的相反数是〔〕A. 2019B. -2019C.D.分析:只有符号不同的两个数叫做互为相反数.详解:-2019的相反数是2019.应选:A、点睛:此题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2019年中考数学试题】-的相反数是〔〕A. -B. -C.D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.应选C、点睛:此题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2019年中考数学试题】3的相反数是〔〕A. B. 3 C. ﹣3 D. ±详解:3的相反数是﹣3,应选C、点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市2019年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.22.【四川省成都市2019年中考数学试题】2019年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务〝鹊桥号〞中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为〔〕A. B. C. D.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.1万=10000=104.详解:40万=4×105,应选B、点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2019年中考数学试题】今年〝五一〞假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为〔〕A. B. C. D.【二】填空题24.【山东省德州市2019年中考数学试题】计算:=__________.分析:根据有理数的加法解答即可.点睛:此题考查了有理数的加法,关键是根据法那么计算.25.【湖北省黄冈市2019年中考数学试题】实数16 800 000用科学计数法表示为______________________.分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤| a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×1 0n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.点睛:此题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【三】解答题28.【江苏省南京市2019年中考数学试卷】如图,在数轴上,点、分别表示数、.〔1〕求的取值范围.〔2〕数轴上表示数的点应落在〔〕A、点的左边B、线段上C、点的右边。
有理数
一、选择题
1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )
A. -
4 B. 0
C. -
1 D. 3
2.计算:的结果是( )
A. -3 B. 0
C. -1
D. 3
3.下列各式不正确的是( )
A. |﹣2|=2 B. ﹣2=﹣|﹣
2| C. ﹣(﹣2)=|﹣
2| D. ﹣|2|=|﹣2|
4.零上13℃记作+13℃,零下2℃可记作( )
A. 2 B. -
2 C. -
2℃ D. 2℃
5.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000
用科学记数法表示为( )
A. 1.442×107 B. 0.1442×107
C. 1.442×108 D. 0.1442×108
6.比-1小2的数是( )
A. 3 B. 1
C. -2
D. -3
7.-2018的相反数是( )
A. 2018 B. -2018
C.
D.
8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法
(精确到十亿位),应表示为( )
A. 4.995×1010 B. 4.995×1011
C. 5.0×1010 D. 4
.9×1010
9.的绝对值是( ).
A. B.
C.
D.
10.-的倒数是( )
A. B. -
C.
D. -
11.下列各数中,绝对值最小的数是( )
A.πB.C.-2D.-
12.一个数的相反数小于它本身,这个数是( )
A. 正数 B. 负
数 C. 非正
数 D. 非负数
二、填空题
13.计算: =________.
14.根据如图所示的车票信息,车票的价格为________元.
15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.
16.计算:(﹣2)2=________.
17.实数16 800 000用科学计数法表示为________.
18.在有理数中,既不是正数也不是负数的数是________.
19.计算:20180-=________.
20.已知,则a+b=________
21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.
22.观察规律并填空.⑴⑵⑶
________(用含n的代数式表示,n 是正整数,且 n ≥ 2)
三、解答题
23.计算:
(1)﹣15+(﹣8)﹣(﹣11)﹣12
(2)
(3)
(4)﹣23+[(﹣4)2﹣(1﹣32)×3].
24. 计算:
(1)