口腔咀嚼模拟机器人机械设计及仿真
- 格式:doc
- 大小:1.67 MB
- 文档页数:36
仿生四足机器人步态规划与仿真研究1. 引言1.1 研究背景仿生四足机器人是一种模仿动物四足行走方式的机器人,具有良好的稳定性和适应性,被广泛用于恢复性医疗、紧急救援、军事作战等领域。
随着人工智能和机器人技术的不断发展,仿生四足机器人的研究也变得越来越重要。
在仿生四足机器人的步态规划和仿真研究中,如何设计出稳定且高效的行走模式成为研究的重点之一。
近年来,随着计算机仿真技术的不断进步,仿生四足机器人的步态规划和仿真研究取得了一系列重要进展。
通过计算机模拟仿生四足机器人的步态和动作,研究人员可以更好地了解机器人行走时的力学特性和运动规律,为机器人的控制和优化提供有力支持。
本文将对仿生四足机器人步态规划与仿真研究进行深入探讨,旨在为仿生四足机器人的设计与控制提供理论支持和实验基础。
通过对步态规划算法、仿真模型建立、实验结果分析以及研究展望和应用前景的讨论,将全面展示仿生四足机器人的发展现状和未来发展方向,为相关领域的研究工作提供有益参考。
1.2 研究目的研究目的是为了解决传统固定步态规划方法在应对复杂环境和不确定性时存在的不足之处,提高仿生四足机器人的运动稳定性和适应性。
通过研究仿生四足机器人的步态规划算法,探索其在不同地形和工作条件下的运动模式,为其设计提供更加智能和高效的运动策略。
通过建立仿真模型,验证步态规划算法的有效性,并进一步探索优化算法。
研究将通过实验结果来验证仿生四足机器人步态规划算法的可行性和有效性,为进一步开发基于仿生原理的机器人提供参考和借鉴。
通过深入研究仿生四足机器人的步态规划与仿真,探讨未来在智能机器人领域的发展方向和挑战,为该领域的研究提供新的思路和方法。
1.3 研究意义仿生四足机器人的研究意义主要体现在以下几个方面:1. 提高机器人的稳定性和适应性:仿生四足机器人可以模仿动物在不同地形上行走的方式,通过合理的步态规划算法,可以使机器人在复杂环境中保持稳定,提高其适应性和灵活性。
机械设计创新案例随着科技的不断进步和社会的不断发展,机械设计领域也在不断创新和突破。
本文将介绍一些机械设计领域的创新案例,展示了人们在机械设计方面的创造力和创新能力。
一、智能机器人助力生产智能机器人是机械设计领域的一个重要创新。
通过引入人工智能技术和自动化控制系统,智能机器人可以在生产线上完成各种复杂的任务,提高生产效率和产品质量。
例如,某公司开发了一款智能机器人,可以在汽车生产线上完成车身焊接、喷漆等工作,取代了传统的人工操作,大大提高了生产效率和产品质量。
二、轻量化设计提升能源效率随着能源紧缺和环境污染的日益严重,轻量化设计成为了机械设计领域的一个重要创新方向。
通过采用新的材料和结构设计,可以减轻机械设备的重量,提高能源利用效率。
例如,某公司研发了一款轻量化的风力发电机,采用了新型的复合材料和结构设计,使得发电机的重量减轻了50%,同时提高了发电效率,降低了能源消耗。
三、模拟仿真优化设计模拟仿真技术是机械设计领域的又一项重要创新。
通过建立机械系统的数学模型,可以对系统进行仿真分析和优化设计,提高设计的准确性和效率。
例如,某公司在设计一款新型的汽车发动机时,采用了模拟仿真技术,通过对发动机的燃烧过程、传动系统等进行仿真分析和优化设计,使得发动机的燃烧效率提高了20%,同时降低了排放物的产生。
四、智能控制系统提升安全性智能控制系统是机械设计领域的又一项重要创新。
通过引入传感器、数据处理和自动化控制技术,智能控制系统可以对机械设备进行实时监测和控制,提高设备的安全性和可靠性。
例如,某公司开发了一款智能控制系统,可以对工厂的各种机械设备进行实时监测和故障诊断,及时采取措施,避免了设备故障和事故的发生,提高了工作场所的安全性。
五、可持续设计促进环保可持续设计是机械设计领域的一个重要创新方向。
通过考虑产品的整个生命周期,从材料选择、制造过程到使用和废弃处理,可持续设计可以减少资源的消耗和环境的污染。
例如,某公司设计了一款可拆卸的家电产品,用户可以根据自己的需求进行组装和拆卸,延长产品的使用寿命,减少了废弃物的产生,同时提高了产品的可持续性。
信 息 技 术DOI:10.16661/ki.1672-3791.2019.21.025基于RobotStudio的机器人码垛工作站虚拟仿真设计研究孙红英(兰州石化职业技术学院 甘肃兰州 730060)摘 要:在机器人仿真方面,RobotStudio得到了有效运用。
基于这种认识,该文采用RobotStudio对机器人码垛工作站的虚拟仿真设计方法进行了分析,完成了工作站的布置,对输送链组件设计和信号连接方法展开了探讨,并完成了信号板卡和工作站的工作逻辑设计,最终实现了机器人的控制仿真。
从仿真结果来看,设计的工作站能够顺利完成码垛作业,并且作业效率较高,旨在为有关人士提供参考与借鉴。
关键词:RobotStudio 机器人码垛工作站 虚拟仿真设计中图分类号:TP391 文献标识码:A 文章编号:1672-3791(2019)07(c)-0025-02在现代工业中,机器人得到了广泛应用。
在生产包装线上,码垛机器人属于后续设备,能够按照预定编组将产品码放在托盘或箱体内,实现产品高效运转和生产。
但就目前来看,机器人码垛工作站设计普遍存在效率低和精度低的问题,无法满足实际生产需求。
因此,还应加强机器人码垛工作站的虚拟仿真设计,以便通过观察机器人动作加强机器人控制。
1 RobotStudio虚拟仿真软件RobotStudio虚拟仿真软件由ABB公司开发,属于PC软件,能够在各类ABB工业机器人上适用,实现机器人单元建模、离线创建和虚拟仿真分析。
实际进行机器人系统设计时,采用该软件进行离线仿真,能够对设计出的系统进行试运行。
利用软件,能够实现CAD文件的导入,并且实现路径自动生成和自动分析伸展,完成碰撞检测和模拟仿真,从而为系统二次设计提供支持[1]。
此外,软件提供的工业机器人环境能够与真实环境相对应,因此采用软件建立工作站和进行机器人调试能够完成实际应用验证。
2 基于RobotStudio的机器人码垛工作站虚拟仿真设计2.1 工作站布局分析采用RobotStudio进行机器人码垛工作站布局,可以PLC为核心控制模式,将控制柜放置在仅靠生产线外围栅栏的外侧。
综合理论课程教育研究278学法教法研究智能机器人仿真系统设计分析郑秀丽1 王 辉2(浙江工贸职业技术学院 浙江 温州 325000)随着遥测技术以及虚拟仪器的日趋成熟,智能机器人的发展也越来越完善。
目前,机器人的科技水平越来越高,而且也越来越广泛的应用到人们的日常生产和生活当中,因此人们对于智能机器人的要求也越来越高,尤其是其仿真性。
从现状来看,在进行智能机器人的仿真系统构建时,仍然存在一些不完善的地方。
机器人的仿真仍然是构建数学模型及形式化仿真,而对机器人运动控制的动态和静态特性尚无法准确把握。
为了有效改善这一缺陷,本文将对智能机器人的仿真系统设计提出新的思路,以期可以使智能机器人的仿真性能够得到更好的实现。
一、系统构成仿真系统是由多个部分组成的,其中包括主控制界面、仿真界面、人工控制和智能控制模块及障碍检测系统等部分。
而人工控制和智能控制模块是其设计的重点。
在系统当中,障碍检测功能是必不可少的一项功能,障碍检测所提供的数据会被作为机器人下一步行动的重要依据。
而当人工控制模式运行时,障碍检测功能虽然也会进行,但不会影响机器人的行动,这主要是为了将数据更加清晰的提供给控制者。
主控制界面和仿真界面是分开的,这样不但可以更加有利于机器人的控制,也能够使外观更加的美化。
系统组成框图二、Robotics机器人工具包Lab VIEW Robotics是机器人开发的工具包,以Lab VIEW 为基础。
Lab VIEW Robotics主要的作用是驱动机器人的执行器与传感器,同时有利于更加复杂的导航。
在Lab VIEW中,控制算法的设计对于软件开发环境的要求是较低的。
仿真系统的驱动程序由红外遥感、激光雷达、GPS系统等内容构成。
一般来说,常见的结构体系为“感知—思考——行动”,Lab VIEW的数据流特性适用于机器人设计。
在系统当中,传感器可以被看作是其核心部分之一,可以使机器人进行环境的优化设计,进而通过决定性算法,从而控制机器人的行为。
基于 RobotStudio搬运机器人智能工作站仿真设计摘要:本文以ABBIRB2600工业机器人为载体,设计了基于RobotStudio的搬运机器人智能工作站。
该工作站机械部分由自动输送装置、搬运机器人、计数器、扫描仪组成。
软件部分选用DSQC651通讯板卡设置I/O信号,通过示教器编写运动指令、赋值指令、条件判断指令,进行搬运控制。
利用事件管理器控制吸盘的进气与充气信号,完成货物抓取与释放的搬运工作。
最后,通过TCP跟踪功能,完成搬运系统的轨迹检验,确保搬运工作的流畅性。
搬运机器人工作站的设计有效的提升了企业的工作效率,缓解用人压力。
关键词:搬运机器人;RobotStudio;工作站;AGV中图分类号:TG409 文献标识码:A目前,中国制造业的“人口红利”不断消失,劳动力价格逐渐上涨,在机械、电子、物流等劳动强度大的企业,招工难成为了阻碍发展的头等问题[1]。
传统的物流搬运模式,是依靠人工进行扫码、计件、搬运、装车的作业方式,花费时间长,高负荷的重复性操作,会导致劳动效率低且易出现工作事故[2]。
为了帮助企业解决人力不足、生产效率低的问题,发展具有灵活性高、通用性强、工作可靠的搬运机器人已成为必然趋势。
搬运机器人通常是指在某一工作环境下,通过一定的程序控制,实现自身运行以及货物的自动抓取与释放,进而完成相应的搬运任务[3]。
搬运机器人的路径规划与控制系统的研究,对加快货物入库、出库速度,提升自动化水平具有十分重要的意义。
1搬运机器人智能工作站的实现1.1RobotStudio仿真平台ABB公司的RobotStudio离线编程仿真软件,具有CAD导入、机器人离线示教编程、动态仿真等功能,可以在离线的情况下进行机器人轨迹规划及程序编写[3]。
离线编程软件中的机器人本体参数、控制器都与实际是一样,I/O仿真信号、指令程序、控制信号与实际机器人在生产线运行也是一致。
因此,RobotStudio软件编写的程序可以导入到现场工业机器人中运行,从而模拟真实的工作环境,实现仿真测试,用于方案验证[4]。
实验报告(理工类)课程名称: 机器人创新实验课程代码: 6003199 学院(直属系): 机械学院机械设计制造系年级/专业/班: 2010级机制3班学生姓名: 学号: 实验总成绩: 任课教师: 李炜开课学院: 机械工程与自动化学院实验中心名称: 机械工程基础实验中心一、设计题目工业机器人设计及仿真分析二、成员分工:(5分)三、设计方案:(整个系统工作原理和设计)(20分)1、功能分析工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。
本次我们小组所设计的工业机器人主要用来完成以下任务:(1)、完成工业生产上主要焊接任务;(2)、能够在上产中完成油漆、染料等喷涂工作;(3)、完成加工工件的夹持、送料与转位任务;(5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)2、总体方案设计按机械手手臂的不同形式及组合情况其活动范围也是不同的,基本上可以分为四种运动形式:直角坐标式、圆柱坐标式、球坐标式、关节坐标式。
第1章绪论全套完整版19张CAD图纸,联系1538937061.1 概述据报道,我国60岁以上的老年人已有1.43亿,占全国人口的11%,到2050年将达到4.37亿。
在老龄人群众中有大量的脑血管疾病或神经系统疾病患者,这类患者多数伴有偏瘫症状[1]。
近年由于患心脑血管疾病使中老年患者出现偏瘫的人数不断增多,而且在年龄上呈现年轻化趋势。
与此同时,由于交通运输工具的迅速增长,因交通事故而造成神经心痛损伤或者肢体损伤的人数也越来越多。
在我国数以百万计的有神经科疾病病史和受到过意外伤害的患者需要进行康复治疗,仅以中风为例,每年大约有600,000中风幸存者,其中的二百万病人在中风后存在长期的运动障碍。
随着国民经济的发展,这个特殊群体已得到了更多人的关注,为了提高他们的生活质量,治疗、康复和服务于他们的产品的技术和质量也在相应地提高。
随着机器人技术和康复医学的发展,在欧洲、美国和日本等国家,医疗康复机器人的市场占有率呈逐年上升的趋势,仅预测日本未来机器人市场,2005年医疗、护理、康复机器人的市场份额约为250,000美元,而到2010年将上升到1,050,000美元,其增长率在机器人的所有应用领域中占据首位。
因此,服务于四肢的康复设备的研究和应用有着广阔的发展前景[2]。
康复机器人是康复设备的一种类型。
康复机器人技术早已广受世界各国科研工作者和医疗机构的普遍重视,其中以欧美和日本的成果最为显著。
在我国康复医学工程虽然得到了普遍的重视,而康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化的康复机器人的需求,有待进一步的研究和发展。
由于康复训练机器人要与人体直接相连,来带动肢体进行康复训练,所以对驱动器的安全性、柔性的要求较高。
康复肢体运动功能用机械肢体组合系列机器人,是多种同类机器人属于机器人领域,解决了本人发明的实用新型专利半身不遂患者康复学步机,只能带动人的大小臂大小腿康复运动功能,而不能带动手脚各关节运动的重大不足,主要技术特征是将半身不遂患者康复学步机略加改进后,在学步机的小臂绞链杆上安装了可以带动人手腕关节手指各个关节都能运动的机械手托板,在小腿铰链杆上安装了可以带动人脚踝脚指各个关节都能运动的机械脚托板后实现的,用途是康复肢体运动功能,带动患肢的各个关节、每块骨骼、每块肌肉、每个筋键、每条神经都在作患者万分渴望而大脑又支配不了的动作,通过较长时间的被动运动锻炼,最终使残疾人患肢的主动运动功能得到康复。
2014年第12期47焊接机器人是从事焊接(包括切割与喷涂)的工业机器人。
根据国际标准化组织(ISO)工业机器人术语标准焊接机器人的定义,工业机器人是一种多用途的、可重复编程的自动控制操作机(Manipulator),具有三个或更多可编程的轴,具有生产效率高且产品品质稳定,劳动力成本低廉,操作环境好等优点,主要用于工业自动化领域。
随着社会的发展,我国已经出现了人口老龄化,劳动力成本不断上升。
随着国内外机械行业竞争的不断加剧,对产品的质量要求更严格,焊接方式也急需由传统的手工焊接逐渐由传统的人工焊接转变向机器人焊接。
国外厂商如FANUC、OTC、ABB和KUKA等对焊接机器人的研究较早,已经形成了系列化产品并投放占领大部分的国内外市场份额。
国内在近几年才开始进行机器人技术的研究,起步较晚,机器人的性能和技术都和国外厂商有一定的差距。
因此,国内市场也需要在借鉴国外同类型焊接机器人优点的基础上,立足于现有的加工制造业水平,从解决实际问题的角度出发,研究开发出满足中小企业实际需要的经济型可靠型焊接机器人。
SOLIDWORKS2014是由美国SOLIDWORKS公司研究开发的基于造型的三维机械设计软件,其特点是易学易用,在企业内部推广成本低,SOLIDWORKS Motion是嵌在SOLIDWORKS中的运动仿真模块,依托其强大的运动分析功能,能比较精确地对焊接机器人进行工件运动位置及运动参数的计算,并以动画的形式计算出虚拟现实的动画演示,能很直观地解决六自由度焊接机器人的运动规律问题。
通过建立虚拟仿真环境进行机器人的仿真实验研究,可以大幅度降低实验成本,提高实验效率,在运动状态下进行运动仿真,能有效地检查机器人本体结构设计的合理性等,对实际样机的设计具有重要的参考和指导价值。
一、机器人本体结构设计1.机器人设计参数根据各种工况,焊接机器人可设定不同的运行程序,在工作状态中兼备高速动态响应和良好的低速稳定性的优点,在控制性能方面可以实现连续轨迹控制和点位控制。
苹果采摘机器人的机构设计及运动仿真苹果采摘机器人的机构设计及运动仿真近年来,农业机器人的发展迅猛,为农业生产带来了许多便利。
其中,苹果采摘机器人在果园管理中发挥着重要的作用。
本文将探讨苹果采摘机器人的机构设计及运动仿真。
一、机构设计苹果采摘机器人的机构设计需要充分考虑机器人在果园中应对多变环境的能力和采摘苹果的效率。
机构设计应具备以下几个方面的功能:1. 机器人的底盘结构:底盘结构应具备良好的机动性和稳定性,以适应果园地形的不规则性。
采用全地形底盘或者装备可调节高度的轮子,可以让机器人在果园中灵活行走。
2. 机械臂的设计:苹果采摘机器人的机械臂需要具备足够的力量和灵活性,以保证苹果能够准确、迅速地被采摘下来。
机械臂的设计可以参考人手的运动方式,同时结合工程学原理和材料力学的知识,确定机械臂的长度和关节的自由度。
3. 采摘装置的设计:苹果采摘机器人的采摘装置需要具备适应果实不同大小和形状的能力。
可以通过视觉传感器和机器学习算法,实时获取苹果的信息,根据苹果的位置和形态动态调整采摘装置的形状和力度。
二、运动仿真运动仿真是设计苹果采摘机器人的重要环节,通过仿真可以评估和优化机器人的运动性能和操作效率。
以下是运动仿真的几个关键点:1. 运动轨迹规划:通过运动轨迹规划,确定机器人在果园中的行进路线和采摘路径。
车辆动力学和动力学模型可以与果树的空间模型相结合,实现机器人在三维空间中的仿真。
2. 运动学分析:苹果采摘机器人的运动学分析可以确定各关节的位置、速度和加速度等运动参数。
通过运动学仿真,可以模拟机械臂的动作,验证机械臂在采摘过程中的稳定性和准确度。
3. 碰撞检测和安全评估:在仿真中进行碰撞检测和安全评估,可以避免机器人在运行过程中发生碰撞和意外情况。
通过虚拟环境的搭建和模拟苹果采摘的场景,可以检测机器人在采摘过程中可能产生的冲突和风险。
三、结语苹果采摘机器人的机构设计及运动仿真是实现机器人自动采摘苹果的重要步骤。
四足仿生机器人毕业设计四足仿生机器人毕业设计1.引言仿生机器人是一种模仿生物特征和行为的机器人系统,具有广泛的应用潜力。
四足仿生机器人是仿生机器人领域的一个重要分支,模仿动物四肢的运动和行为。
在毕业设计中,设计和构建一个四足仿生机器人是一个具有挑战性和有趣的任务。
2.背景介绍四足仿生机器人的发展可以追溯到50多年前。
随着传感器技术、材料科学和机械设计的进步,四足仿生机器人的功能和性能不断提高。
它们被广泛用于军事、探索、救援和娱乐等领域。
3.设计目标与需求在设计四足仿生机器人的过程中,需要明确的设计目标和需求。
设计目标可以包括机器人的行走稳定性、速度和灵活性等。
需求可以根据最终应用来确定,例如室内移动、户外探索或者危险环境救援等。
4.机械设计与材料选择在机械设计方面,需要考虑机器人的结构和关节设计,以实现生物四肢的运动。
材料选择也是一个关键因素,因为材料的轻便性、强度和耐用性会直接影响机器人的性能和寿命。
5.传感器与控制系统传感器是四足仿生机器人的重要组成部分,它们用于感知环境、检测位置和姿态等信息。
控制系统则负责处理传感器数据并控制机器人的运动。
在设计中,需要选择适合的传感器和控制算法来实现所需的功能。
6.动力系统动力系统是四足仿生机器人的动力源,它可以采用电池、液压或空气动力等各种方式。
在选择动力系统时,需要考虑机器人的功耗和工作时间等因素。
7.算法与控制算法与控制是实现机器人运动和行为的核心部分。
在设计中,需要开发适应四足仿生机器人的算法,包括运动规划、姿态控制和避障等。
8.实现与测试在完成机器人的设计和制造后,接下来需要进行实现和测试。
可以通过模拟仿真和物理实验来验证机器人的性能和功能。
9.分析与改进针对实现和测试过程中出现的问题,需要进行分析和改进。
可以通过数据分析和性能评估来优化机器人的设计和算法。
10.应用与展望四足仿生机器人在军事、探索、救援和娱乐等领域有着广泛的应用前景。
随着技术的不断进步,可以预见它们在未来将开展更加复杂和精细化的任务。
以“智能制造”为主攻方向,为我国发展成现代化工业强国描绘了清晰的路线[1]。
工业自动化是推动工业4.0的重要前提之一,也是必要因素,而工业自动化主要体现在机械制造和电气工程领域,导致众多机械和电气相关厂商纷纷开展了智能制造方面的研究。
目前全球众多优秀制造企业都开展了数字化工厂建设的实践。
FANUC公司实现了机器人和伺服电机生产过程的高度自动化和智能化;施耐德电气实现了电气开关制造和包装过程的全自动化。
国内也涌现出海尔、美的、东莞劲胜、尚品宅配等智能工厂建设的样板,如海尔佛山滚筒洗衣机工厂、尚品宅配实现了从款式设计到构造尺寸的全方位个性定制等。
但目前数字化工厂仍存在较多缺点[2]:(1)盲目购买自动化设备和自动化产线。
认为推进智能工厂就是自动化和机器人化;(2)尚未实现设备数据的自动采集和车间联网,导致依然存在大量信息化孤岛和自动化孤岛;(3)尚未具备快速建厂的技术条件,使得工厂建设过程周期漫长。
究其原因,数字化制造工厂系统复杂,工厂的完善仍需要较长时间。
而目前数字化工厂所存在的共性缺陷中、不能快速建厂是其最致命的缺陷,这是数字化工厂高度智能化导致工厂建设漫长与产品为抢占市场需要缩短上市周期之间的矛盾。
缩短智能工厂开发周期对提高产品市场占有率具有重要意义。
1 半实物虚拟仿真系统整体设计目前,市场上已有的工业机器人由于应用场景的不同,种类很多,其特点也是各有千秋。
本文拟设计一种基于工业机器人的半实物虚拟仿真系统,通过对市场同类产品的特点分析,在系统控制方面进行了优化设计;在末端夹具方面创新设计了一种通用型多功能抓手[3];在软件仿真和测试环节,该研究采用了Visual C++、CAD和DH模型进行开发。
目前项目已经具备了数字化工厂虚拟互联调试的基础技术,已经可以通过仿真环境下物理的PLC[4]、HMI等自动化设备的结合,完成对PLC程序和机器人程序的联合调试,在施工前即可实现设计和程序的提前验证,具有了虚拟互联调试的基本框架系统。
一种新型球形机器人虚拟样机的设计及运动仿真刘欢;张云伟;代进轮【摘要】提出了一种采用双齿轮齿条传动机构的新型球形机器人设计方案,该方案在球形机器人同一直径方向上安装两组齿轮齿条传动机构作为内部驱动装置,论文详细介绍了该球形机器人的机械结构,并通过受力分析对其直线运动和转弯运动的运动原理进行了理论分析.联合使用SOLIDWORKS和ADAMS,建立了球形机器人的虚拟样机并进行运动仿真.受力分析和运动仿真结果验证了该球形机器人结构的可行性,为物理样机后期制作提供依据.【期刊名称】《软件》【年(卷),期】2017(038)010【总页数】6页(P23-28)【关键词】球形机器人;ADAMS;虚拟样机;运动仿真【作者】刘欢;张云伟;代进轮【作者单位】昆明理工大学信息工程与自动化学院,云南昆明 650500;昆明理工大学信息工程与自动化学院,云南昆明 650500;昆明理工大学信息工程与自动化学院,云南昆明 650500【正文语种】中文【中图分类】TP391.9;TP24球形机器人由内部驱动装置和球形外壳组成,运动方式是滚动。
具有空间占比低、运动转弯灵活、行驶阻力小、抗倾翻能力强的优点,适合行驶在各种恶劣环境中,备受国内外研究者的关注。
Halme等[1]设计出来世界上第一个球形机器人,内部驱动单元是一个驱动轮,通过驱动轮在球壳内部的滚动改变配重中心位置来驱动球体前后运动,Bicchi等[2]人将内部驱动装置换成二轮小车,这两种结构的内部驱动装置与内球面直接接触,容易出现打滑的情况。
Javadi等[3]人设计了一种名为“August”的球形机器人,该球形机器人的内部驱动机构是四根呈正面体结构的丝状轮辐组成,每个轮辐上装有配重块,通过配合改变每个轮辐上的配重位置来使系统运动,北京邮电大学孙汉旭等[4]研制的 BYQ3机器人通过两个电机分别驱动两个配重块绕两个互相垂直的轴转动,产生机器人直线运动轴转向运动的驱动力,这两种球形机器人都依赖多个轴向的动力源来使机器人运动,当控制机器人转弯时,需要同时协调多个方向上的驱动力矩,对于内驱动单元系统的协调性要求较高,控制复杂。
四足仿生机器人毕业设计一、项目背景随着科技的不断发展,仿生机器人逐渐走进人们的生活,成为了现代工业领域中不可或缺的一部分。
仿生机器人是指通过模拟动物或人类的生理结构和运动方式来设计机器人。
四足仿生机器人是其中一种类型,它能够模拟动物行走的方式,具有较好的稳定性和适应性。
本毕业设计旨在研究四足仿生机器人的设计与控制。
二、项目目标1.设计出具有稳定性和适应性的四足仿生机器人;2.实现四足仿生机器人自主行走,并能够避开障碍物;3.探索并优化四足仿生机器人的控制系统。
三、项目内容1. 机械结构设计根据仿生学原理,设计出具有类似于动物骨骼和肌肉结构的四足仿生机器人。
考虑到稳定性和适应性等因素,可以采用轻质材料进行制造,并且在关节处使用弹簧等装置增加其弹性。
2. 控制系统设计控制系统是实现四足仿生机器人自主行走的关键。
可以采用单片机或者嵌入式系统等进行控制,通过陀螺仪、加速度计等传感器获取机器人的姿态信息,实现对机器人的控制。
同时,还需要设计避障算法,使机器人能够自主避开障碍物。
3. 仿真模拟在设计完成后,可以通过计算机仿真软件对四足仿生机器人进行模拟测试,并进行优化。
4. 实验验证在完成仿真模拟后,需要进行实验验证。
可以通过搭建障碍物场景,在不同环境下测试四足仿生机器人的稳定性和适应性。
四、项目意义1. 推动科技发展本毕业设计研究的四足仿生机器人是一种新型的智能化设备,具有广泛的应用前景。
它可以应用于军事、医疗、工业等领域,推动科技发展。
2. 增强创新能力本毕业设计涉及到多个学科领域,如机械制造、电子技术和计算机科学等。
通过研究和实践,可以增强学生的创新能力和综合素质。
3. 提高实践能力本毕业设计需要进行机械结构设计、控制系统设计、仿真模拟和实验验证等多个环节。
通过实践操作,可以提高学生的实践能力和动手能力。
五、项目进度安排1. 第一阶段(前期准备):了解仿生学原理,查阅相关文献资料,并进行四足仿生机器人的初步设计。
人工智能技术在口腔医学领域的应用进展摘要:伴随着人工智能技术的迅速发展,人工智能在口腔医学中的科学合理的应用,给口腔医学医治和医护带来了新一轮的技术创新。
将人工智能技术运用于口腔医学领域充分发挥实质的作用和使用价值,还能够为医务工作者提供高效快捷的工作工具。
文中分析了人工智能技术在口腔医学领域的实际应用。
融合世界各国人工智能的探讨和运用现况,人工智能在口腔专科医治和医护领域的优点,及其人工智能在口腔颌面外科、栽种、修补、牙齿矫正、诊疗、指导和教学方面的应用现状。
并对其人工智能应用在口腔医学领域的应用前景进行了展望。
关键词:人工智能;机器人;数字医学;口腔;治疗;护理引言:人工智能技术(artificialintelligence,AI)是一门科学研究和发展模拟和拓展人们智能化的基础理论、方式、技术和系统的新技术应用。
该行业的科学研究包含机器人学、语言识别、互联网图像识别技术、自然语言理解和数据管理系统。
伴随着电子计算机、信息科技和微电子的迅猛发展,人工智能技术在医学行业的运用愈来愈备受关心。
医学人工智能技术选用人机接口技术、定位系统、实景模拟仿真系统软件、智能控制、多感应器信息融合等核心技术。
或是协助基本医疗器械完成起来比较困难的手术治疗,促进医学向精准化和微创手术化发展。
精准诊疗便是依据病人的个人特质,制定差异化的精准防治、精准确诊、精准治疗方案。
伴随着精准医学的发展,精准护理应时而生。
精准护理是以大数据分析为基本,运用现代科技,融入病人的自然环境和临床数据,拟订有目的性的护理计划方案,为病人给予最有效、最安全性、最经济实惠的护理服务项目。
伴随着精准医学和现代信息技术的迅速发展,人工智能技术正逐渐运用于口腔医学的各行各业,终将促进口腔医学技术的手术治疗流程和护理方式向精细化管理、精准化发展。
文中将主要探讨人工智能技术在口腔治疗和护理中的运用及市场前景。
1.人工智能技术在口腔专科治疗及护理应用中的优势伴随着现代信息技术的不断发展的趋势,愈来愈多的新技术逐渐产生和被运用,在其中人工智能技术是近几年来发展趋势很好的全新技术。
码垛搬运机器人机构设计与仿真随着现代化制造业的快速发展,码垛搬运机器人在工业生产中的应用越来越广泛。
这种自动化设备能够极大地提高生产效率,减少人力成本,并提高码垛搬运的精确度。
本文将详细介绍码垛搬运机器人的机构设计及其仿真分析,旨在为相关领域的研究提供参考。
码垛搬运机器人的机构设计是实现其功能的关键。
其主要组成部分包括机械结构、控制系统和传感器等。
机械结构:码垛搬运机器人的机械结构主要包括基座、立柱、手臂和末端执行器等部分。
基座负责机器人的稳定站立;立柱承载手臂,实现三维移动;手臂设计有多关节结构,可实现大范围的空间移动;末端执行器则负责执行具体的抓取和放置动作。
控制系统:控制系统是码垛搬运机器人的核心,它负责协调各个部分的工作,确保机器人能够准确、高效地完成任务。
控制系统主要采用嵌入式硬件和软件实现,通过算法优化,可以实现更精确的轨迹规划和力控制。
传感器:传感器是实现机器人感知外界的重要部件,主要包括视觉传感器、距离传感器和力传感器等。
视觉传感器可帮助机器人识别目标物体的位置和姿态;距离传感器能够检测物体与机器人之间的距离;力传感器则可以反馈抓取物体的力度。
为了验证码垛搬运机器人机构的可行性和优越性,我们利用仿真软件对其进行仿真分析。
通过设置不同的工况,分析机器人的运动情况和响应特征。
在仿真过程中,我们发现机器人在多种工况下均表现出良好的稳定性和灵活性。
即使在复杂的环境中,机器人也能够准确地识别目标物体,并完成抓取和放置动作。
通过对比仿真结果与实际情况,我们发现误差较小,说明该机构设计具有一定的可靠性。
为了进一步提高码垛搬运机器人的工作效率和精确度,我们对其机构进行优化。
机械结构优化:考虑到实际应用中可能出现的各种复杂情况,我们可以优化机械结构,提高机器人的承载能力、稳定性和灵活性。
例如,对立柱进行加重加固,使机器人在运行过程中更加稳定;对手臂关节进行改进,使其适应更多种抓取姿势。
控制系统优化:通过改进控制算法和提高硬件性能,可以进一步提高机器人的响应速度和精确度。
MATLAB机器人仿真程序随着机器人技术的不断发展,机器人仿真技术变得越来越重要。
MATLAB是一款强大的数学计算软件,也被广泛应用于机器人仿真领域。
本文将介绍MATLAB在机器人仿真程序中的应用。
一、MATLAB简介MATLAB是MathWorks公司开发的一款商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等。
MATLAB具有丰富的工具箱,包括信号处理、控制系统、神经网络、图像处理等,可以方便地实现各种复杂的计算和分析。
二、MATLAB机器人仿真程序在机器人仿真领域,MATLAB可以通过Robotics System Toolbox实现各种机器人的仿真。
该工具箱包含了机器人运动学、动力学、控制等方面的函数库,可以方便地实现机器人的建模、控制和可视化。
下面是一个简单的MATLAB机器人仿真程序示例:1、建立机器人模型首先需要定义机器人的几何参数、连杆长度、质量等参数,并使用Robotics System Toolbox中的函数建立机器人的运动学模型。
例如,可以使用robotics.RigidBodyTree函数来建立机器人的刚体模型。
2、机器人运动学仿真在建立机器人模型后,可以使用Robotics System Toolbox中的函数进行机器人的运动学仿真。
例如,可以使用robotics.Kinematics函数计算机器人的位姿,并使用robotics.Plot函数将机器人的运动轨迹可视化。
3、机器人动力学仿真除了运动学仿真外,还可以使用Robotics System Toolbox中的函数进行机器人的动力学仿真。
例如,可以使用robotics.Dynamic函数计算机器人在给定速度下的加速度和力矩,并使用robotics.Plot函数将机器人的运动轨迹可视化。
4、机器人控制仿真可以使用Robotics System Toolbox中的函数进行机器人的控制仿真。
例如,可以使用robotics.Controller函数设计机器人的控制器,并使用robotics.Plot函数将机器人的运动轨迹可视化。
哈尔滨理工大学学士学位论文 - I - XX学院
毕业设计说明书(论文)
口腔咀嚼模拟机器人机械设计及仿真 作 者: 学 号: 学院(系): 专 业: 题 目:
2015 年6月 哈尔滨理工大学学士学位论文
- II - 口腔咀嚼模拟机器人机械设计及仿真
摘 要 机械手是一种典型的机电一体化产品,口腔咀嚼模拟机器人是机械手研究领域的热点。研究口腔咀嚼模拟机器人需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在口腔咀嚼模拟机器人的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。
关键词 结构设计,机器臂,结构分析 哈尔滨理工大学学士学位论文
- III - Mechanical design and Simulation of the oral chew simulation robot Abstract The manipulator is a kind of typical mechatronic product, and the robot is the hot spot in the research field of robot manipulator.. Study on chewing simulated robots need combination of machinery, electronics, information theory, artificial intelligence, biology and computer knowledge of many disciplines, also its development also contributed to the development of these disciplines.
In this paper, the structure of a robot used in oral chewing is designed, and the assembly drawings and the drawing of the parts are finished.. The mechanical hand model is demanded to analyze the mechanical hand, and estimate the torque and power of each joint, and complete the selection of motor and reducer.. Secondly, from the connection and the fixed of the motor and the reducer, design the joint structure, and carry on the strength check to the important connector in the mechanism.
Keywords structure design, robot arm, structure analysis 哈尔滨理工大学学士学位论文
- IV - 目 录 摘 要 ......................................................................................................................................... II Abstract ...................................................................................................................................... III
1 绪论 ........................................................................................................................................ 1 1.1引言 ................................................................................................................................ 1 1.2 口腔咀嚼模拟机器人研究概况 ................................................................................... 1 1.2.1 国外研究现状 .................................................................................................... 1 1.2.2 国内研究现状 .................................................................................................. 2 1.3 口腔咀嚼模拟机器人的总体结构 ............................................................................... 3 1.4 主要内容 ....................................................................................................................... 3 2 总体方案设计 .......................................................................................................................... 4 2.1 机械手工程概述 ........................................................................................................... 4 2.2 工业机械手总体设计方案论述 ................................................................................... 4 2.3 机械手机械传动原理 ................................................................................................. 5 2.4 机械手总体方案设计 ................................................................................................... 6 2.5 本章小结 ....................................................................................................................... 6 3 四杆机构结构分析与设计 ...................................................................................................... 8 3.1 各部件组成和功能描述 ............................................................................................... 8 3.2轨迹角度调节机构 ...................................................................................................... 11 4 传动齿轮零件的设计计算(用于四杆偏心振动) ................................................................. 13 4.1 电机的选择 ................................................................................................................. 13 4.2 齿轮的设计计算过程 ................................................................................................. 14 5 减震机构的设计 .................................................................................................................... 18 5.1 弹簧的设计计算 ....................................................................................................... 18 5.2 上牙移动平台(锥齿轮传动) ................................................................................. 21 5.3 轴结构尺寸设计 ......................................................................................................... 24 5.4 轴的受力分析及计算 ................................................................................................. 25 5.5 轴承的寿命校核 ......................................................................................................... 26 5.6 轴的强度校核 ............................................................................................................. 26