基于小波变换的语音去噪
- 格式:ppt
- 大小:174.00 KB
- 文档页数:22
基于小波变换的语音增强去噪方法
江铭炎;郝宇
【期刊名称】《山东大学学报:理学版》
【年(卷),期】2001()2
【摘要】将小波变换应用到语音识别系统中 ,提出了在语音信号预处理阶段基于小波变换估计的维纳滤波算法 ,结合小波变换的阈值处理方法对语音信号进行去噪处理 ,模拟实验表明该方法去噪效果较好 .
【总页数】4页(P201-204)
【关键词】小波变换;语音信号;去噪
【作者】江铭炎;郝宇
【作者单位】山东大学电子工程系;清华大学计算机科学与技术系
【正文语种】中文
【中图分类】TN912.35
【相关文献】
1.基于自适应仿生小波变换的语音增强方法 [J], 曹斌芳;李建奇
2.基于小波阈值去噪的麦克风阵列语音增强方法 [J], 高婉贞;张玲华
3.基于小波变换的语音增强——阙值去噪的研究 [J], 朱建斌;黎元
4.一种新型隧道图像去噪方法——基于小波变换及中值滤波的隧道图像去噪方法研究 [J], 李瑞琦;鲍艳;卢建军;郭飞;孔恒
5.一种新型隧道图像去噪方法——基于小波变换及中值滤波的隧道图像去噪方法研究 [J], 李瑞琦;鲍艳;卢建军;郭飞;孔恒
因版权原因,仅展示原文概要,查看原文内容请购买。
改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。
本人经验不足调试不出,希望求得各位指导改进函数表达式附图clear all; clc; close all;fs=8000;%语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道t=(0:length(x1)-1)/8000;y1=fft(x1,2048);%对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured');%加10db的高斯白噪声[snr,mse]=snrmse(x1,y')%求得信噪比均方误差figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];y1=waverec(c2,l,'db1');%多尺度重构[snr,mse]=snrmse(x1,y1')%求得信噪比均方误差figure(3);plot(t,y1);function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));else (abs(a)<b)gd=0;endfunction [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);QQ截图20130516175535.png(11.18 KB, 下载次数: 0)改进函数表达式本帖最后由罗志雄于 2013-5-16 21:58 编辑function [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);修改后程序清单如下:clear all; clc; close all;fs=8000;%语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道x1=x1-mean(x1);t=(0:length(x1)-1)/8000;y1=fft(x1,2048);%对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured');%加10db的高斯白噪声[snr,mse]=snrmsel(x1',y)%求得信噪比均方误差snr1=SNR_singlech(x1',y)figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a.*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));elsegd=zeros(size(a));endy1=waverec(c1,l,'db1');%多尺度重构[snr,mse]=snrmsel(x1',y1) %求得信噪比均方误差figure(3);plot(t,y1);小波去噪软阈值和硬阈值的matlab仿真程序硬阈值、软阈值这里有一段不知道有用没%设置信噪比和随机种子值snr=4;init=2055615866;%产生原始信号sref和高斯白噪声污染的信号s[sref,s]=wnoise(1,11,snr,init);%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr=1;%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];s3=waverec(c2,l,'db1');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];s4=waverec(c3,l,'db1');%对上述信号进行图示subplot(5,1,1);plot(sref);title('参考信号');subplot(5,1,2);plot(s);title('染噪信号');subplot(5,1,3);plot(s3);title('硬阈值处理');subplot(5,1,4);plot(s4);title('软阈值处理');matlab小波除噪,为何硬阈值和软阈值除躁信噪比一样了?load leleccum;index=1:1024;f1=leleccum(index); % 产生含噪信号init=2055615866;randn('seed',init);f2=f1+18*randn(size(x));snr=SNR_singlech(f1,f2) %信噪比subplot(2,2,1);plot(f1);title('含噪信号'); %axis([1,1024,-1,1]); subplot(2,2,2);plot(f2);title('含噪信号'); %axis([1,1024,-1,1]); %用db5小波对原始信号进行3层分解并提取系数[c,l]=wavedec(f2,3,'db6');a3=appcoef(c,l,'db6',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);sigma=wnoisest(c,l,1);thr=wbmpen(c,l,sigma,2);%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];f3=waverec(c2,l,'db6');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];f4=waverec(c3,l,'db6');%对上述信号进行图示subplot(2,2,3);plot(f3);title('硬阈值处理');%axis([1,1024,-1,1]); subplot(2,2,4);plot(f4);title('软阈值处理');%axis([1,1024,-1,1]); snr=SNR_singlech(f1,f3)snr=SNR_singlech(f1,f4)信噪比函数SNR_singlech(I,In)function snr=SNR_singlech(I,In)% 计算信噪比函数% I:riginal signal% In:noisy signal(ie. original signal + noise signal)snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2));%noise powersnr=10*log10(Ps/Pn);小波去噪程序Matlab小波去噪(默认,强制,给定三种情况)%% 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号%小波分析进行去噪有3中方法:%1、默认阈值去噪处理。
文章编号:1006-7043(2000)04-0021-03基于小波变换的去噪方法林克正李殿璞(哈尔滨工程大学自动化学院,黑龙江哈尔滨150001)摘要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关键词:小波变换;去噪;奇异性检测;多尺度分析中图分类号:TN911.7文献标识码:ADenoising Method Based on Wavelet TransformLin Ke-zhengLi Dian-pu(Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China )Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective.Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号效果最明显[2-5],并且在概念上也有别于其它方法,其主要思想有局部极大值阈值法、全局单一阈值法[3]和局部SURE 多阈值法[4].在此基础上,本文首先分析了信号和噪声在小波变换下的不同特性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法.1小波分析基础1.1信号的小波变换[1]设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t )定义为!a ,6(t )=1!a !(t -6a )(1)式中,6"R ,a "R -{0}.函数f (t )" 2(R )的小波变换W a ,6(f )定义为W a ,6(f )=<f (t ),!a ,6(t )>=1!a #-f (t )!(t -6a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2(R )在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件!=#0I ^!(")I 2"d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f )重构f (t )的小波逆变换#收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理.第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000定义为f(t)=lC J-J-W a,6(f)a,6(t)d aa2d6(4)小波基不是唯一的,只要满足容许性条件即可定义任一特定信号的小波基.另外为了数学上的方便,小波变换也可以表示为W S f(t)=f S(t)=lS J-f(x)(t-xS)d x(5)式中S(t)=lS (tS),S仍然是尺度参数.在实际应用中,小波变换的尺度参数不必连续取值,而是按照某种方式把连续小波及其变换做离散化处理.通常对尺度参数S进行二进制离散化,即取S=2,Z,则f(t)在尺度2下的小波变换为W2f(t)=f(t)2(t)=l2J-f(x)(t-x2)d x(6)它给出了第个倍频程的局部信息.f(t)的小波分解和重构可按Mallat塔式算法[6]进行.l.2信号的奇异性设f(x)L2(R),x为x0的任一开邻域,若v x x,有I f(x)-f(x0)I S K I x-x0I(其中K为不等于零的常数)(7)则称f(x)在x0点的奇异性为.若小波函数C l(R),且具有I阶消失矩(I N),可以证明,v x x,有I(W f)(a,6)I S Ka(8)上式说明,对于奇异性大于零的奇异点,随着尺度的增加,其小波变换后的幅值将呈幂增加趋势;而对于奇异性小于零的奇异点,则小波变换的幅值随着尺度的增加而减小.2宽带随机噪声在小波变换下的特性设I(x)为一实的、方差为2的平稳噪声,E(x)表示随机变量X的数学期望,则I(x)的自相关函数R I(U,1)=E[I(U)I(1)]=(U-1)2(9)设I(x)的小波变换为W I(S,x),对某一尺度S,它也是x的随机过程,且有I W I(S,x)I2=J-J-I(U)I(1)S(x-U)S(x-1)d U d1(l0)对此式求数学期望,得E(I W I(S,x)I2)=J-J-2(U-1)S(x-U)S(x-1)d U d1=22S(ll)式(ll)表明,白噪声小波变换的模平方与尺度S成反比,这与一般信号的奇异点是完全不同的.且白噪声产生的模极大值随二进尺度的增加以半数减少的,故尺度越低,噪声成分的含量就越高. 3小波去噪算法设观测所获得的数据为x(t i)=S(t i)+I(t i)i=l,2,…,m;(l2)式中S(t i)为真实信号;I(t i)为加性噪声;t i是等间隔的采样点,共有m个样本.设W(·)和W-l(·)分别表示小波变换和小波逆变换的算子,令D(·,)代表以阈值的去噪算子.小波去噪过程可分3步进行:(l)进行小波分解:选择一个小波基,并确定尺度,然后进行小波分解;即Y=W(x(t i))(l3)(2)阈值法修正细节系数:对每一尺度(从l至),选取适当的阈值作用于每一尺度的细节,按一定策略进行处理.Z=D(Y,)(l4)设阈值为,对某一数据域,现给出两种阈值策略:硬阈值法:进行截断处理,若I U I>,则保留,否则置为0.软阈值法[2]:进行趋零处理,算子D将数据域U中所有I U I S数值置为零,并对I U I>的数以量缩小,它将不置为0的那些系数值进行趋零处理.尽可能地提高信噪比是选取合适阈值的原则,设某一尺度细节系数的长度为m,该尺度细节系数的标准差为,处理该尺度细节系数的阈值可按式(l5)来确定.=2log(m)(l5)阈值的大小不仅与尺度有关,而且与细节系数的标准差有关,按此策略选取的阈值对信号是可浮动的自适应阈值,随着噪声能量强弱的变化,阈值也能随之上下浮动.(3)信号重建·22·哈尔滨工程大学学报第2l卷通过小波逆变换,利用原信号尺度 的近似和修改过的各尺度(1至 )的细节重建原信号.S =W -1(Z )(16)4实验结果分析和讨论选择文献[3]中的加噪信号作为仿真实验信号,加噪信号‘HeaviSine ’和‘Bumps ’的小波变换及其去噪过程如图1所示.其中(a ),(d )为原加噪信号及其小波系数;(J ),(e )为小波硬阈值法去噪结果及其小波系数;(c ),(f )为小波软阈值法去噪结果及其小波系数.恰当地选取尺度和小波基将直接影响处理效果,小波去噪可采用Daubechies 小波[1],其中低号小波(如Db3)局部性强,奇异指数小,因而不能反映原信号的频率特征;而高号小波(如Db18)则高度光滑,因而不能精确反映出尖峰信号点的奇异信息.若侧重局部性,可以选用Db5,得到了满意的结果.从表1可以看到硬阈值法去噪比软阈值法去噪有更高的信噪比,但软阈值法去噪比硬阈值法去噪图1加噪信号的小波变换及其去噪过程Fig.1Waveiet transform of noisy signais and different denoising procedure 表1硬阈值法去噪和软阈值法去噪的结果比较Tabie 1Comparison of denoising resuits with hard and soft threshoid methodBumps 信号Doppier 信号HeaviSine 信号Pipe 信号噪声信号SNR 6.937.037.2315.72硬阈值法去噪结果SNR 13.1614.3619.8133.86软阈值法去噪结果SNR8.239.9917.2325.98具有较好的平滑作用.实际中,只能对小波变换作有限级尺度分解,尺度太大则无法完整保持信号的奇异性,因而不能准确定位;尺度太小又不能有效地去噪,因而应用中一般选取尺度 不小于2,这里选择分解尺度为4级.小波去噪方法在式(13),(14)和(16)已用算子W (·),D (·,!)和W -1(·)进行了统一的描述.实现W (·)和W -1(·)涉及小波基的选取以及信号延拓方法的确定等,还有!的选取和D (·,!)的确定也可采用不同的策略方法,结合W (·),W -1(·),!和D (·,!)的不同实现方法,可以产生许多不同的基于小波变换的去噪方法,所以应联系具体的实际问题,对用小波去噪的方法加以充实和发展.总之,小波分析不仅提供了一种更加有效的时频分析方法,更重要的是为我们提供了一种新的信号处理的思想方法.小波去噪明显优于传统方法,它不仅能提高信噪比,而且能保持原信号的奇异性.特别是其软阈值法比硬阈(下转第35页)·32·第4期林克正等:基于小波变换的去噪方法(上接第23页)值法更具有平滑滤波作用.小波变换是一种多分辨分析,当尺度较小(!小)时,时间分辨率高,适于分析高频信号;当尺度较大(!大)时,频率分辨率高,适于分析低频信号,可以看到过程全貌,这使得基于小波变换的检测器有较好的鲁棒性.参考文献:[1]STRANG G,NGUYEN T.WaveIets and fiIter banks[M].WeIIesIey-Cambridge Press,1996.[2]DONOHO D L.Denoising by soft threshoIding[J].IEEE Trans on Inform Theory,1995,41(5):613-627.[3]DONOHO D L,JOHNSTONE I M.IdeaI spatiaI adaptationby waveIet shrinkage[J].Biometrika,1994,81(9):425-455.[4]DONOHO D L,JOHNSTONE I M,KERKYACHARIAN G,et aI.WaveIet shrinkage:Asymptopia[J].JournaI of theRoyaI StatisticaI Society,Series B,1995,7(2):301-369.[5]DONOHO D L,JOHNSTONE I M.Adapting to unknown smoothness by waveIet shrinkage[J].JournaI of the Amer-ican StatisticaI Association,1995,90(432):1200-1224.[6]MALLAT S.A theory for muItiresoIution signaI decomposi-tion:the waveIet representation[J].IEEE Trans.on PatternAnaIysis and Machine InteIIigence,1989,11(7):674-693.[责任编辑:李玲珠]基于小波变换的去噪方法作者:林克正, 李殿璞, Lin Ke-zheng, Li Dian-pu作者单位:哈尔滨工程大学自动化学院,黑龙江,哈尔滨,150001刊名:哈尔滨工程大学学报英文刊名:JOURNAL OF HARBIN ENGINEERING UNIVERSITY年,卷(期):2000,21(4)被引用次数:26次1.MALLAT S A theory for multiresolution signal decomposition:the wave let representation1989(07)2.DONOHO D L;JOHNSTONE I M Adapting to unknown smoothness by wavelet shrinkage[外文期刊]1995(432)3.DONOHO D L;JOHNSTONE I M;KERKYACHARIAN G Wavelet shrinkage:Asymptopia 1995(02)4.DONOHO D L;JOHNSTONE I M Ideal spatial adaptation by wavelet shrinkage[外文期刊] 1994(09)5.DONOHO D L Denoising by soft thresholding 1995(05)6.STRANG G;NGUYEN T Wavelets and filter banks 19961.王明.高东方基于振动信号的铣刀磨损状态识别[期刊论文]-制造业自动化 2010(11)2.李燕杰.祖静.杜红棉冲击波测试中振动噪声的产生与去噪[期刊论文]-传感器与微系统 2010(8)3.郭常盈.郑珂基于小波变换阈值的光干涉信号去噪[期刊论文]-激光技术 2009(5)4.刘跃华.曾迎生信号处理中去噪算法的改进仿真[期刊论文]-计算机工程与应用 2009(4)5.李庆刚.谭善文基于Hilbert-Huang变换的信号奇异性检测的比较研究[期刊论文]-西华大学学报(自然科学版) 2008(4)6.郁青春.张世超.王新东小波变换方法消除热重实验噪音信号[期刊论文]-北京科技大学学报 2007(5)7.张勇.金学波基于图像处理和小波去噪的化工信号分析[期刊论文]-化工自动化及仪表 2007(1)8.熊飞.张晔激光主动探测中回波信号的小波去噪方法[期刊论文]-光学与光电技术 2007(6)9.韩嵩基于声弹性理论的超声地应力测量方法试验研究[学位论文]博士 200710.于晓红.张来斌.王朝晖基于小波与倒频谱技术的烟气轮机轴承故障诊断[期刊论文]-科学技术与工程2006(23)11.朱丽娜.刘飞基于Wallis滤波的改进小波去噪方法研究[期刊论文]-地理空间信息 2006(6)12.赵立业.周百令.李坤宇自适应小波阈值去噪在重力仪信号处理中的应用[期刊论文]-中国工程科学2006(3)13.刘松江管道液体流量遥测技术研究[学位论文]硕士 200614.袁宏杰.姜同敏小波变换的滤波器解释和在冲击测量中的应用[期刊论文]-振动与冲击 2005(5)15.许江宁.朱涛.卞鸿巍.徐金华潜艇真航向测量系统[期刊论文]-中国惯性技术学报 2005(3)16.马强.林克正.熊常芳基于第二代小波变换的图像消噪[期刊论文]-哈尔滨理工大学学报 2005(1)17.董泽.谢华.韩璞.赵怀瑾小波变换模极大值消噪算法的研究[期刊论文]-电力科学与工程 2005(3)18.叶忠志基于统计模式识别的管道泄漏诊断方法研究[学位论文]硕士 200519.马强小波分析与图像处理系统的应用研究[学位论文]硕士 200520.原泉小波分析在船舶测试信号方面的应用研究[学位论文]硕士 200521.邹岩崑局域波分析的理论方法研究及应用[学位论文]博士 200422.钱镜林现代洪水预报技术研究[学位论文]博士 200423.张小飞.徐大专.齐泽锋基于模极大值小波域的去噪算法研究[期刊论文]-数据采集与处理 2003(3)24.金涛.阙沛文小波分析对漏磁检测噪声消除实验的分析[期刊论文]-传感技术学报 2003(3)25.王小军.李殿璞.余宏明.管风旭.郑锦勇顶空无盲区跟踪的舰载倾斜三轴雷达的研究[期刊论文]-哈尔滨工程大学学报 2002(2)26.王小军.李殿璞.赵阳.余宏明.郑锦勇舰载三轴雷达波束稳定跟踪的研究[期刊论文]-哈尔滨工程大学学报2002(1)本文链接:/Periodical_hebgcdxxb200004006.aspx。
基于小波分析的语音信号噪声消除方法及MATLAB 实现一、 实验内容噪声污染是我们生产、生活中普遍存在的问题。
在某些环境中,噪声的影响给人们的生活和工作带来了极大不便,尤其在语音信号处理中,噪声甚至使人们正常的生活和工作无法进行。
因此,消除噪声干扰具有极为重要的研究意义和广泛的应用前景。
小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时-频分析,借助时- 频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。
利用小波方法去噪,是小波分析应用于实际的重要方面。
小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。
本文简述了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。
实验内容包括:(1) 分别利用软阈值法和硬阈值法对含噪信号进行去噪,并进行效果对比。
(2) 分别使用FFT 和小波分析方法对含噪信号进行去噪处理,并进行效果对比。
二、 实验原理1. 小波去噪原理分析1.1. 小波去噪原理叠加性高斯白噪声是最常见的噪声模型,受到叠加性高斯白噪声“污染”的观测信号可以表示为:i i i y f z σ=+ 1,...,,i n = (1.1) 其中y i 为含噪信号,i f 为“纯净”采样信号,z i 为独立同分布的高斯白噪声~(0,1)iid i z N ,σ为噪声水平,信号长度为n. 为了从含噪信号y i 中还原出真实信号i f ,可以利用信号和噪声在小波变换下的不同的特性,通过对小波分解系数进行处理来达到信号和噪声分离的目的。
在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号,所以我们可以先对含噪信号进行小波分解(如进行三层分解):321312211CD CD CD CA CD CD CA CD CA S +++=++=+= (1.2)图1 三层小波分解示意图其中i cA 为分解的近似部分, 为i cD 分解的细节部分,321,,i =,则噪声部分通常包含在1cD ,2cD ,3cD 中,用门限阈值对小波系数进行处理,重构信号即可达到去噪的目的。
小波变换语音消噪(改进阈值)资料改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。
本人经验不足调试不出,希望指导。
改进函数表达式附图clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmse(x1,y')%求得信噪比均方误差figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];y1=waverec(c2,l,'db1');%多尺度重构[snr,mse]=snrmse(x1,y1')%求得信噪比均方误差figure(3);plot(t,y1);function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));else (abs(a)<b)gd=0;endfunction [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);QQ截图20130516175535.png(11.18 KB, 下载次数: 0)改进函数表达式本帖最后由罗志雄于 2013-5-16 21:58 编辑function [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal power Pn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);修改后程序清单如下:clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道x1=x1-mean(x1);t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmsel(x1',y) %求得信噪比均方误差snr1=SNR_singlech(x1',y)figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a.*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));elsegd=zeros(size(a));endy1=waverec(c1,l,'db1');%多尺度重构[snr,mse]=snrmsel(x1',y1) %求得信噪比均方误差figure(3);plot(t,y1);小波去噪软阈值和硬阈值的matlab仿真程序硬阈值、软阈值这里有一段不知道有用没%设置信噪比和随机种子值snr=4;init=2055615866;%产生原始信号sref和高斯白噪声污染的信号s[sref,s]=wnoise(1,11,snr,init);%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr=1;%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];s3=waverec(c2,l,'db1');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];s4=waverec(c3,l,'db1');%对上述信号进行图示subplot(5,1,1);plot(sref);title('参考信号');subplot(5,1,2);plot(s);title('染噪信号');subplot(5,1,3);plot(s3);title('硬阈值处理');subplot(5,1,4);plot(s4);title('软阈值处理');matlab小波除噪,为何硬阈值和软阈值除躁信噪比一样了?load leleccum;index=1:1024;f1=leleccum(index); % 产生含噪信号init=2055615866;randn('seed',init);f2=f1+18*randn(size(x));snr=SNR_singlech(f1,f2) %信噪比subplot(2,2,1);plot(f1);title('含噪信号'); %axis([1,1024,-1,1]); subplot(2,2,2);plot(f2);title('含噪信号'); %axis([1,1024,-1,1]); %用db5小波对原始信号进行3层分解并提取系数[c,l]=wavedec(f2,3,'db6');a3=appcoef(c,l,'db6',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);sigma=wnoisest(c,l,1);thr=wbmpen(c,l,sigma,2);%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];f3=waverec(c2,l,'db6');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];f4=waverec(c3,l,'db6');%对上述信号进行图示subplot(2,2,3);plot(f3);title('硬阈值处理');%axis([1,1024,-1,1]);subplot(2,2,4);plot(f4);title('软阈值处理');%axis([1,1024,-1,1]);snr=SNR_singlech(f1,f3)snr=SNR_singlech(f1,f4)信噪比函数SNR_singlech(I,In)function snr=SNR_singlech(I,In)% 计算信噪比函数% I:riginal signal% In:noisy signal(ie. original signal + noise signal)snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);%% 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号%小波分析进行去噪有3中方法:%1、默认阈值去噪处理。
基于MATLAB语音信号处理去噪毕业设计论文语音信号在实际应用中通常不可避免地受到噪音的干扰,这使得语音信号的处理变得困难。
因此,在语音信号处理领域,去噪技术一直是一个热门的研究方向。
本文将介绍一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。
本文的主要内容分为以下几个部分。
首先,介绍语音信号处理的背景和意义。
在现实生活中,由于外界环境和设备的限制,语音信号往往会受到各种噪音的污染,如背景噪音、电磁干扰等。
因此,开发一种有效的语音信号处理去噪方法具有重要的实际意义。
其次,介绍基于MATLAB的语音信号处理去噪方法。
本文将采用小波降噪方法对语音信号进行去噪处理。
首先,对输入的语音信号进行小波变换,将信号转换到小波域。
然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪效果。
最后,通过逆小波变换将信号转换回时域,并输出去噪后的语音信号。
接下来,介绍实验设计和结果分析。
本文将使用MATLAB软件进行实验设计,并选取一组含有不同噪声干扰的语音信号进行测试。
通过对不同噪声信号进行处理,比较不同参数设置下的去噪效果,评估提出方法的性能。
最后,总结全文并展望未来的研究方向。
通过本次研究,我们可以看到基于MATLAB的语音信号处理去噪方法在去除噪音方面具有较好的效果,并具有很大的应用潜力。
然而,该方法仍然有改进的空间。
未来的研究可以在算法优化、参数选择和应用场景等方面进行深入研究,进一步提高语音信号处理去噪的效果和性能。
总的来说,本文介绍了一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。
通过对实验结果的分析和对未来研究方向的展望,本文为从事语音信号处理领域的研究人员提供了一定的参考和启示。
小波变换去噪原理在信号处理中,噪声是不可避免的。
它可以是由于传感器本身的限制、电磁干扰、环境噪声等原因引入的。
对于需要精确分析的信号,噪声的存在会严重影响信号的质量和可靠性。
因此,去除噪声是信号处理的重要任务之一。
小波变换去噪是一种基于频域分析的方法。
它通过分析信号在不同频率上的能量分布,将信号分解成多个频率段的小波系数。
不同频率段的小波系数对应不同频率的信号成分。
根据信号的时频特性,我们可以对小波系数进行阈值处理,将低能量的小波系数置零,从而抑制噪声。
然后,将处理后的小波系数进行反变换,得到去噪后的信号。
小波变换去噪的原理可以用以下几个步骤来描述:1. 小波分解:将原始信号通过小波变换分解成不同频率的小波系数。
小波系数表示了信号在不同频率上的能量分布情况。
常用的小波函数有Haar小波、Daubechies小波、Morlet小波等。
2. 阈值处理:对小波系数进行阈值处理。
阈值处理的目的是将低能量的小波系数置零,从而抑制噪声。
常用的阈值处理方法有硬阈值和软阈值。
硬阈值将小于阈值的系数置零,而软阈值则对小于阈值的系数进行衰减。
3. 逆变换:将处理后的小波系数进行反变换,得到去噪后的信号。
反变换过程是将小波系数与小波基函数进行线性组合,恢复原始信号。
小波变换去噪具有以下几个优点:1. 时频局部性:小波变换具有时频局部性,可以在时域和频域上同时进行分析。
这使得小波变换去噪可以更加准确地抑制噪声,保留信号的时频特性。
2. 多分辨率分析:小波变换可以将信号分解成不同频率的小波系数,从而实现对信号的多分辨率分析。
这使得小波变换去噪可以对不同频率的噪声进行不同程度的抑制,提高去噪效果。
3. 适应性阈值:小波变换去噪可以根据信号的能量特性自适应地选择阈值。
这使得小波变换去噪可以更好地适应不同信号的噪声特性,提高去噪效果。
小波变换去噪在信号处理中有广泛的应用。
例如,在语音信号处理中,小波变换去噪可以用于语音增强、音频降噪等方面。
语音编码中的小波去噪算法研究的开题报告一、研究背景语音信号传输是现代通信技术中的重要分支之一。
语音编码作为语音信号传输的关键技术之一,其质量直接影响到通信系统的稳定性和使用效果。
然而,在语音信号传输过程中,由于受到多种环境因素的干扰以及传输通道的限制,信号中常常会存在噪声,导致传输质量下降。
因此,如何对语音信号进行去噪,以提高语音编码的质量,成为了语音编码技术研究的热点之一。
小波去噪技术是当前最常用的语音信号去噪算法之一,其利用小波变换将语音信号分解成不同频率的小波系数,通过去除低幅度小波系数进行滤波,进而实现信噪比的提高。
小波去噪技术已被广泛应用于语音信号去噪、图像去噪等领域,取得了较好的效果。
但是,目前小波去噪技术应用于语音信号去噪过程中,仍面临着一些挑战,如去噪效果不佳、去噪后信号失真等问题。
二、研究目的本文旨在研究小波去噪技术在语音编码中的应用,探索如何通过优化小波变换的参数和改进小波去噪算法的方法,实现对语音信号的高效去噪,提高语音编码质量。
三、研究内容1. 分析小波去噪技术的原理和方法,探究其在语音信号去噪中的应用。
2. 给出小波去噪算法在语音编码中的具体流程,并对其中的关键技术进行优化。
3. 针对小波去噪算法在语音编码中可能存在的问题,如失真等,提出相应的改进方法。
4. 实验评估所提出的算法在语音编码中的性能,对比实验结果,验证算法的有效性和可行性。
四、研究方法本文将采用以下方法进行研究:1. 查阅文献,了解小波去噪技术的原理和方法,梳理小波去噪算法在语音信号去噪领域的研究现状。
2. 设计小波去噪算法在语音编码中的流程,并结合实际信号进行模拟实验验证。
3. 分析小波去噪算法在语音编码中可能存在的问题,提出改进方法,并重复实验进行对比评估。
4. 统计实验结果,分析算法性能,提出改进方向和未来展望。
五、研究意义本文研究小波去噪技术在语音编码中的应用,对于提高语音编码的质量具有重要意义。
Python⼩波变换去噪⼀.⼩波去噪的原理信号产⽣的⼩波系数含有信号的重要信息,将信号经⼩波分解后⼩波系数较⼤,噪声的⼩波系数较⼩,并且噪声的⼩波系数要⼩于信号的⼩波系数,通过选取⼀个合适的阀值,⼤于阀值的⼩波系数被认为是有信号产⽣的,应予以保留,⼩于阀值的则认为是噪声产⽣的,置为零从⽽达到去噪的⽬的。
⼩波阀值去噪的基本问题包括三个⽅⾯:⼩波基的选择,阀值的选择,阀值函数的选择。
(1) ⼩波基的选择:通常我们希望所选取的⼩波满⾜以下条件:正交性、⾼消失矩、紧⽀性、对称性或反对称性。
但事实上具有上述性质的⼩波是不可能存在的,因为⼩波是对称或反对称的只有Haar⼩波,并且⾼消失矩与紧⽀性是⼀对⽭盾,所以在应⽤的时候⼀般选取具有紧⽀的⼩波以及根据信号的特征来选取较为合适的⼩波。
(2) 阀值的选择:直接影响去噪效果的⼀个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。
⽬前主要有通⽤阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。
(3) 阀值函数的选择:阀值函数是修正⼩波系数的规则,不同的反之函数体现了不同的处理⼩波系数的策略。
最常⽤的阀值函数有两种:⼀种是硬阀值函数,另⼀种是软阀值函数。
还有⼀种介于软、硬阀值函数之间的Garrote函数。
另外,对于去噪效果好坏的评价,常⽤信号的信噪⽐(SNR)与估计信号同原始信号的均⽅根误差(RMSE)来判断。
⼆,在python中使⽤⼩波分析进⾏阈值去噪声,使⽤pywt.threshold函数#coding=gbk#使⽤⼩波分析进⾏阈值去噪声,使⽤pywt.thresholdimport pywtimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport mathdata = np.linspace(1, 10, 10)print(data)# [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]# pywt.threshold(data, value, mode, substitute) mode 模式有4种,soft, hard, greater, less; substitute是替换值可以点进函数⾥看,data/np.abs(data) * np.maximum(np.abs(data) - value, 0)data_soft = pywt.threshold(data=data, value=6, mode='soft', substitute=12)print(data_soft)# [12. 12. 12. 12. 12. 0. 1. 2. 3. 4.] 将⼩于6 的值设置为12,⼤于等于6 的值全部减去6data_hard = pywt.threshold(data=data, value=6, mode='hard', substitute=12)print(data_hard)# [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将⼩于6 的值设置为12,其余的值不变data_greater = pywt.threshold(data, 6, 'greater', 12)print(data_greater)# [12. 12. 12. 12. 12. 6. 7. 8. 9. 10.] 将⼩于6 的值设置为12,⼤于等于阈值的值不变化data_less = pywt.threshold(data, 6, 'less', 12)print(data_less)# [ 1. 2. 3. 4. 5. 6. 12. 12. 12. 12.] 将⼤于6 的值设置为12,⼩于等于阈值的值不变三,在python中使⽤ecg⼼电信号进⾏⼩波去噪实验#-*-coding:utf-8-*-import matplotlib.pyplot as pltimport pywtimport mathimport numpy as np#get Dataecg=pywt.data.ecg() #⽣成⼼电信号index=[]data=[]coffs=[]for i in range(len(ecg)-1):X=float(i)Y=float(ecg[i])index.append(X)data.append(Y)#create wavelet object and define parametersw=pywt.Wavelet('db8')#选⽤Daubechies8⼩波maxlev=pywt.dwt_max_level(len(data),w.dec_len)print("maximum level is"+str(maxlev))threshold=0 #Threshold for filtering#Decompose into wavelet components,to the level selected:coffs=pywt.wavedec(data,'db8',level=maxlev) #将信号进⾏⼩波分解for i in range(1,len(coffs)):coffs[i]=pywt.threshold(coffs[i],threshold*max(coeffs[i]))datarec=pywt.waverec(coffs,'db8')#将信号进⾏⼩波重构mintime=0maxtime=mintime+len(data)print(mintime,maxtime)plt.figure()plt.subplot(3,1,1)plt.plot(index[mintime:maxtime], data[mintime:maxtime])plt.xlabel('time (s)')plt.ylabel('microvolts (uV)')plt.title("Raw signal")plt.subplot(3, 1, 2)plt.plot(index[mintime:maxtime], datarec[mintime:maxtime])plt.xlabel('time (s)')plt.ylabel('microvolts (uV)')plt.title("De-noised signal using wavelet techniques")plt.subplot(3, 1, 3)plt.plot(index[mintime:maxtime],data[mintime:maxtime]-datarec[mintime:maxtime]) plt.xlabel('time (s)')plt.ylabel('error (uV)')plt.tight_layout()plt.show()。
基于小波变换的新阈值函数语音去噪方法刘继锦;周萍;杨青;景新幸【摘要】针对硬阈值函数不连续性、软阈值函数中存在恒定偏差的问题,基于2种改进的阈值函数,构造了一种新阈值函数,提出了一种基于小波变换的新阈值函数语音去噪方法。
分别用硬阈值处理方法、软阈值处理方法及新阈值处理方法对系统信号和纯净语音信号进行去噪仿真实验。
实验结果表明,新阈值去噪方法能减小信号失真,使重构信号逼近原始信号,达到了良好的去噪效果,比传统方法更具优越性和有效性。
%In view of the discontinuity of hard threshold function and the constant bias in soft threshold function,a new threshold function based on two improved threshold functions is constructed,and a new function speech denoising method based on wavelet transform is proposed.Hard threshold processing method,soft threshold processing method and the new threshold processing method are used for the system signal and pure speech signal denoising simulation experiment.The ex-perimental results show that the new threshold denoising method can reduce signal distortion,make the reconstructed signal approximation to the original signal,and achieve good denoising effect.It is better than the traditional method in superiority and effectiveness.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2015(000)003【总页数】5页(P232-236)【关键词】小波变换;语音信号;阈值去噪;阈值函数;信噪比【作者】刘继锦;周萍;杨青;景新幸【作者单位】桂林电子科技大学电子工程与自动化学院,广西桂林 541004;桂林电子科技大学电子工程与自动化学院,广西桂林 541004;桂林电子科技大学电子工程与自动化学院,广西桂林 541004;桂林电子科技大学信息与通信学院,广西桂林 541004【正文语种】中文【中图分类】TP391.42语音识别广泛应用于民用和军用领域,由于语音信号含噪多,语音信号预处理不好容易造成语音识别错误,因此对语音信号的去噪极其重要。
小波去噪的原理小波去噪是一种基于小波变换的滤波方法,它的出现主要是为了解决传统滤波方法在去除噪声同时也会损失一些有效信号的问题。
小波去噪的原理是基于小波变换将信号分解成频率域和时间域两个部分,通过对小波系数的分析和处理来实现消除噪声的目的。
小波去噪的主要步骤包括小波变换、阈值处理和小波逆变换。
将原始信号进行小波变换,将信号分解成不同频率的小波系数,然后对小波系数进行阈值处理。
阈值处理是通过确定一个特定的阈值来对小波系数进行筛选,将小于阈值的系数置零,而保留大于阈值的系数。
这个阈值可以根据不同的需求进行调整,比如根据信噪比来确定。
经过阈值处理过后,只有部分的小波系数保留下来,其他小波系数都被置零。
然后再将处理后的小波系数进行小波逆变换,得到去噪后的信号。
这个去噪后的信号相对于原始信号而言,噪声被有效降低了。
小波去噪的原理基于小波变换可以分解不同频率的信号特点,将信号进行分解后,可以有效处理各种类型的噪声,比如高斯噪声、脉冲噪声、周期噪声等。
阈值处理是小波去噪的核心步骤,通过确定阈值大小和阈值函数来控制处理后的小波系数,达到去除噪声的目的。
小波去噪的计算量相对较小,处理速度快,因此在实际应用中得到了广泛的应用和推广。
小波去噪方法是一种基于小波变换的非常有效的滤波技术,其核心思想是将信号分解成不同频率的小波系数,从而实现对噪声的有效去除。
在实际工程中,小波去噪已经得到了广泛的应用,可用于信号处理、声音处理、图像处理、语音处理等领域。
小波去噪的优点在于能够有效去除信号中的噪声,同时又能够保证信号的原始信息尽可能得到保留。
由于小波变换能够将信号分解成不同频率的小波系数,因此可以针对不同频率的噪声进行有效处理,避免了传统滤波算法对信号真实信息的损失。
小波去噪的核心是阈值处理,而阈值的选择是小波去噪的重要问题。
关于阈值的确定方法主要包含固定阈值、自适应阈值和经验阈值等几种常见方法。
固定阈值是将阈值确定为固定的数值,通常需要事先对数据进行多次处理,找到一个适合的阈值大小。
bark子带小波包自适应阈值语音去噪方法近年来,随着语音信号的广泛应用,对于语音信号的去噪需求也越来越迫切。
而基于小波变换的语音去噪方法,由于其对噪声信号的良好抑制效果,成为当前较为常用的方法之一。
本文将针对一种基于bark子带小波包自适应阈值的语音去噪方法进行详细介绍。
一、小波变换小波变换是一种局部时频分析工具,在信号处理领域中有重要的应用。
通俗的程序来讲,小波变换是将信号分解成一组基函数的线性组合,这些基函数就是所谓的小波函数。
通过分解成一组基函数进行分析能够有效地消除局部信号的干扰,对于低频信号和高频信号都能够进行较为精确的提取。
二、bark子带小波包bark子带是人耳对声音的一个感知单位,bark子带小波包就是在小波变换的基础上,按照bark子带对语音信号进行划分,然后对每个bark 子带进行小波包分解。
这种方法能够将人耳对声音的感知结合到语音去噪的过程中,提升去噪的效率。
三、自适应阈值传统的小波去噪方法通常采用固定的阈值进行噪声信号的抑制,但由于各种信号噪声的情况千差万别,固定阈值的去噪效果往往不尽如人意。
而自适应阈值采用了基于信噪比的动态阈值,为每个bark子带进行阈值的调整,因此能够更好地达到噪声的抑制效果。
四、bark子带小波包自适应阈值语音去噪方法具体地,该去噪方法分为以下几个步骤:1. 将原始语音信号进行分带,分成若干个bark子带;2. 对每个bark子带进行小波包分解,得到小波包系数;3. 根据小波包系数计算信噪比,利用信噪比调整每个bark子带的自适应阈值;4. 采用Wiener滤波的方法进行去噪,得到去噪后的信号;5. 将去噪后的信号进行逆小波变换,得到最终的去噪语音信号。
综上所述,采用这种基于bark子带小波包自适应阈值的方法进行语音去噪,能够大幅提升信号的抑噪效果,保留语音信号中的重要信息,减少了因去噪带来的信号歪曲和失真。
基于小波变换的语音实时去噪算法及其DSP实现
李亚楠
【期刊名称】《信息与电脑》
【年(卷),期】2017(000)016
【摘要】介绍了一种在小波域中去噪并在DSP上实现的语音去噪方法.采用小波变换自适应阈值去噪算法将分解后的小波系数中的噪声进行自适应阈值去噪,并将算法利用DSP硬件平台实现.实验结果证明了基于小波变换的语音去噪算法在DSP 中实时实现的有效性以及良好的去噪效果.
【总页数】2页(P90-91)
【作者】李亚楠
【作者单位】国家知识产权局专利局专利审查协作天津中心,天津 300304
【正文语种】中文
【中图分类】TN912.3
【相关文献】
1.基于小波变换的语音去噪算法研究 [J], 贾诗婧;崔艳秋
2.语音变调算法的实时改进及其在DSP平台上的软件实现 [J], 舒非;李桓;李玉柏
3.基于谱减法的语音增强算法在DSP环境下的实时实现 [J], 邓克岩
4.基于共轭结构ACELP语音编码算法的优化及DSP实时实现 [J], 胡仕兵;汪学刚;杨绍国
5.基于相关函数的小波变换实现语音去噪研究 [J], 李晓帆;尹胜
因版权原因,仅展示原文概要,查看原文内容请购买。