数学必修五2.3(一)
- 格式:pptx
- 大小:892.53 KB
- 文档页数:37
课题: §3.3等差数列的前n 项和授课类型:新授课(第2课时)●三维目标知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值;过程与方法:经历公式应用的过程;情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。
●教学重点熟练掌握等差数列的求和公式●教学难点灵活应用求和公式解决问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等差数列的前n 项和公式1:2)(1n n a a n S += 2.等差数列的前n 项和公式2:2)1(1d n n na S n -+= Ⅱ.讲授新课探究:——课本P51的探究活动 结论:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?由2n S pn qn r =++,得11S a p q r ==++当2n ≥时1n n n a S S -=-=22()[(1)(1)]pn qn r p n q n r ++--+-+=2()pn p q -+ 1[2()][2(1)()]n n d a a pn p q p n p q -∴=-=-+---+=2p对等差数列的前n 项和公式2:2)1(1d n n na S n -+=可化成式子: n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 [范例讲解]等差数列前项和的最值问题课本P51的例4 解略小结:对等差数列前项和的最值问题有两种方法:(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S : 由n )2d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值 Ⅲ.课堂练习1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。
必修一、二、三、四、五章节内容必修一必修四第一章集合与函数的概念第一章三角函数1.1 集合 1.1任意角和弧度制1.2 函数及其表示 1.2任意角的三角函数1.3 函数的基本性质 1.3三角函数的诱导公式第二章基本初等函数 1.4三角函数的图像与性质2.1 指数函数 1.5函数y=Asin(?x+?)2.2对数函数 1.6 三角函数模型的简单应用2.3 幂函数第二章平面向量第三章函数的应用 2.1平面向量的实际背景及基本概念3.1函数与方程 2.2平面向量的线性运算3.2 函数模型及其应用 2.3平面向量的基本定理及坐标表必修五 2.4 平面向量的数量积第一章解三角形 2.5 平面向量应用举例1.1 正弦定理和余弦定理第三章三角恒等变换1.2 应用举例 3.1 两角和与差的正弦、余弦第二章数列 3.2 简单的三角恒等变换2.1 数列的概念与简单表示方法必修二2.2 等差数列第一章空间几何体2.3等差数列的前n项和 1.1 空间几何体的结构2.4 等比数列 1.2 空间几何体的三视图和直观图2.5 等比数列前n项和 1.3 空间体的表面积与体积第三章不等式第二章点、直线、平面间的关系3.1 不等关系与不等式 2.1空间点、直线、平面之间的位3.2一元一次不等式及其解法 2.2 直线、平面平行的判定及其性质3.3 二元一次不等式(组)及其解法 2.3 直线、平面垂直的判定及其性质3.4基本不等式第三章直线与方程3.1直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用。
必修一、二、四、五章节内容必修一必修四第一章集合与函数的概念第一章三角函数1。
1 集合 1.1任意角和弧度制1。
2 函数及其表示1。
2任意角的三角函数1.3 函数的基本性质 1.3三角函数的诱导公式第二章基本初等函数 1.4三角函数的图像与性质2.1 指数函数1。
5函数y=Asin(ѡx+ѱ)2.2对数函数 1.6 三角函数模型的简单应用2。
3 幂函数第二章平面向量第三章函数的应用 2.1平面向量的实际背景及基本概念3.1函数与方程 2.2平面向量的线性运算3.2 函数模型及其应用 2.3平面向量的基本定理及坐标表必修五 2.4 平面向量的数量积第一章解三角形 2.5 平面向量应用举例1.1 正弦定理和余弦定理第三章三角恒等变换1。
2 应用举例3。
1 两角和与差的正弦、余弦第二章数列 3.2 简单的三角恒等变换2。
1 数列的概念与简单表示方法必修二2。
2 等差数列第一章空间几何体2.3等差数列的前n项和1。
1 空间几何体的结构2。
4 等比数列 1.2 空间几何体的三视图和直观图2.5 等比数列前n项和1。
3 空间体的表面积与体积第三章不等式第二章点、直线、平面间的关系3.1 不等关系与不等式2。
1空间点、直线、平面之间的位3。
2一元一次不等式及其解法2。
2 直线、平面平行的判定及其性质3。
3 二元一次不等式(组)及其解法2。
3 直线、平面垂直的判定及其性质3.4基本不等式第三章直线与方程3。
1直线的倾斜角与斜率3。
2 直线的方程3。
3 直线的交点坐标与距离公式。
人教版高中数学必修五目录 1.1正弦定理与余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.2.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用领域3.5二元一次不等式(组)与简单的线性规划问题如何努力学习高中数学一·培养良好的学习兴趣自学数学最出色的方法就是把数学培育成自己的嗜好。
嗜好高中数学就可以有兴趣回去课堂教学高中数学的自学方法,有兴趣才可以构成自学的主动性和积极性。
养好较好的自学习惯,并把它培育成自学兴趣存有这几点建议:(1)课前预习,对所有学识产生疑问,产生好奇心。
(2)听讲中要协调老师授课,满足用户感官的兴奋性,听讲重点化解复习中疑点,把老师课堂的回答·停滞·教具和模型的模拟的都视作观赏音乐,及时提问老师课堂回答,培育思索与老师同步性,提升精神,把老师对你的回答的评价,变成鞭策自学的动力。
(3)思考问题注意归纳,挖掘你的学习的潜力。
(4)听讲中特别注意老师传授时的数学思想,多问什么必须这样的思索,这样的方法怎样就是产生的?把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念·直角坐标系的产生·极坐标的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念理解切实可靠,有应用概念判断·推理时会准确。
二、弄清楚概念、性质与基本方法弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。
正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。
要弄清概念、性质和基本方法,就要先复习老师上课所讲的东西,要看一看课本上的相关内容。
§2.3 等比数列1.等比数列的判定方法有以下几种(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列;(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列; (3)中项公式法:a 2n +1=a n ·a n +2 (a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列; (4)前n 项和法:若S n =A (q n -1),(A ≠0,q ≠0且q ≠1)则{a n }是等比数列,其中A =a 11-q.例如:等比数列{a n }的前n 项和是S n =32-n -t ,则t 的值是________. 解析 ∵{a n }是等比数列,∴S n =32-n -t =9·⎝⎛⎭⎫13n -t =9⎣⎡⎦⎤⎝⎛⎭⎫13n -1, ∴t =9. 答案 92.等比数列的通项公式 (1)通项公式a n =a 1q n -1 (其中a 1为等比数列{a n }的首项,q 为其公比). (2)等比数列与函数的关系由通项公式a n =a 1q n -1,可得a n =a 1qq n ,当q >0,且q ≠1时,y =q x 是一个指数函数,而y =a 1q q x 是一个不为零的常数与指数函数的积.因此等比数列{a n }的图象是函数y =a 1q q x 的图象上的一些离散点.例如:已知{a n }为等差数列,{b n }为等比数列,其公比q ≠1,且b n >0,若a 1=b 1,a 11=b 11,则a 6与b 6的大小关系是__________.解析 ∵b n >0,∴b 1>0,q >0.点(n ,b n )分布在函数y =⎝⎛⎭⎫b 1q q x的图象上.点(n ,a n )分布在函数y =dx +(a 1-d )的图象上.当q >1时,它们的图象如图1所示; 当0<q <1时,它们的图象如图2所示; 其中直线方程是y =dx +(a 1-d ),曲线方程是y =⎝⎛⎭⎫b 1q q x.直线x =6与直线y =dx +(a 1-d )的交点为(6,a 6),与曲线y =⎝⎛⎭⎫b 1q ·q x的交点为(6,b 6). 无论q >1还是0<q <1都有a 6>b 6. 答案 a 6>b 63.等比数列的前n 项和 等比数列前n 项和公式为S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).注意:等比数列前n 项和公式有两种形式,运用该公式求和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当公比q 不确定时,要注意对q 分q =1和q ≠1进行讨论.例如:1+a +a 2+…+a n -1=____________________.(其中a ≠0)答案 ⎩⎪⎨⎪⎧n , (a =1)1-a n 1-a, (a ≠1)4.等比数列的常用性质在等比数列{a n }中,(1)对任意的正整数m ,n ,有a n =a m q n -m .(2)对于任意的正整数m ,n ,p ,q ,若m +n =p +q ,则有a m ·a n =a p ·a q .(3)当⎩⎨⎧ a 1>0q >1或⎩⎨⎧a 1<00<q <1时,{a n }是递增数列;当⎩⎨⎧a 1>00<q <1或⎩⎨⎧a 1<0q >1时,{a n }是递减数列; 当q =1时,{a n }为常数列; 当q <0时,{a n }为摆动数列.(4)若S n 为等比数列的前n 项和,则S k ,S 2k -S k ,S 3k -S 2k ,…,S (m +1)k -S mk ,…成等比数列(q ≠-1或k 为奇数).(5)若S n 表示等比数列的前n 项和,公比为q ,则有 S m +n =S m +q m S n .例如:在等比数列{a n }中,a 5=7,a 8=56,则通项a n =____________. 解析 a 8=a 5q 3, ∴q 3=8,q =2,∴a n =a 5q n -5=7×2n -5.答案 7×2n -5一、等比数列的判断与证明方法链接:证明数列是等比数列常用的方法:①定义法:a n +1a n=q (常数);②等比中项法:a 2n +1=a n a n +2 (a n ≠0,n ∈N *);③通项法:a n =a 1q n -1 (a 1q ≠0,n ∈N *)要证明一个数列不是等比数列,只需证明相邻三项不成等比即可.例如:a 1a 3≠a 22.例1 已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列,并证明你的结论. (1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝⎛⎭⎫23λ-32=λ⎝⎛⎭⎫49λ-4 ⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾. 所以{a n }不是等比数列.(2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝⎛⎭⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b n =0 (n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.综上,λ=-18时,{b n }不是等比数列; λ≠-18时,{b n }是等比数列. 二、等比数列基本量运算方法链接:在等比数列{a n }的通项公式和前n 项和公式中共有五个量:a 1,q ,n ,a n ,S n ,一般可以“知三求二”,通过列方程组求出另外两个量.例2 设数列{a n }为等比数列,且a 1>0,它的前n 项和为80,且其中数值最大的项为54,前2n 项的和为6 560.求此数列的通项公式.分析 因为前n 项和与2n 项和已知,这为建立方程提供了条件,由此可求得首项a 1与公比q 之间的关系,进而确定a n .解 设数列的公比为q ,由S n =80,S 2n =6 560,得q ≠1,否则S 2n =2S n .∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=80, ①a 1(1-q 2n)1-q=6 560. ②②①,得q n =81. 将q n =81代入①得,a 1=q -1.③又∵a 1>0,∴q >1.∴数列{a n }是递增数列.从而,a 1q n -1=54,∴a 1q n =54q ,∴81a 1=54q .④ ③④联立,解得q =3,a 1=2.∴a n =a 1q n -1=2×3n -1.三、等比数列的性质及应用方法链接:对于等比数列,还有以下的常用结论:(1)如果数列{a n }是等比数列,c 是不等于0的常数,那么数列{c ·a n }仍是等比数列;(2)如果{a n },{b n }是项数相同的等比数列,那么数列{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列;(3)在等比数列{a n }中,间隔相同的项构成的数列,仍是等比数列.如a 1,a 4,a 7,a 10,…; (4)S n 为等比数列{a n }的前n 项和,一般地:S n ,S 2n -S n ,S 3n -S 2n 构成等比数列(q ≠-1或n 为奇数);(5)若{a n }是公比为q 的等比数列,则S m +n =S n +q n S m .解等比数列问题时,熟练运用上述性质,进行整体代换,可以简化解题过程,提高解题速度.例3 在等比数列{a n }中,(1)若q =12,S 99=77,求a 3+a 6+…+a 99的值;(2)若{a n }的前m 项和为2,其后2m 项和为12,求再后3m 项的和.解 (1)S 99=(a 1+a 4+…+a 97)+(a 2+a 5+…+a 98)+(a 3+a 6+…+a 99)=⎝⎛⎭⎫1q 2+1q +1(a 3+a 6+…+a 99)=7(a 3+a 6+…+a 99)=77∴a 3+a 6+…+a 99=11.(2)涉及{a n }的前6m 项,把每m 项之和依次记作:A 1,A 2,A 3,A 4,A 5,A 6,则它们成等比数列公比记作q .且A 1=2,A 2+A 3=12,∴A 2+A 3=2q +2q 2=12, ∴q =2或q =-3当q =2时,A 4+A 5+A 6=A 1(q 3+q 4+q 5) =2×(23+24+25)=112;当q =-3时,A 4+A 5+A 6=A 1(q 3+q 4+q 5) =2×[(-3)3+(-3)4+(-3)5]=-378. ∴后3m 项的和为112和-378. 四、错位相减求前n 项和方法链接:等比数列{a n }的前n 项和公式的推导方法即错位相减法是很重要的方法,必须熟练掌握.该法主要应用于已知数列求和中,各项的组成是等差数列和等比数列对应项乘积构成的新数列的求和问题.例4 设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1. (1)求数列{a n }和{b n }的通项公式;(2)设c n =a nb n,求数列{c n }的前n 项和T n .解 (1)当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, a 1也满足上式.故{a n }的通项公式为a n =4n -2,即{a n }是a 1=2,公差d =4的等差数列.设{b n }的公比为q ,则b 1qd =b 1,d =4,∴q =14.故b n =b 1q n -1=2×14n -1,即{b n }的通项公式为b n =24n -1.(2)∵c n =a n b n =4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n=1+3×4+5×42+…+(2n -1)4n -1,4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n . 两式相减得3T n =-1-2×(4+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5], ∴T n =19[(6n -5)4n +5].五、等差中项与等比中项的运用方法链接:一个等比数列,除可以按定义设为a 1,a 1q ,a 1q 2,…之外,若已知连续三项,常可设为aq,a ,aq ,然后应用等差中项或等比中项建立方程求解.例5 互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.解 设三个数为aq ,a ,aq ,∴a 3=-8,即a =-2,∴三个数为-2q ,-2,-2q .(1)若-2为-2q 和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,q =1,与已知矛盾;(2)若-2q 为-2q 与-2的等差中项,则1q+1=2q ,2q 2-q -1=0,q =-12或q =1(舍去),∴三个数为4,1,-2;(3)若-2q 为-2q 与-2的等差中项,则q +1=2q ,∴q 2+q -2=0,∴q =-2或q =1(舍去), ∴三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为 4,1,-2或-2,1,4.六、等差数列与等比数列的公共项问题方法链接:1.一般地,两个等差数列若存在公共项,则它们的公共项按原来的顺序构成一个新的等差数列.公差是原来两个等差数列公差的最小公倍数.2.一般地,一个等差数列与一个等比数列若存在公共项,则它们的公共项按原来的顺序构成一个新的等比数列.例6 设A n 为数列{a n }的前n 项和,A n =32(a n -1) (n ∈N *),数列{b n }的通项公式为b n=4n +3 (n ∈N *).(1)求数列{a n }的通项公式;(2)将数列{a n }、{b n }的公共项,按它们在原数列中的先后顺序排成一个新的数列{d n },证明数列{d n }的通项公式为d n =32n +1 (n ∈N *).(1)解 由已知A n =32(a n -1) (n ∈N *).当n =1时,a 1=32(a 1-1),解得a 1=3.当n ≥2时,a n =A n -A n -1=32(a n -a n -1),由此解得a n =3a n -1,即a na n -1=3 (n ≥2).所以数列{a n }是首项为3,公比为3的等比数列, 故a n =3n (n ∈N *).(2)证明 由计算可知a 1,a 2不是数列{b n }中的项.因为a 3=27=4×6+3,所以d 1=27是数列{b n }中的第6项.设a k =3k 是数列{b n }中的第m 项,则3k =4m +3 (k ,m ∈N *),因为a k +1=3k +1=3·3k =3(4m +3)=4(3m +2)+1, 所以a k +1不是数列{b n }中的项.而a k +2=3k +2=9·3k =9(4m +3)=4(9m +6)+3, 所以a k +2是数列{b n }中的项.由以上讨论可知d 1=a 3,d 2=a 5,d 3=a 7,…,d n =a 2n +1. 所以数列{d n }的通项公式是d n =a 2n +1=32n +1 (n ∈N *).1.求和时项数不清而致错例1 求1+2+22+…+2n 的和.[错解] 1+2+22+ (2)=1-2n 1-2=2n -1.[点拨] 错因在于没有搞清项数,首项为1=20,末项为2n ,项数应为n +1项.[正解] 这是一个首项为1,公比为2的等比数列前n +1项的和,所以,1+2+22+…+2n =1-2n +11-2=2n +1-1.温馨点评 数列求和时,弄清项数是关键,等比数列前n 项和S n =a 1(1-q n )1-q(q ≠1)中的n 指的就是数列的项数.2.利用等比数列求和公式忽视q =1的情形而致错例2 已知等比数列{a n }中,a 3=4,S 3=12,求数列{a n }的通项公式. [错解] 设等比数列的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=4S 3=a 1(1-q 3)1-q =12 解得q =-12. 所以a n =a 3q n -3=4·⎝⎛⎭⎫-12n -3=⎝⎛⎭⎫-12n -5. [点拨] 上述解法中忽视了等比数列前n 项和公式中q =1这一特殊情况.[正解] 当q =1时,a 3=4,a 1=a 2=a 3=4, S 3=a 1+a 2+a 3=12,∴q =1符合题意.a n =4. 当q ≠1时,⎩⎪⎨⎪⎧a 3=a 1q 2=4S 3=a 1(1-q 3)1-q =12 解得:q =-12,a n =a 3q n -3=⎝⎛⎭⎫-12n -5. 故数列通项公式为a n =4或a n =⎝⎛⎭⎫-12n -5.3.忽略题目中的隐含条件而致错例3 已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,求a 2-a 1b 2的值. [错解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1.∵-1,b 1,b 2,b 3,-4成等比数列. ∴b 22=(-1)×(-4)=4,∴b 2=±2. 当b 2=2时,a 2-a 1b 2=-12=-12,当b 2=-2时,a 2-a 1b 2=-1-2=12.∴a 2-a 1b 2=±12.[点拨] 注意b 2的符号已经确定,且b 2<0,忽视了这一隐含条件,就容易产生上面的错误.[正解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1,∵-1,b 1,b 2,b 3,-4成等比数列, ∴b 22=(-1)×(-4)=4,∴b 2=±2. 若设公比为q ,则b 2=(-1)q 2,∴b 2<0.∴b 2=-2,∴a 2-a 1b 2=-1-2=12.例 已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,求常数p . 解 方法一 因为{c n +1-pc n }是等比数列, 所以当n ≥2时,有(c n +1-pc n )2=(c n +2-pc n +1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)] 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n +1+(3-p )3n +1][(2-p )2n -1+(3-p )·3n -1],整理得16(2-p )(3-p )·2n ·3n =0.解得p =2或p =3.方法二 由c n =2n +3n ,得c 1=5,c 2=13,c 3=35,c 4=97. 因而数列{c n +1-pc n }的前三项依次为 13-5p,35-13p,97-35p .由题意得:(35-13p )2=(13-5p )(97-35p ) 整理得:p 2-5p +6=0,∴p =2或p =3.当p =2时,c n +1-pc n =(2n +1+3n +1)-2(2n +3n )=3n ,∴c n +2-pc n +1c n +1-pc n=3n +13n =3.∴此时{c n +1-pc n }是等比数列.同理p =3时数列{c n +1-pc n }也是等比数列, ∴p =2或p =3.方法三 {c n +1-pc n }是等比数列 ⇔c n +2-pc n +1c n +1-pc n=常数. ∵c n +2-pc n +1c n +1-pc n =(2-p )2n +1+(3-p )3n +1(2-p )2n +(3-p )3n =2[(2-p )2n +(3-p )3n ]+(3-p )3n (2-p )2n +(3-p )3n=2+(3-p )3n(2-p )2n +(3-p )3n=2+3-p (2-p )⎝⎛⎭⎫23n +(3-p )为使c n +2-pc n +1c n +1-pc n 为常数,也就是使2+3-p(2-p )⎝⎛⎭⎫23n +(3-p )为常数.∴p -2=0或p -3=0,∴p =2或p =3.1.设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .解 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧a 1q =6,6a 1+a 1q 2=30. 解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3,q =2时,a n =3×2n -1, S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1);当a 1=2,q =3时,a n =2×3n -1,S n =a 1(1-q n )1-q =2(1-3n )1-3=3n -1.2.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =n +14a n(n ∈N *),求数列{b n }的前n 项和T n .解 (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1). 由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1所以b n =n +14×2n -1=n +12n +1. T n =222+323+424+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2 =34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1,n ∈N *.赏析 本题主要考查数列的通项及求和的有关知识,考查运算能力和综合解题能力.。
第1课时等比数列的概念及通项公式1.理解等比数列的概念,能在具体情景中,发现数列的等比关系.(重点)2.会推导等比数列的通项公式,并能应用该公式解决简单的等比数列问题.(重点)3.会证明一个数列是等比数列.(难点)[基础·初探]教材整理1 等比数列的概念阅读教材P49的有关内容,完成下列问题.如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).判断(正确的打“√”,错误的打“×”)(1)等比数列中,各项与公比均不为零.( )(2)数列a,a,…,a一定是等比数列.( )(3)等比数列{a n}中,a1,a3,a5一定同号.( )【答案】(1)√(2)×(3)√教材整理2 等比数列的通项公式阅读教材P51~P52,完成下列问题.如果数列{a n}是等比数列,首项为a1,公比为q,那么它的通项公式为a n=a1q n-1(a1≠0,q≠0).1.在等比数列{a n}中,已知a1=2,a4=16,则a n=________.【解析】∵a4=a1q3,∴q3=8,∴q=2,∴a n=a1q n-1=2·2n-1=2n.【答案】2n2.在等比数列{a n}中,已知a1=3,q=3,若a n=729,则n=________.【解析】∵a n=a1q n-1,a1=3,q=3,∴729=3·3n -1=3n,∴n =6.【答案】 6教材整理3 等比中项阅读教材P 54第11题,完成下列问题.1.若a ,G ,b 成等比数列,则称G 为a 和b 的等比中项,且满足G 2=ab . 2.若数列{a n }是等比数列,对任意的正整数n (n ≥2),都有a 2n =a n -1·a n +1.1.若22是b -1,b +1的等比中项,则b =________.【解析】 ∵(b -1)(b +1)=(22)2,∴b 2-1=8,∴b 2=9,∴b =±3. 【答案】 ±32.若1,a,4成等比数列,则a =________. 【解析】 ∵1,a,4成等比数列, ∴a 2=1×4=4, ∴a =±2. 【答案】 ±2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________[小组合作型]等比数列的判定与证明设数列{a n }满足a 1=1,a n +2a n -1+3=0(n ≥2).判断数列{a n +1}是否是等比数列?【精彩点拨】 只需证明a n +1+1a n +1=非零常数即可.【自主解答】 由题意知a n +1+2a n +3=0(n ≥2)成立,∴a n +1=-2a n -3, ∴a n +1+1a n +1=-2a n -3+1a n +1=-2(常数). 又a 1+1=2,∴数列{a n +1}是以2为首项,以-2为公比的等比数列.要判断一个数列{a n }是等比数列,其依据是a n a n -1=q (q 是非零常数)或a n +1a n=q ,对一切n ∈N *且n ≥2恒成立.[再练一题]1.判断下列数列是否为等比数列. (1)1,-1,1,-1,…; (2)1,2,4,6,8,…; (3)a ,ab ,ab 2,ab 3,….【解】 (1)是首项为1,公比为-1的等比数列. (2)64≠86,不是等比数列. (3)当ab ≠0时,是等比数列,公比为b ,首项为a ; 当ab =0时,不是等比数列.等比数列的通项公式(1)若{a n }为等比数列,且2a 4=a 6-a 5,则公比为________. (2)在等比数列{a n }中,若a 2+a 5=18,a 3+a 6=9,a n =1,则n =________.【导学号:91730035】【解析】 (1)∵a 6=a 4q 2,a 5=a 4q ,∴2a 4=a 4q 2-a 4q ,∴q 2-q -2=0,∴q 1=-1,q 2=2.(2)法一 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18,③a 3+a 6=a 1q 2+a 1q 5=9,④由④③得q =12,从而a 1=32,又a n =1, 所以32×⎝ ⎛⎭⎪⎫12n -1=1,即26-n=20,所以n =6.法二 因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1qn -1=1,知n =6.【答案】 (1)-1或2 (2)6等比数列基本量的求法a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可求出来,法一是常规解法,先求a 1,q ,再求a n ,法二是运用通项公式及方程思想建立方程组求a 1和q ,这也是常见的方法.[再练一题]2.(1)若等比数列的前三项分别为5,-15,45,则第5项是________.(2)一个各项均为正数的等比数列,每一项都等于它后面两项的和,则公比q =________.【解析】 (1)∵a 5=a 1q 4,a 1=5,∴q =-3,∴a 5=405. (2)由题意,a n =a n +1+a n +2,即a n =a n q +a n q 2,∴q 2+q -1=0,∴q =-1±52.∵q >0,∴q =5-12.【答案】 (1)405 (2)5-12[探究共研型]等比中项探究1 三个数满足G 2=xy ,则x ,G ,y 成等比数列吗? 【提示】 不一定.如0,0,0这三个数不成等比数列. 探究2 任何两个非零常数都有等比中项吗? 【提示】 不是.只有同号的两个数才有等比中项.在4与14之间插入3个数,使这5个数成等比数列,求插入的3个数.【精彩点拨】 法一:利用等比数列的通项公式求解; 法二:先设出这三个数,再利用等比中项求解.【自主解答】 法一:依题意,a 1=4,a 5=14,由等比数列的通项公式,得q 4=a 5a 1=116,q =±12.因此,插入的3项依次为2,1,12或-2,1,-12.法二:此等比数列共5项,a 3是a 1与a 5的等比中项,因此a 3=±a 1a 5=±1.a 2是a 1与a 3的等比中项,a 4是a 3与a 5的等比中项,因为一个正数和一个负数没有等比中项,所以a 3=1,a 2=±a 1a 3=±2,a 1=±a 3a 5=±12.因此,插入的3项依次为2,1,12或-2,1,-12.注意等比数列中各项的符号特点是隔项符号必须相同.从而,对于数a ,b 的等比中项G ,G 2=ab 一定成立,但G 的符号不一定正负都可取,如等比数列{a n }中,三项分别为a 1,a 4,a 7,则a 4是a 1与a 7的等比中项,此时a 4可取正值,也可取负值;而对于下面的三项a 2,a 4,a 6,也有a 4是a 2与a 6的等比中项,此时a 4只能与a 2和a 6同号.[再练一题]3.已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.【解】 由题意知b 2=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-24332=⎝ ⎛⎭⎪⎫326,∴b =±278.当b =278时,ab =⎝ ⎛⎭⎪⎫-322,解得a =23;bc =⎝ ⎛⎭⎪⎫-243322=⎝ ⎛⎭⎪⎫-3210,解得c =⎝ ⎛⎭⎪⎫327. 同理,当b =-278时,a =-23,c =-⎝ ⎛⎭⎪⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝ ⎛⎭⎪⎫327或-23,-278,-⎝ ⎛⎭⎪⎫327.[构建·体系]1.下列各组数能组成等比数列的是________(填序号). ①13,16,19;②lg 3,lg 9,lg 27; ③6,8,10;④3,-33,9. 【解析】-333=9-33=- 3. 【答案】 ④2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数n =________. 【解析】 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6.【答案】 63.在等比数列{a n }中,a 1=18,q =-2,则a 4与a 10的等比中项是________.【导学号:91730036】【解析】 a 4与a 10的等比中项为a 7,a 7=18×(-2)6=8.【答案】 84.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 【解析】 a 4-a 3=a 2q 2-a 2q =a 2(q 2-q )=2(q 2-q )=4,∴q 2-q -2=0, ∴q =2,或q =-1(舍去). 【答案】 25.在243和3中间插入3个数,使这5个数成等比数列,求这3个数. 【解】设插入的三个数为a 2,a 3,a 4,由题意得243,a 2,a 3,a 4,3成等比数列. 设公比为q ,则3=243·q 5-1,解得q =±13.当q =13时,a 2=81,a 3=27,a 4=9;当q =-13时,a 2=-81,a 3=27,a 4=-9.因此,所求三个数为81,27,9或-81,27,-9.我还有这些不足:(1)_________________________________________________ (2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________ (2)_________________________________________________学业分层测评(十) (建议用时:45分钟)[学业达标]一、填空题1.在等比数列{a n }中,a 4=2,a 7=8,则a n =________.【解析】 因为⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2 ①a 1q 6=8 ②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22n -53.【答案】 22n -532.等比数列x,3x +3,6x +6,…的第四项等于________.【解析】 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.【答案】 -243.如果-1,a ,b ,c ,-9成等比数列,那么b =________,ac =________.【解析】 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号,∴b =-3,且a ,c 必同号. ∴ac =b 2=9.【答案】 -3 94.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________.【解析】 由a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2. 【答案】 25.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=________. 【解析】 ∵{a n }为等比数列, ∴a 2+a 3a 1+a 2=q =2. 又∵a 1+a 2=3, ∴a 1=1. 故a 7=1·26=64. 【答案】 646.若{a n }是等比数列,下列数列中是等比数列的所有代号为________.①{a 2n };②{a 2n };③⎩⎨⎧⎭⎬⎫1a n ;④{lg|a n |}.【解析】 考查等比数列的定义,验证第n +1项与第n 项的比是否为常数. 【答案】 ①②③7.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________.【解析】 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12,∴这4个数依次为80,40,20,10. 【答案】 80,40,20,108.在等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =________.【导学号:91730037】【解析】 记数列{a n }的公比为q ,由a 5=-8a 2,得a 1q 4=-8a 1q ,即q =-2.由|a 1|=1,得a 1=±1,当a 1=-1时,a 5=-16<a 2=2,与题意不符,舍去;当a 1=1时,a 5=16>a 2=-2,符合题意,故a n =a 1qn -1=(-2)n -1.【答案】 (-2)n -1二、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比.【解】 设该数列的公比为q .由已知,得⎩⎪⎨⎪⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎪⎨⎪⎧a 1q -1=2,q 2-4q +3=0,解得⎩⎪⎨⎪⎧a 1=1,q =3q =1舍去,故首项a 1=1,公比q =3.10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .【解】 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 由a 2=-4,a 3=-15可知,a n ≠n . ∵a n +1-n +1a n -n=3a n -2n +1+3-n +1a n -n=3a n -3n a n -n=3(n =1,2,3,…).又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.[能力提升]1.在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于________.【解析】 由题意知a 3是a 1和a 9的等比中项, ∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ), 得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.【答案】13162.已知{a n }是等比数列,a n >0,又知a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=________. 【解析】 ∵a 2a 4=a 23,a 4a 6=a 25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又∵a n >0,∴a 3+a 5=5.【答案】 53.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 【解析】 由a n =2S n -3,得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1,得a 1=2a 1-3, ∴a 1=3,故a n =3·(-1)n -1.【答案】 a n =3·(-1)n -14.互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.【解】 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q和-2的等差中项,则1q +1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为4,-2,1; (3)若-2q 为-2q 和-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。
第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。
苏教版数学必修五2.3等差数列的前n项和(学案含答案)=n (a 1+a n ),∴S n =21n (a 1+a n ) 这种推导方法称为倒序求和法。
【核心突破】(1)由等差数列的前n 项和公式及通项公式可知,若已知a 1、d 、n 、a n 、S n 中三个便可求出其余两个,即“知三求二”。
“知三求二”的实质是方程思想,即建立方程组求解。
(2)在运用等差数列的前n 项和公式来求和时,一般地,若已知首项a 1及末项a n 用公式S n =2)(1na an +较方便;若已知首项a 1及公差d 用公式S n =na 1+2)1(-nn d 较好。
(3)在运用公式S n =2)(1na an +求和时,要注意性质“设m 、n 、p 、q 均为正整数,若m +n =p +q ,则a m +a n =a p +a q ”的运用。
(4)在求和时除了直接用等差数列的前n 项和公式求和(即已知数列是等差数列)外,还要注意创设运用公式条件(即将非等差数列问题转化为等差数列问题),以利于求和。
考点二:等差数列前n 项和的性质数列{a n }为等差数列,前n 项和为S n ,则有如下性质:(1)S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列,公差为m 2d 。
(2)若项数为偶数2n (n ∈N *),则S 偶-S奇=nd ,偶奇S S =1+n na a 。
(3)若项数为奇数2n +1(n ∈N *),则S 奇-S 偶=a n +1,偶奇S S =n n 1+。
(4)若{a n }、{b n }均为等差数列,前n 项和分别为S n 和T n ,则1212--=m m m m T S b a 。
考点三:等差数列前n 项和的最值解决等差数列前n 项和的最值的基本思想是利用前n 项和公式与函数的关系解决问题,即:(1)二次函数法:用求二次函数的最值的方法来求前n 项和的最值,但要注意的是:*n N ∈。
必修一(高一)第一章集合与函数概念一总体设计二教科书分析1.1集合1.2函数及其表示1.3函数的基本性质实习作业三自我检测题四拓展资源第二章基本初等函数(Ⅰ)一总体设计二教科书分析2.1指数函数2.2对数函数2.3幂函数三自我检测题四拓展资源第三章函数的应用一总体设计二教科书分析3.1函数与方程3.2函数模型及其应用三自我检测题四拓展资源必修二(高二)第一章空间几何体一总体设计二教科书分析1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积三自我检测题四拓展资源第二章点、直线、平面之间的位置关系一总体设计二教科书分析2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质三自我检测题第三章直线与方程一总体设计二教科书分析3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式三自我检测题四拓展资源第四章圆与方程一总体设计二教科书分析4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系三自我检测题四拓展资源必修三(高一)第一章算法初步一总体设计二教科书分析1.1算法与程序框图1.2基本算法语句1.3算法案例三自我检测题四拓展资源第二章统计一总体设计二教科书分析2.1随机抽样2.2用样本估计总体2.3变量间的相关关系三自我检测题四拓展资源第三章概率一总体设计二教科书分析3.1随机事件的概率3.2古典概型3.3几何概型三自我检测题四拓展资源必修四(高一)第一章三角函数一总体设计二教科书分析1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用三自我检测题四拓展资源第二章平面向量一总体设计二教科书分析2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例三自我检测题四拓展资源第三章三角恒等变换一总体设计二教科书分析3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换三自我检测题必修五(高一)第一章解三角形一总体设计二教科书分析1.1正弦定理和余弦定理1.2应用举例三自我检测题四拓展资源第二章数列一总体设计二教科书分析2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和三自我检测题四拓展资源第三章不等式一总体设计二教科书分析3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式三自我检测题高中数学选修教材目录1-1(高二文)第一章常用逻辑语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用用<几何画板>探究点的轨迹:椭圆2.2双曲线探究与发现为什么的渐近线2.3抛物线阅读与思考圆锥曲线的光学性质及其应用小结第三章导数及其应用3.1变化率与导数3.2导数的计算探究与发现牛顿法-用导数方法求方程的近似解3.3导数在研究函数中的应用信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分小结1-2(文)第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业小结第二章推理与证明2.1合情推理与演绎推理阅读与思考科学发现中的推理2.2直接证明与间接证明小结文档收集于互联网,已重新整理排版.word 版本可编辑.欢迎下载支持.第三章 数系的扩充与复数的引入3.1 数系的扩充与复数的概念 3.2 复数代数形式的四则运算小结 第四章框图4.1 流程图 4.2 结构图信息技术应用 用word2002绘制流程图 小结2-1(高二理)第一章 常用逻辑语1.1 命题及其关系 1.2 充分条件与必要条件1.3 简单的逻辑联结词 1.4 全称量词与存在量词小结 第二章 圆锥曲线与方程2.1 椭圆探究与发现 为什么截口曲线是椭圆信息技术应用 用<几何画板>探究点的轨迹:椭圆2.2 双曲线探究与发现 为什么 是双曲线 的渐近线 2.3 抛物线 探究与发现 为什么二次函数 的图像是抛物线 2.4 直线与圆锥曲线的位置关系阅读与思考 圆锥曲线的光学性质及其应用2.5 曲线与方程探究与发现 圆锥曲线的离心率与统一方程 小结 第三章 空间向量与立体几何3.1 空间向量及其运算阅读与思考 向量概念的推广与应用3.2 立体几何中的向量方法小结2-2(理)第一章导数及其应用1.1 变化率与导数1.2 导数的计算探究与发现 牛顿法-用导数方法求方程的近似解1.3 导数在研究函数中的应用信息技术应用 图形技术与函数性质 1.4 生活中的优化问题举例1.5 定积分的概念信息技术应用 曲边梯形的面积 1.6 微积分基本定理1.7 定积分的简单应用实习作业 走进微积分第二章 推理与证明2.1 合情推理与演绎推理 阅读与思考 平面与空间中的余弦定理2.2 直接证明与间接证明 2.3 数学归纳法 小结 第三章 数系的扩充与复数的引入3.1 数系的扩充与复数的概念 3.2 复数代数形式的四则运算 阅读与思考 代数基本定理 小结 2-3(理)第一章 计数原理 1.1 分类加法计数原理与分部乘法计数原理探究与发现 子集的个数有多少1.2 排列与组合探究与发现 组合数的两个性质1.3 二项式定理 小结第二章 随机变量及其分布2.1 离散型随机变量及其分布列 2.2 二项分布及其应用 阅读与思考 这样的买彩票方式可行吗? 探究与发现 服从二项分布的随机变量取何值时概率2.3 离散型随机变量的均值与方差 2.4 正态分布 信息技术应用 µ,б对正态分布的影响 小结 第三章 统计案例3.1 回归分析的基本思想及其初步应用 3.2 独立性检验的基本思想及其初步应用实习作业 小结文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1相似三角形的判定2相似三角形的性质四直角三角形的射影定理第二讲直线与圆的关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线4-4 坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线4-5 不等式选讲第一讲不等式和绝对值不等式一不等式1不等式的基本性质2基本不等式3三个正数的算术-几何平均不等式二绝对值不等式1绝对值三角不等式2绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式的柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式。