高考数学一轮复习 第7讲 立体几何中的向量方法(一)同步检测 文(1)
- 格式:doc
- 大小:175.10 KB
- 文档页数:6
高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。
单元质检七立体几何(A)(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.已知圆柱的侧面展开图是边长为2和4的矩形,则圆柱的体积是()A. B. C. D.或2.下列命题中,错误的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α,β,γ,δ所成的交线为a,b,c,d,则a∥b∥c∥dD.一条直线与两个平面所成的角相等,则这两个平面平行3.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A. B.2C. D.34.已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.若l1⊥l2,l2⊥l3,则l1∥l3B.若l1⊥l2,l2∥l3,则l1⊥l3C.若l1∥l2∥l3,则l1,l2,l3共面D.若l1,l2,l3共点,则l1,l2,l3共面5.一个正方体的表面展开图如图所示,点A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD所成的角的余弦值为()A. B.C. D.6.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1的体积最大时,则堑堵ABC-A1B1C1的表面积为()A.4+4B.6+4C.8+4D.10+4二、填空题(本大题共2小题,每小题7分,共14分)7.已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为.8.已知在三棱锥A-BCD中,AB=AC=BC=2,BD=CD=,点E是BC的中点,点A在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为.三、解答题(本大题共3小题,共44分)9. (14分)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.10. (15分)如图,三棱柱ABC-A1B1C1的所有棱长都是2,AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD;(2)求二面角D-BE-B1的余弦值.11.(15分) 如图,三角形PDC所在的平面与矩形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线PA与直线FG所成角的余弦值.单元质检七立体几何(A)1.D解析圆柱的侧面展开图是边长为2与4的矩形,当母线为4时,圆柱的底面半径是,此时圆柱体积是π××4=;当母线为2时,圆柱的底面半径是,此时圆柱的体积是π××2=,综上可知,所求圆柱的体积是或.故选D.2.D解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,则它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,平面α与平面β平行,则平面α中的直线a必平行于平面β,平面β内的一点与这条线可以确定一个平面,这个平面与平面β交于一条直线,过该点在平面β内只有这条直线与a平行;C正确,利用同一平面内不相交的两条直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面所成的角相等,这两个平面可能是相交平面,故应选D.3.C解析由计算可得O为B1C与BC1的交点.设BC的中点为M,连接OM,AM,则可知OM⊥平面ABC,连接AO,则AO的长为球半径,可知OM=6,AM=,在Rt△AOM中,由勾股定理得半径OA=.4.B解析从正方体同一个顶点出发的三条棱两两垂直,可知选项A错误;因为l1⊥l2,所以l1与l2所成的角是9 °.又因为l2∥l3,所以l1与l3所成的角是9 °,所以l1⊥l3,故选项B正确;三棱柱中的三条侧棱平行,但不共面,故选项C错误;三棱锥的三条侧棱共点,但不共面,故选项D错误.故选B.5.C解析如图所示,可知∠EGF为AB和CD所成的角,F为正方体棱的中点.设正方体棱长为1,则EF=GF=,EG=.故cos∠EGF=.6.B解析设AC=x,则0<x<2,由题意,得四棱锥B-A1ACC1的体积为V=·2·x·-·x·--,当且仅当x=-,即x= 时,取等号.堑堵ABC-A1B1C1的表面积为S=2S△ABC+2矩形矩形+2×2×+2×2=6+4.7.1.5解析如图,连接AM.因为PA⊥平面ABCD,所以PA⊥DM.若BC边上有且只有一点M,使PM⊥MD,则DM⊥平面PAM,即DM⊥AM,故以AD为直径的圆和BC相切即可.因为AD=BC=3,所以圆的半径为1.5,要使线段BC和半径为1.5的圆相切,则AB=1.5,即a=1.5.8.π解析由题意知,△BCD为等腰直角三角形,点E是△BCD外接圆的圆心,点A在平面BCD上的射影恰好为DE的中点F,则BF=,∴AF=-,设三棱锥A-BCD外接球的球心O到平面BCD的距离为h,则1+h2=-,∴h=,r=(r为球O的半径),∴该三棱锥外接球的表面积为4π×π.9.证明(1)由题意知,E为B1C的中点.因为D为AB1的中点,所以DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.10.(1)证明∵AB=BC=CA,D是AC的中点,∴BD⊥AC.∵AA1⊥平面ABC,∴平面AA1C1C⊥平面ABC,∴BD⊥平面AA1C1C,∴BD⊥AE.又在正方形AA1C1C中,D,E分别是AC,CC1的中点,易证得△A1AD≌△ACE,∴∠A1DA=∠AEC,∵∠AEC+∠CAE=9 °,∴∠A1DA+∠CAE=9 °,即A1D⊥AE.又A1D∩BD=D,∴AE⊥平面A1BD.(2)解取A1C1的中点F,以DF,DA,DB所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),E(1,-1,0),B(0,0,),B1(2,0,),=(0,0,),=(1,-1,0),=(2,0,0),=(1,1,).设平面DBE的一个法向量为m=(x,y,z),则· ,·,- ,令x=1,则m=(1,1,0).设平面BB1E的一个法向量为n=(a,b,c),则· ,·,,令c=,则n=(0,-3,).设二面角D-BE-B1的平面角为θ,观察可知θ为钝角,cos<m,n>=·=-,∴cosθ=-.故二面角D-BE-B1的余弦值为-.11.解法一(1)证明:∵PD=PC,且点E为CD边的中点,∴PE⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC, ∴PE⊥平面ABCD.∵FG⊂平面ABCD,∴PE⊥FG.(2)∵四边形ABCD是矩形,∴AD⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,AD⊂平面ABCD, ∴AD⊥平面PDC.∵PD⊂平面PDC,∴AD⊥PD.∴∠PDC即为二面角P-AD-C的平面角.在Rt△PDE中,PD=4,DE=AB=3,PE=-,∴tan∠PDC=,即二面角P-AD-C的正切值为.(3)如图所示,连接AC,∵AF=2FB,CG=2GB,即=2,∴AC∥FG,∴∠PAC即为直线PA与直线FG所成的角或其补角.在△PAC中,PA==5,AC==3.由余弦定理可得cos∠PAC=-·9,∴直线PA与直线FG所成角的余弦值为9.解法二(1)见解法一.(2)取AB的中点M,连接EM,可知EM,EC,EP两两垂直,故以E为原点,EM,EC,EP所在直线为x轴、y 轴、z轴建立如图所示的空间直角坐标系.可得A(3,-3,0),D(0,-3,0),P(0,0,),C(0,3,0),即=(-3,0,0),=(0,-3,-),设平面PAD的法向量为n=(x,y,z),则· ,· ,可得- ,-- ,令y=,可得一个法向量n=(0,,-3).因为平面ADC的一个法向量为=(0,0,),所以二面角P-AD-C的余弦值为|cos<n,>|=.所以二面角P-AD-C的正切值为.(3)由(2)中建立的空间直角坐标系可得=(3,-3,-),F(3,1,0),G(2,3,0),则=(-1,2,0), 故cos<>=-9.所以直线PA与直线FG所成角的余弦值为9.。
考点45 立体几何中的向量方法1.(辽宁省沈阳市2019届高三教学质量监测三数学理)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAB ⊥底面ABCD ,E 为PC 上的点,且BE ⊥平面APC(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥ABC P -体积最大时,求二面角B AC P --的余弦值.【答案】(1)见证明;(2)3. 【解析】(1)证明:∵侧面PAB ⊥底面ABCD ,侧面PAB底面ABCD AB =,四边形ABCD 为正方形,∴BC AB ⊥,面ABCD ,∴BC ⊥面PAB , 又AP ⊂面PAB , ∴AP BC ⊥,BE ⊥平面APC ,AP ⊂面PAC ,∴BE AP ⊥,B BE BC = ,,BC BE ⊂平面PBC ,∴AP ⊥面PBC ,AP ⊂面PAD ,∴平面PAD ⊥平面PBC . (2)111323P ABC C APB V V PA PB BC PA PB --==⨯⨯⨯⨯=⨯⨯, 求三棱锥ABC P -体积的最大值,只需求PA PB ⨯的最大值.令,PA x PB y ==,由(1)知,PA PB ⊥, ∴224x y +=,而221123323P ABCx y V xy -+=≤⨯=,当且仅当x y ==PA PB ==ABC P V -的最大值为23. 如图所示,分别取线段AB ,CD 中点O ,F ,连接OP ,OF ,以点O 为坐标原点,以OP ,OB 和OF 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系xyz O -. 由已知(0,1,0),(0,1,2),(1,0,0)A C P -,所以(1,1,0),(0,2,2)AP AC ==, 令(,,)n x y z =为面PAC 的一个法向量,则有0220x y y z +=⎧⎨+=⎩,∴(1,1,1)n =-易知(1,0,0)m =为面ABC 的一个法向量, 二面角B AC P --的平面角为θ,θ为锐角则1cos 3n m n m θ⋅===⋅.2.(湖南省长沙市第一中学2019届高三下学期高考模拟卷一数学理)如图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,平面PAC 垂直圆O 所在平面,直线PC 与圆O 所在平面所成角为60°,PA ⊥PC .(1)证明:AP ⊥平面PBC(2)求二面角P —AB 一C 的余弦值 【答案】(1)见解析.(2) 721. 【解析】(1)由已知可知AC BC ⊥,又平面PAC ⊥平面圆O ,平面PAC 平面圆O AC =,∴BC ⊥平面PAC ,∴BC PA ⊥, 又PA PC ⊥,PC BC C =,PC ⊂平面PBC ,D 平面PBC ,∴PA ⊥平面PBC .(2)法一:过P 作PH AC ⊥于H ,由于平面PAC ⊥平面O ,则PH ⊥平面O ,则PCH ∠为直线PC 与圆O 所在平面所成角,所以60PCH =︒. 过H 作HF AB ⊥于F ,连结PF ,则AB PF ⊥, 故PFH ∠为二面角P AB C --的平面角.由已知60ACP ABC ∠=∠=︒,30CAP CAB ∠=∠=︒,在Rt APC ∆中,sin30cos30sin30PH AP AC =⋅︒=⋅︒⋅︒19224==,由2AP AH AC =⋅得2AP AH AC ==Rt AFH ∆中,sin 30FH AH =︒=,故9tan3PHPFHHF∠===,故cos7PFH∠=,即二面角P AB C--的余弦值为721.法二:过P作PH AC⊥于H,则PH⊥平面O,过H作//HF CB交AB于F,以H为原点,HA、HF、HP分别为x轴、y轴、z轴建立空间直角坐标系.则(0,0,0)H,4A⎛⎫⎪⎪⎝⎭,4B⎛⎫-⎪⎪⎝⎭,90,0,4P⎛⎫⎪⎝⎭,从而94AP⎛⎫= ⎪⎪⎝⎭,(AB=-,设平面PAB的法向量(,,)n x y z=,则9394333AP n x zABn x y⎧⋅=-+=⎪⎨⎪⋅=-+=⎩得zy⎧=⎪⎨=⎪⎩,令1x=,从而(1,3,n=,而平面ABC的法向量为(0,0,1)m=,故3cos,7n mn mn m⋅<>===即二面角P AB C--的余弦值为721.3.(四川省绵阳市2019届高三下学期第三次诊断性考试数学理)如图,在四棱锥P ABCD -中,底面ABCD是菱形,且2PA AD ==,120PAD BAD ∠=∠=︒,E ,F 分别为PD ,BD 的中点,且2EF =.(1)求证:平面PAD ⊥平面ABCD ; (2)求锐二面角E AC D --的余弦值.【答案】(1)见解析;(2)5【解析】(1)过P 作PO ⊥AD ,垂足为O ,连结AO ,BO , 由∠PAD=120°,得∠PAO=60°,∴在Rt △PAO 中,PO=PAsin ∠PAO=2sin60°=2×2∵∠BAO=120°,∴∠BAO=60°,AO=AO ,∴△PAO ≌△BAO ,∴∵E ,F 分别是PA ,BD 的中点,EF=2EF 是△PBD 的中位线,∴,∴PB 2=PO 2+BO 2,∴PO ⊥BO ,∵AD∩BO=O ,∴PO ⊥平面ABCD ,又PO ⊂平面PAD ,∴平面PAD ⊥平面ABCD .(2)以O 为原点,OB 为x 轴,OD 为y 轴,OP 为z 轴,建立空间直角坐标系, A (0,1,0),P (0,0,B0,0),D (0,3,0),∴E (0,32,F302,),AE =(0,12,AF =12,0),易得平面ABCD 的一个法向量m =(0,0,1),设平面ACE 的法向量n =(x ,y ,z ),则1AE y z 02231AF x y 022n n ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩,取x=1,得n =(1,1),设锐二面角的平面角的大小为θ,则cosθ=|cos <,m n >|=m nm n⋅⋅=,∴锐二面角E-AC-D.4.(四川省宜宾市2019届高三第三次诊断性考试数学理)如图,在四棱锥中,,平面,二面角为为中点.(1)求证:;(2)求与平面所成角的余弦值.【答案】(1)证明见解析;(2). 【解析】(1)证明:作SA中点F,连接EF∵E为SD中点∴∵∴∴得平行四边形∴∵平面∴为二面角的平面角∴∵∴∴∴(2)作AB中点O,由(1)知∵∴平面如图建立空间直角坐标系设,则∴设平面SCD 的法向量,得令 ,则∵∴∴∴AB 与平面所成角的余弦值为.5.(安徽省黄山市2019届高三毕业班第三次质量检测数学理)如图,在以,,,,,A B C D E F 为顶点的五面体中,面ABEF 为正方形,AF =,90AFD ︒∠=,且二面角E AF D --与二面角C BE F --都是30.(1)证明:⊥AF 平面EFDC ;(2)求直线BF 与平面BCE 所成角的正弦值. 【答案】(1)证明见解析;(2)42. 【解析】 (1)面ABEF 为正方形∴ΑF FE ⊥又90AFD ∠=∴ΑF DF ⊥,而DF FE F ⋂=,DF ⊂面EFDC ,⊂EF 面EFDC∴ΑF ⊥面EFDC(2)⊂AF ABEF ,则由(1)知面EFDC ⊥平面ΑΒΕF ,过D 作DG ΕF ⊥,垂足为G ,∴DG ⊥平面ΑΒΕF .以G 为坐标原点,GF uu u r的方向为x 轴正方向,GD 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(1)知DFE ∠为二面角E AF D --的平面角,故DFE 30∠=,又AF =,则2DF =,GF =AF =()B -,()E -,)F.由已知,//AB EF ,∴//AB 平面EFDC .又平面ABCD平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,∴C F ∠E 为二面角C BE F --的平面角,30C ΕF ∠=.∴()C -. ∴()3,0,1ΕC=,()ΕΒ=,()BF =-.设(),,n x y z =是平面ΒC Ε的法向量,则C 00n n ⎧⋅E =⎨⋅EB =⎩,即00z +==⎪⎩,∴可取(1,0,n = .则43sin cos ,446BF n BF n BF nθ⋅=<>===⨯. ∴直线BF 与平面BCE 所成角的正弦值为42 .6.(湖南省师范大学附属中学2019届高三考前演练(五)数学(理)在五边形AEBCD 中,BC CD ⊥,C //D AB ,22AB CD BC ==,AE BE ⊥,AE BE =(如图).将△ABE 沿AB 折起,使平面ABE ⊥平面ABCD ,线段AB 的中点为O(如图).(1)求证:平面ABE ⊥平面DOE ;(2)求平面EAB 与平面ECD 所成的锐二面角的大小. 【答案】(1)见解析(2)45° 【解析】(1)由题意2AB CD =,O 是线段AB 的中点,则OB CD =.又//CD AB ,则四边形OBCD 为平行四边形,又BC CD ⊥,则AB OD ⊥, 因AE BE =,OB OA =,则EO AB ⊥.EO DO O =,则AB ⊥平面EOD.又AB Ì平面ABE ,故平面ABE ⊥平面EOD.(2)由(1)易知OB ,OD ,OE 两两垂直,以O 为坐标原点,以OB ,OD ,OE 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系O xyz -, △EAB 为等腰直角三角形,且AB=2CD=2BC , 则OA OB OD OE ===,取1CD BC ==,则O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0), E (0,0,1),则1CD =-(,0,0),011DE =-(,,), 设平面ECD 的法向量为n x y z =(,,), 则有取0,0,n CD n DE ⎧⋅=⎨⋅=⎩0,0,x y z -=⎧⎨-+=⎩1z =,得平面ECD 的一个法向量011n =(,,), 因OD ⊥平面ABE.则平面ABE 的一个法向量为010OD =(,,), 设平面ECD 与平面ABE 所成的锐二面角为θ,则,cos cos OD n θ===因为0(0,90)θ∈,所以045θ=,故平面ECD 与平面ABE 所成的镜二面角为45°.7.(河北省保定市2019年高三第二次模拟考试理)如图,已知四棱锥中,四边形ABCD 为矩形,AB =2BC SC SD ===,BC SD ⊥.(1)求证:SC ⊥平面SAD ; (2)设12AE EB =,求平面SEC 与平面SBC 所成的二面角的正弦值.【答案】(1)见证明;(2【解析】(1)证明: BC ⊥SD ,BC ⊥CD 则BC ⊥平面SDC, 又//BC AD 则AD ⊥平面SDC ,SC ⊂平面SDC SC ⊥AD又在△SDC 中,SC=SD=2, DC=AB SC 2+SD 2=DC 2则SC ⊥SD ,又SD AD D =所以 SC ⊥平面SAD(2)解:作SO⊥CD于O,因为BC⊥平面SDC, 所以平面ABCD⊥平面SDC,故SO⊥平面ABCD 以点O为原点,建立坐标系如图.则),C(0,0), A(2,,0),B(2,0)设E(2,y,0),因为12 AE EB=所以1),23y y y+=∴=-即E((2,3-,0)42=(0,2,-2),(2,-,0),=(2,0,0)SC CE CB==(,,),=(,b,c)SEC n x y z SBC m a设平面的法向量为平面的法向量为22=0·=0,·=02=03zSC nCE n x y⎧⎧⎪∴⇒⎨⎨-⎩⎪⎩令3z=,则3y=,23x==(22,3,3)n∴·=0·=0SC mCB m⎧∴⇒⎨⎩20a==⎪⎩,令1b=,则1c=,0a=8.(陕西省西安市2019届高三第三次质量检测理)如图,在三棱柱111ABC A B C-中,AB⊥平面11BB C C,E是1CC的中点,1BC=,12BB=,160BCC∠=°.=(0,1,1)∴vmcos<,>=13||||∴u r ru r r gu r rm nm nm n(1)证明:1B E AE ⊥;(2)若AB =11A B E A --的余弦值.【答案】(1)证明见解析;(2【解析】解:(1)证明:连接1BC ,BE , 因为在中,1BC =,112CC BB ==,160BCC ∠=°.所以1BC BC ⊥. 所以1112BE CC ==,因为1B E ==所以1B E BE ⊥,又AB ⊥平面11BB C C ,且1B E ⊂平面11BB C C , 所以1B E AB ⊥,AB BE B ⋂=, 所以1B E ⊥平面ABE , 因为AE ⊂平面ABE , 所以1B E AE ⊥.(2)以B 为原点建立如图所示空间直角坐标系,则(A,()1B -,12E ⎛⎫⎪ ⎪⎝⎭,(1A -,所以13,2B E ⎛⎫= ⎪ ⎪⎝⎭,(1AB =-,13,2A E ⎛= ⎝,设平面1AB E 的法向量为(),,n x y z =r,设平面11A B E 的法向量为(),,m a b c =,则1100{{y B E n AB n x -=⋅=⇒⋅=+=,取(1,3,n =,则1100{{30y B E m A m a E -=⋅=⇒⋅=-=,取()1,3,0m =.所以cos ,26m n n m m n ⋅〈〉===⋅⨯,即二面角11A B E A --. 9.(河南省重点高中2019届高三4月联合质量检测数学理)在四棱锥中,底面为平行四边形,平面平面,是边长为4的等边三角形,,是的中点.(1)求证:; (2)若直线与平面所成角的正弦值为,求平面与平面所成的锐二面角的余弦值.【答案】(1)见证明;(2)【解析】(1)因为是等边三角形,是的中点,所以.又平面平面,平面平面,平面,所以平面.所以,又因为,,所以平面.所以.又因为,所以.又且,平面,所以平面.所以.(2)由(1)得平面.所以就是直线与平面所成角.因为直线与平面所成角的正弦值为,即,所以.所以,解得.则.由(1)得,,两两垂直,所以以为原点,,,所在的直线分别为,,轴,建立如图所示的空间直角坐标系,则点,,,,所以,.令平面的法向量为,则由得解得令,可得平面的一个法向量为;易知平面的一个法向量为,设平面与平面所成的锐二面角的大小为,则.所以平面与平面所成的锐二面角的余弦值为.10.(天津市北辰区2019届高考模拟考试数学理)如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点(I )求证:平面; (II )求二面角的正弦值;(III )设为棱上的点,若直线和平面所成角的正弦值为,求的长。
第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。
第六节空间向量在立体几何中的应用1.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l01平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.(3)空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔02n1=λn2(λ∈R)l1⊥l2n1⊥n2⇔03n1·n2=0直线l的方向向量为n,平面α的法向量为m,l⊄αl∥αn⊥m⇔04n·m=0 l⊥αn∥m⇔05n=λm(λ∈R)平面α,β的法向量分别为n,m α∥βn∥m⇔06n=λm(λ∈R)α⊥βn⊥m⇔07n·m=02.设a,b分别是两异面直线l1,l2的方向向量,则3.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=10|cos 〈a ,n 〉|=11|a ·n ||a ||n |.4.(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=12〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=13|cos 〈n 1,n 2〉|,二面角的平面角的大小是向量n 1与n 2的夹角(或其补角).5.用向量法求空间距离(1)点到直线的距离已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点.则点P 到直线l 的距离为14__AP →2-(AP →·u )2.(2)点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.则点P 到平面α的距离为15|AP →·n ||n |.(3)线面距和面面距可以转化为点面距求解.1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两个半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.1.概念辨析(正确的打“√”,错误的打“×”)(1)两个平面的法向量所成的角就是这两个平面所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.()(4)直线l的一个方向向量为a=(-1,2,1),平面α的一个法向量为n=(-1,-1,1),l⊄α,则l∥α.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第一册1.4.1练习T1改编)已知直线l的一个方向向量为a=(-3,2,5),平面α的一个法向量为b=(1,x,-1),若l∥α,则x=()A.4B.3C.2D.1答案A解析因为l∥α,所以a⊥b,即a·b=0,即-3+2x-5=0,解得x=4.故选A.(2)已知两条异面直线的方向向量分别是m=(-2,1,2),n=(3,-2,1),则这两条异面直线所成的角θ满足()A.sinθ=-147B.sinθ=147C.cosθ=147D.cosθ=-147答案C解析因为θ,π2,所以cosθ=|cos〈m,n〉|=|m·n||m||n|=63×14=147,sinθ=1-cos2θ=357.故选C.(3)若平面α的法向量为a=(3,-1,2),平面β的法向量为n=(-6,2,-4),则() A.α∥βB.α⊥βC.α与β相交但不垂直D.无法确定答案A解析由题意,得n=-2a,则n∥a,α∥β.故选A.(4)已知A(1,2,0),B(3,1,2),C(2,0,4),则点C到直线AB的距离为() A.2B.5C.23D.25答案B解析因为AB →=(2,-1,2),AC →=(1,-2,4),所以AC →在AB →方向上的投影数量为AB →·AC →|AB →|=2+2+84+1+4 4.设点C 到直线AB 的距离为d ,则d =|AC →|2-42=1+4+16-16= 5.故选B.考点探究——提素养考点一利用空间向量证明平行、垂直例1如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP=2,AB =1,E 为棱PC 的中点.证明:(1)BE ⊥DC ;(2)BE ∥平面PAD ;(3)平面PCD ⊥平面PAD .证明依题意,以A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)因为BE →=(0,1,1),DC →=(2,0,0),BE →·DC →=0,所以BE ⊥DC .(2)因为AB →=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB ,又BE ⊄平面PAD ,所以BE ∥平面PAD .(3)由(2)知平面PAD 的一个法向量为AB →=(1,0,0),PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),·PD →=0,·DC →=0,y -2z =0,x =0,取y =1,得n =(0,1,1).因为n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →.所以平面PCD ⊥平面PAD .【通性通法】利用空间向量证明平行、垂直的一般步骤【巩固迁移】1.(2023·山东青岛二中模拟)在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是正方形A 1B 1C 1D 1和正方形B 1C 1CB 的中心.求证:(1)AC 1⊥平面A 1BD ;(2)EF ∥平面A 1BD ;(3)平面B 1EF ∥平面A 1BD .证明(1)设正方体的棱长为2,建立如图所示的空间直角坐标系,则C 1(2,2,2),A 1(0,0,2),B (2,0,0),D (0,2,0),AC 1→=(2,2,2),A 1B →=(2,0,-2),A 1D →=(0,2,-2),因为AC 1→·A 1B →=0,AC 1→·A 1D →=0,所以AC 1⊥A 1B ,AC 1⊥A 1D ,由于A 1B ∩A 1D =A 1,所以AC 1⊥平面A 1BD .(2)由(1)知,AC 1→=(2,2,2)是平面A 1BD 的一个法向量.E (1,1,2),F (2,1,1),EF →=(1,0,-1),AC 1→·EF →=0,EF ⊄平面A 1BD ,所以EF ∥平面A 1BD .(3)由(1),得B 1(2,0,2),B 1F →=(0,1,-1),设平面B 1EF 的法向量为n =(x ,y ,z ),·EF →=x -z =0,·B 1F →=y -z =0,取x =1,得n =(1,1,1).AC 1→=2n ,显然,平面B 1EF 与平面A 1BD 不重合,所以平面B 1EF ∥平面A 1BD .考点二利用空间向量求空间角(多考向探究)考向1求异面直线所成的角例2(2024·河南洛阳模拟预测)如图四棱锥P -ABCD 中,底面ABCD 为正方形,且各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A .36B .63C .13D .12答案A解析连接AC 与BD 交于点O ,连接PO ,由题意,得AC ⊥BD ,且PO ⊥平面ABCD ,以O为原点,建立如图所示的空间直角坐标系,设四棱锥P -ABCD 各棱长均为2,则AO =BO =CO =DO =2,PO =2,可得A (2,0,0),B (0,2,0),C (-2,0,0),P (0,0,2),则,22,则AE →-2,22,PC →=(-2,0,-2),设异面直线AE 与PC所成的角为θ,则cos θ=|cos 〈AE →,PC →〉|=|AE →·PC →||AE →||PC →|=|(-2)×(-2)+22×(-2)|2+12+12×2+0+2=36.故选A.【通性通法】向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【巩固迁移】2.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =1,P 是DF 的中点,则异面直线BE 与CP 所成角的余弦值为________.答案4515解析因为平面ABEF ⊥平面ABCD ,交线为AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面ABEF .又AF ⊂平面ABEF ,所以AD ⊥AF,因为∠BAF =90°,所以AF ⊥AB ,又AD ⊥AB ,所以以A 为原点,AB →,AD →,AF →的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系Axyz ,则B (1,0,0)0,,1C (1,2,0),所以BE →-12,0,CP →1,-1所以cos 〈BE →,CP →〉=BE →·CP →|BE →||CP →|=4515,即异面直线BE 与CP 所成角的余弦值为4515.考向2求直线与平面所成的角例3在如图所示的几何体ABCED 中,EC ⊥平面ABC ,DB ⊥平面ABC ,CE =CA =CB =2DB ,∠ACB =90°,M 为AD 的中点.(1)证明:EM ⊥AB ;(2)求直线BM 与平面ADE 所成角的正弦值.解(1)证明:由EC ⊥平面ABC ,AC ,BC ⊂平面ABC ,得EC ⊥AC ,EC ⊥BC ,又∠ACB =90°,则AC ⊥BC ,故以C 为原点建立如图所示的空间直角坐标系,设DB =1,则CE =CA =CB =2.∴A (2,0,0),B (0,2,0),E (0,0,2),D (0,2,1),M 1,1,12,∴EM →1,1,-32AB →=(-2,2,0),则EM →·AB →=-2+2+0=0,∴EM →⊥AB →,即EM ⊥AB .(2)由(1),知BM →=1,-1,12AE →=(-2,0,2),DE →=(0,-2,1),设平面ADE 的法向量为n =(x ,y ,z ),·AE →=-2x +2z =0,·DE →=-2y +z =0,取x =2,得y =1,z =2,∴n =(2,1,2),设直线BM 与平面ADE 所成的角为θ,则sin θ=|cos 〈BM →,n 〉|=|BM →·n ||BM →||n |=49.因此直线BM 与平面ADE 所成角的正弦值为49.【通性通法】向量法求线面角的两种方法(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的角(夹角为钝角时取其补角),取其余角就是斜线与平面所成的角.【巩固迁移】3.(2023·全国甲卷)在三棱柱ABC -A 1B 1C 1中,AA 1=2,A 1C ⊥底面ABC ,∠ACB =90°,A 1到平面BCC 1B 1的距离为1.(1)求证:AC =A 1C ;(2)若直线AA 1与BB 1的距离为2,求AB 1与平面BCC 1B 1所成角的正弦值.解(1)证明:如图,∵A 1C ⊥底面ABC ,BC ⊂平面ABC ,∴A 1C ⊥BC ,又BC ⊥AC ,A 1C ∩AC =C ,A 1C ,AC ⊂平面ACC 1A 1,∴BC ⊥平面ACC 1A 1,又BC ⊂平面BCC 1B 1,∴平面ACC 1A 1⊥平面BCC 1B 1.过A 1作A 1O ⊥CC 1于点O ,又平面ACC 1A 1∩平面BCC 1B 1=CC 1,A 1O ⊂平面ACC 1A 1,∴A 1O ⊥平面BCC 1B 1.∵A 1到平面BCC 1B 1的距离为1,∴A 1O =1.在Rt △A 1CC 1中,A 1C ⊥A 1C 1,CC 1=AA 1=2,A 1O =1,∴O 为CC 1的中点,∴CO =C 1O =1,又A 1O ⊥CC 1,∴AC =A 1C =A 1C 1=2,∴AC =A 1C .(2)连接A 1B ,AC 1,∵AC =A 1C ,BC ⊥A 1C ,BC ⊥AC ,∴Rt △ACB ≌Rt △A 1CB ,∴BA =BA 1.过B 作BD ⊥AA 1于点D ,则D 为AA 1的中点,又AA 1=2,∴A 1D =AD =1,∵直线AA 1与BB 1的距离为2,∴BD =2,∴A 1B =AB =5,在Rt △ABC 中,BC =AB 2-AC 2= 3.解法一:以C 为原点,CA ,CB ,CA 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系Cxyz ,如图所示,则C (0,0,0),A (2,0,0),B (0,3,0),B 1(-2,3,2),C 1(-2,0,2),∴CB →=(0,3,0),CC 1→=(-2,0,2),AB 1→=(-22,3,2),设平面BCC 1B 1的法向量为n =(x ,y ,z ),·CB →=0,·CC 1→=0,0,+2z =0,取x =1,则y =0,z =1,∴平面BCC 1B 1的一个法向量为n =(1,0,1).设AB 1与平面BCC 1B 1所成的角为θ,则sin θ=|cos 〈n ,AB 1→〉|=|n ·AB 1→||n ||AB 1→|=1313.∴AB1与平面BCC1B1所成角的正弦值为13 13 .解法二:延长AC,使AC=CM,连接C1M,由CM∥A1C1,CM=A1C1,知四边形A1CMC1为平行四边形,∴C1M∥A1C,∴C1M⊥平面ABC,又AM⊂平面ABC,∴C1M⊥AM,在Rt△AC1M中,AM=2AC=22,C1M=A1C=2,∴AC1=(22)2+(2)2=10.在Rt△AB1C1中,AC1=10,B1C1=BC=3,∴AB1=(10)2+(3)2=13.又A到平面BCC1B1的距离为1,∴AB1与平面BCC1B1所成角的正弦值为113=1313.考向3求二面角例4(2024·九省联考)如图,平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,AA1=2,∠C1CB=∠C1CD,∠C1CO=45°.(1)证明:C1O⊥平面ABCD;(2)求二面角B-AA1-D的正弦值.解(1)证明:连接BC1,DC1.因为底面ABCD是边长为2的正方形,所以BC=DC,又因为∠C 1CB =∠C 1CD ,CC 1=CC 1,所以△C 1CB ≌△C 1CD ,所以BC 1=DC 1,又点O 为线段BD 的中点,所以C 1O ⊥BD .在△C 1CO 中,CC 1=2,OC =12AC =2,∠C 1CO =45°,所以cos ∠C 1CO =22=C 1C 2+OC 2-C 1O 22×C 1C ×OC,解得C 1O =2,则C 1C 2=OC 2+C 1O 2,所以C 1O ⊥OC .又OC ∩BD =O ,OC ⊂平面ABCD ,BD ⊂平面ABCD ,所以C 1O ⊥平面ABCD .(2)由题知正方形ABCD 中AC ⊥BD ,又C 1O ⊥平面ABCD ,所以建立如图所示的空间直角坐标系,则B (0,2,0),D (0,-2,0),A (2,0,0),C (-2,0,0),C 1(0,0,2),则AA 1→=CC 1→=(2,0,2),AB →=(-2,2,0),AD →=(-2,-2,0),设平面BAA 1的法向量为m =(x 1,y 1,z 1),1·m =0,·m =0,+2z 1=0,1+2y 1=0,令x 1=1,则m =(1,1,-1),设平面DAA 1的法向量为n =(x 2,y 2,z 2),1·n =0,·n =0,+2z 2=0,2-2y 2=0,令x 2=1,则n =(1,-1,-1),则cos 〈m ,n 〉=m ·n |m ||n |=13×3=13,设二面角B -AA 1-D 的大小为θ,则sin θ=223,所以二面角B -AA 1-D 的正弦值为223.【通性通法】向量法求二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意有时需要结合实际图形判断所求角是锐二面角还是钝二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【巩固迁移】4.(2023·新课标Ⅰ卷)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4.点A 2,B 2,C 2,D 2分别在棱AA 1,BB 1,CC 1,DD 1上,AA 2=1,BB 2=DD 2=2,CC 2=3.(1)证明:B 2C 2∥A 2D 2;(2)点P 在棱BB 1上,当二面角P -A 2C 2-D 2为150°时,求B 2P .解(1)证明:以C 为原点,CD ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则C (0,0,0),C 2(0,0,3),B 2(0,2,2),D 2(2,0,2),A 2(2,2,1),∴B 2C 2→=(0,-2,1),A 2D 2→=(0,-2,1),∴B 2C 2→∥A 2D 2→,又B 2C 2,A 2D 2不在同一条直线上,∴B 2C 2∥A 2D 2.(2)设P (0,2,λ)(0≤λ≤4),则A 2C 2→=(-2,-2,2),PC 2→=(0,-2,3-λ),D 2C 2→=(-2,0,1),设平面PA 2C 2的法向量为n =(x 1,y 1,z 1),·A 2C 2→=-2x 1-2y 1+2z 1=0,·PC 2→=-2y 1+(3-λ)z 1=0,取z 1=2,得y 1=3-λ,x 1=λ-1,∴n =(λ-1,3-λ,2).设平面A 2C 2D 2的法向量为m =(x 2,y 2,z 2),·A 2C 2→=-2x 2-2y 2+2z 2=0,·D 2C 2→=-2x 2+z 2=0,取x 2=1,得y 2=1,z 2=2,∴m =(1,1,2).又二面角P -A 2C 2-D 2为150°,∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=6(λ-1)2+(3-λ)2+22×6=|cos150°|=32,化简可得,λ2-4λ+3=0,解得λ=1或λ=3,∴P (0,2,1)或P (0,2,3),∴B 2P =1.考点三利用空间向量求空间距离例5如图,长方体ABCD -A 1B 1C 1D 1的棱DA ,DC 和DD 1的长分别为1,2,1.求:(1)顶点B 到平面DA 1C 1的距离;(2)直线B 1C 到平面DA 1C 1的距离.解(1)以D 为原点,DA →,DC →,DD 1→的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系,则D (0,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1).设平面DA 1C 1的法向量为n =(x ,y ,z ),因为DA 1→=(1,0,1),DC 1→=(0,2,1),·DA 1→=0,·DC 1→=0,+z =0,y +z =0,取y =1,得x =2,z =-2,则n =(2,1,-2).而向量C 1B →=(1,0,-1),所以顶点B 到平面DA 1C 1的距离d =|n ·C 1B →||n |=|2+0+2|4+1+4=43.(2)直线B 1C 到平面DA 1C 1的距离等于点B 1到平面DA 1C 1的距离.因为C 1B 1→=(1,0,0),所以点B 1到平面DA 1C 1的距离d 1=|n ·C 1B 1→||n |=|2+0+0|4+1+4=23.故直线B 1C 到平面DA 1C 1的距离为23.【通性通法】1.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l上的投影向量QP →的长度.PQ =|AP →·n |n ||=|AP →·n |n ||=|AP →·n ||n |.2.点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d =|PA →|2-(PA →·n )2.(2)若能求出点在直线上的投影坐标,可以直接利用两点间距离公式求距离.(3)线面距和面面距直线到平面的距离和平面到平面的距离可以转化为点到平面的距离进行求解.【巩固迁移】5.正方体ABCD -A 1B 1C 1D 1的棱长为1,则平面AB 1D 1与平面BDC 1的距离为()A .2B .3C .23D .33答案D 解析由正方体的性质,得AB 1∥DC 1,D 1B 1∥DB ,AB 1∩D 1B 1=B 1,DC 1∩DB =D ,且AB 1⊂平面AB 1D 1,D 1B 1⊂平面AB 1D 1,DC 1⊂平面BDC 1,DB ⊂平面BDC 1,所以平面AB 1D 1∥平面BDC 1,则两平面间的距离可转化为点B 到平面AB 1D 1的距离.以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,由正方体的棱长为1,得A (1,0,0),B (1,1,0),A 1(1,0,1),C (0,1,0),B 1(1,1,1),D 1(0,0,1),所以CA 1→=(1,-1,1),BA →=(0,-1,0),AB 1→=(0,1,1),B 1D 1→=(-1,-1,0).连接A 1C ,由CA 1→·AB 1→=(1,-1,1)·(0,1,1)=1×0+(-1)×1+1×1=0,CA 1→·B 1D 1→=(1,-1,1)·(-1,-1,0)=1×(-1)+(-1)×(-1)+1×0=0,所以CA 1→⊥AB 1→,即CA 1⊥AB 1,CA 1→⊥B 1D 1→,即CA 1⊥B 1D 1,又AB 1∩B 1D 1=B 1,可知CA 1⊥平面AB 1D 1,得平面AB 1D 1的一个法向量为n =CA 1→=(1,-1,1),则两平面间的距离d =|BA →·n ||n |=|0×1+(-1)×(-1)+0×1|12+(-1)2+12=13=33.故选D.6.(2024·云南大理期中)如图,在长方体ABCD -A 1B 1C 1D 1中,A 1A =2AB =2BC =2,E 为线段DD 1的中点,F 为线段BB 1的中点.(1)求直线FC 1到直线AE 的距离;(2)求点A 1到平面AB 1E 的距离.解(1)根据题意,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示,则A (1,0,0),A 1(1,0,2),E (0,0,1),C 1(0,1,2),B 1(1,1,2),F (1,1,1),B 1E →=(-1,-1,-1),A 1B 1→=(0,1,0),FC 1→=(-1,0,1),AE →=(-1,0,1),故FC 1→∥AE →,又EF→=(1,1,0),设直线FC 1到直线AE 的距离为d 1,则d 1即为点F 到直线AE 的距离,因此d 1=|EF →|2-AE →·EF →|AE →|2=62,则直线FC 1到直线AE 的距离为62.(2)设平面AB 1E 的法向量为n =(x ,y ,z ),n ·AE →=-x +z =0,n ·B 1E →=-x -y -z =0,取x =1,则y =-2,z =1,所以n =(1,-2,1).设点A 1到平面AB 1E 的距离为d 2,可得d 2=|A 1B 1→·n ||n |=|(0,1,0)·(1,-2,1)|1+4+1=63,则点A 1到平面AB 1E 的距离为63.课时作业一、单项选择题1.如图,在正方体ABCD -A 1B 1C 1D 1中,PQ 与直线A 1D 和AC 都垂直,则直线PQ 与BD 1的关系是()A .异面直线B .平行直线C .垂直不相交D .垂直且相交答案B 解析设正方体的棱长为1,以D 为原点建立空间直角坐标系,如图所示,则A 1(1,0,1),A (1,0,0),C (0,1,0),D 1(0,0,1),B (1,1,0),DA 1→=(1,0,1),AC →=(-1,1,0),BD 1→=(-1,-1,1),∵BD 1→·DA 1→=0,BD 1→·AC →=0,∴BD 1⊥A 1D ,BD 1⊥AC ,∴BD 1与直线A 1D和AC 都垂直,又PQ 与直线A 1D 和AC 都垂直,∴PQ ∥BD 1.故选B.2.若直线l 的一个方向向量为m ,平面α的一个法向量为n ,则可能使l ∥α的是()A .m =(1,0,0),n =(-2,0,0)B .m =(1,3,5),n =(1,0,1),C .m =(0,2,1),n =(-1,0,-1)D .m =(1,-1,3),n =(0,3,1)答案D 解析要使l ∥α成立,需使m ·n =0,将选项一一代入验证,只有D 满足m ·n =1×0-1×3+3×1=0.故选D.3.已知v 为直线l 的方向向量,n 1,n 2分别为平面α,β的法向量(α,β不重合),给出下列说法:①n 1∥n 2⇔α∥β;②n 1⊥n 2⇔α⊥β;③v ∥n 1⇔l ∥α;④v ⊥n 1⇔l ⊥α.其中说法正确的有()A .1个B .2个C .3个D .4个答案B 解析n 1∥n 2⇔α∥β,故①正确;n 1⊥n 2⇔α⊥β,故②正确;v ∥n 1⇔l ⊥α,故③错误;v ⊥n 1⇔l ∥α或l ⊂α,故④错误.故选B.4.(2023·山东临沂模拟)如图,正方体ABCD -A 1B 1C 1D 1中,P 是A 1D 的中点,则下列说法正确的是()A .直线PB 与直线A 1D 垂直,直线PB ∥平面B 1D 1CB .直线PB 与直线D 1C 平行,直线PB ⊥平面A 1C 1DC .直线PB 与直线AC 异面,直线PB ⊥平面ADC 1B 1D .直线PB 与直线B 1D 1相交,直线PB ⊂平面ABC 1答案A 解析连接DB ,A 1B ,D 1B 1,D 1C ,B 1C .由正方体的性质可知BA 1=BD ,P 是A 1D 的中点,所以直线PB 与直线A 1D 垂直.由正方体的性质可知DB ∥D 1B 1,A 1B ∥D 1C ,所以平面BDA 1∥平面B 1D 1C ,又PB ⊂平面BDA 1,所以直线PB ∥平面B 1D 1C ,故A 正确;以D 为原点建立如图所示的空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),0PB →1,D 1C →=(0,1,-1),显然直线PB 与直线D 1C 不平行,故B 不正确;直线PB 与直线AC 异面,正确,因为DA →=(1,0,0),PB →·DA →=12≠0,所以直线PB 与平面ADC 1B 1不垂直,故C 不正确;直线PB 与直线B 1D 1异面,不相交,故D 不正确.故选A.5.(2023·四川眉山高三校考模拟预测)如图,在直三棱柱ABC -A 1B 1C 1中,BC ⊥平面ACC 1A 1,CA =CC 1=2CB ,则直线BC 1与AB 1所成角的余弦值为()A .225B .53C .55D .35答案C 解析在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ,AB ⊂平面ABC ,所以CC 1⊥AC ,CC 1⊥AB ,又BC ⊥平面ACC 1A 1,AC ⊂平面ACC 1A 1,所以BC ⊥AC ,所以CA ,CC 1,CB 互相垂直,以C 为原点,CA ,CC 1,CB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设CA =CC 1=2CB =2,则C (0,0,0),A (2,0,0),B 1(0,2,1),B (0,0,1),C 1(0,2,0),可得AB 1→=(-2,2,1),BC 1→=(0,2,-1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-13×5=55,所以直线BC 1与AB 1所成角的余弦值为55.故选C.6.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为()A .3B .22C .23D .55答案D 解析以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz,则G(1,λ,1),D1(0,0,1),,0,1所以D1E→,0,D1F→,1,GE→,-λ,设平面D1EF的法向量为n=(x,y,z),则·D1E→=x-12z=0,·D1F→=x+y-12z=0,令x=1,则y=0,z=2,所以平面D1EF的一个法向量为n=(1,0,2).点G到平面D1EF的距离为|GE→·n||n|=|-12×2|5=55.故选D.7.(2024·湖北武汉模拟)已知圆锥的顶点为S,O为底面中心,A,B,C为底面圆周上不重合的三点,AB为底面的直径,SA=AB,M为SA的中点.设直线MC与平面SAB所成的角为α,则sinα的最大值为()A.3-1B.2-1C.3+1D.2+1答案A解析以AB的中点O为原点,建立如图所示的空间直角坐标系,不妨设SA=AB=4,则M(0,-1,3),设C(x,y,0),且x2+y2=4,由对称性不妨设0<x<2,则MC→=(x,y+1,-3),易知平面SAB的一个法向量为m=(1,0,0),据此有sinα=MC→·m|MC→||m|=xx2+(y+1)2+3=12×-(y+4)-12y+4+8≤4-23=3-1,当且仅当y=23-4时等号成立.综上可得,sinα的最大值为3-1.8.(2024·山西长治期末)如图,将菱形纸片ABCD沿对角线AC折成直二面角,E,F分别为AD,BC 的中点,O 是AC 的中点,∠ABC =2π3,则折后平面OEF 与平面ABC 夹角的余弦值为()A .217B .1111C .31313D .31111答案A解析连接OB ,OD .因为菱形纸片ABCD 沿对角线AC 折成直二面角,所以平面ADC ⊥平面ABC ,因为四边形ABCD 是菱形,O 是AC 的中点,所以OD ⊥AC ,OB ⊥AC ,而平面ADC ∩平面ABC =AC ,OD ⊂平面ADC ,所以OD ⊥平面ABC ,而OB ⊂平面ABC ,所以OD ⊥OB .以O 为原点,OB ,OC ,OD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AB =2,则D (0,0,1),,-32,,32,OE →,-32,OF →=,32,设平面OEF 的法向量为n =(x ,y ,z ),·OE →=0,·OF →=0,-32y +12z =0,+32y =0,取y =1,则x =-3,z =3,则n =(-3,1,3),易得平面ABC 的一个法向量为OD →=(0,0,1),所以平面OEF 与平面ABC 夹角的余弦值为|n ·OD →||n ||OD →|=217.故选A.二、多项选择题9.(2023·贵州名校联考)下列命题正确的是()A .已知a =(-1,1,2),b =(0,2,3),直线l 1的方向向量为k a +b ,直线l 2的方向向量为2a -b 且l 1⊥l 2,则k =-34B .若直线l 的方向向量为e =(1,0,3),平面α的法向量为n =(-2,0,-6),则直线l ∥αC .已知直线l 过P 0(x 0,y 0,z 0),且以u =(a ,b ,c )(abc ≠0)为方向向量,P (x ,y ,z )是直线l 上的任意一点,则有x -x 0a =y -y 0b =z -z 0cD .已知平面α的法向量为n =(1,1,1),A (-1,1,1)为平面α上一点,P (x ,y ,z )为平面α上任意一点,则有x +y +z +1=0答案AC解析对于A ,a =(-1,1,2),b =(0,2,3),k a +b =(-k ,k +2,2k +3),2a -b =(-2,0,1),因为l 1⊥l 2,所以(k a +b )·(2a -b )=4k +3=0,所以k =-34,故A 正确;对于B ,直线l 的方向向量为e =(1,0,3),平面α的法向量为n =(-2,0,-6),则有n =-2e ,所以n ∥e ,所以l ⊥α,故B 错误;对于C ,直线l 过P 0(x 0,y 0,z 0),且以u =(a ,b ,c )(abc ≠0)为方向向量,P (x ,y ,z )是直线l 上的任意一点,则有P 0P →=(x -x 0,y -y 0,z -z 0),P 0P →∥u ,即P 0P →=λu ,-x 0=λa ,-y 0=λb ,-z 0=λc ,则x -x 0a =y -y 0b =z -z 0c,故C 正确;对于D ,平面α的法向量为n=(1,1,1),A (-1,1,1)为平面α上一点,P (x ,y ,z )为平面α上任意一点,则有AP →=(x +1,y -1,z -1),则n ·AP →=x +y +z -1=0,故D 错误.故选AC.10.(2024·四川成都调研)在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =π3,AB=2AD =2PD ,PD ⊥底面ABCD ,则()A .PA ⊥BDB .PB 与平面ABCD 所成的角为π6C .异面直线AB 与PC 所成角的余弦值为255D .平面PAB 与平面PBC 夹角的余弦值为77答案ABC解析对于A ,因为∠DAB =π3,AB =2AD ,由余弦定理可得BD =AD 2+4AD 2-2AD ×2AD ×12=3AD ,从而BD 2+AD 2=AB 2,即BD ⊥AD ,由PD ⊥底面ABCD ,BD ⊂底面ABCD ,可得BD ⊥PD ,又AD ∩PD =D ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD ,又PA ⊂平面PAD ,所以PA ⊥BD ,故A 正确;对于B ,因为PD ⊥底面ABCD ,所以∠PBD 就是PB 与平面ABCD 所成的角,又tan ∠PBD =PD BD =33,所以∠PBD =π6,故B 正确;对于C ,显然∠PCD (或其补角)为异面直线AB 与PC 所成的角,易得cos ∠PCD =CD PC =255,故C 正确;对于D ,建立如图所示的空间直角坐标系,设AD =1,则D (0,0,0),A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1),AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0),设平面PAB的法向量为n =(x 1,y 1,z 1),·AB →=0,·PB →=0,1+3y 1=0,1-z 1=0,取y 1=1,则x 1=z 1=3,即n=(3,1,3),设平面PBC 的法向量为m =(x 2,y 2,z 2),·PB →=0,·BC →=0,2-z 2=0,2=0,取y 2=1,则x 2=0,z 2=3,即m =(0,1,3),则cos 〈m ,n 〉=m ·n |m ||n |=277,即平面PAB 与平面PBC 夹角的余弦值为277,故D 不正确.故选ABC.三、填空题11.已知点A (1,0,2),B (-1,1,2),C (1,1,-2),则点A 到直线BC 的距离是________.答案1055解析BA →=(2,-1,0),BC →=(2,0,-4),BA →·BC →=4,|BA →|=5,|BC →|=25,cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=45×25=25,又0°≤〈BA →,BC →〉≤180°,所以sin 〈BA →,BC →〉==215,所以点A 到直线BC 的距离为d =|BA →|sin 〈BA →,BC →〉=5×215=1055.12.(2024·湖南新化县第一中学期末)如图,PA ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点O ,PA =AB =2,若OG ∥平面EFC ,则AG =________.答案23解析如图所示,以A 为原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴正方向,建立空间直角坐标系,由题意可得C (2,2,0),O (1,1,0),F (1,0,1),E (0,1,1),所以FC →=(1,2,-1),FE →=(-1,1,0),设平面EFC 的法向量为n =(x ,y ,z ),n ·FC →=0,n ·FE →=0,x +2y -z =0,-x +y =0,取x =1,则y =1,z =3,所以n =(1,1,3).设G (0,0,a ),0≤a ≤2,则OG →=(-1,-1,a ),因为OG ∥平面EFC ,则n ·OG →=0,所以-1-1+3a =0,解得a =23所以G 0,0,23即AG =23.13.(2024·山东泰安期末)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC 为钝角时,λ的取值范围是________.答案13,1解析以D 为原点,DA →,DC →,DD 1→的方向为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),则D 1B →=(1,1,-1),所以D 1P →=λD 1B →=(λ,λ,-λ),所以PA →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1),显然∠APC 不是平角,所以∠APC 为钝角等价于PA →·PC →<0,即-λ(1-λ)-λ(1-λ)+(λ-1)2<0,即(λ-1)(3λ-1)<0,解得13<λ<1,因此λ的取值范围是13,114.(2023·湖北武汉华中师大附中二模)如图,在三棱柱ABC -A 1B 1C 1中,底面是边长为2的等边三角形,CC 1=2,D ,E 分别是线段AC ,CC 1的中点,C 1在平面ABC 内的射影为D .若点F 为线段B 1C 1上的动点(不包括端点),则锐二面角F -BD -E 的余弦值的取值范围为________.答案12,32解析连接C 1D ,因为C 1在平面ABC 内的射影为D ,所以C 1D 垂直于平面ABC 内DB ,AD 这两条线段,又因为底面是边长为2的等边三角形,D 是线段AC 的中点,所以DB ⊥AD ,因此建立如图所示的空间直角坐标系,则D (0,0,0),B (3,0,0),C (0,-1,0),C 1(0,0,3),B 1(3,1,3),0,-12,32C 1B 1→=(3,1,0),DE →0,-12,32DB →=(3,0,0),设F (x ,y ,z ),C 1F →=λC 1B 1→(0<λ<1),则(x ,y ,z -3)=(3λ,λ,0),故F (3λ,λ,3),所以DF →=(3λ,λ,3),设平面BDE 的法向量为m =(a ,b ,c ),m ·DE →=0,m ·DB →=0,即-12b +32c =0,3a 0,取b =3,得a =0,c =3,所以m =(0,3,3).设平面BDF 的法向量为n =(d ,e ,f ),n ·DF →=0,n ·DB →=0,3+λe +3f =0,3=0,取e =3,得d =0,f =-λ,所以n=(0,3,-λ),所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|33-3λ|32+(3)2×(3)2+(-λ)2=|3-λ|23+λ2=12(3-λ)23+λ2,令3-λ=t (t ∈(2,3)),所以|cos 〈m ,n 〉|=12t 212-6t +t 2=设s则|cos〈m,n〉|=12112s2-6s+1,二次函数y =12s2-6s+1=+14的图象开口向上,对称轴为直线s=14,所以当s,该二次函数单调递增,又-6×13+1=13,-6×12+1=1,所以12s2-6s+1所以112s2-6s+1∈(1,3),即|cos〈m,n〉|即锐二面角F-BD-E的余弦四、解答题15.(2023·新课标Ⅱ卷)如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC =60°,E为BC的中点.(1)证明:BC⊥DA;(2)点F满足EF→=DA→,求二面角D-AB-F的正弦值.解(1)证明:连接AE,DE,因为E为BC的中点,DB=DC,所以DE⊥BC,①因为DA=DB=DC,∠ADB=∠ADC=60°,所以△ACD与△ABD均为等边三角形,所以AC=AB,所以AE⊥BC,②由①②,且AE∩DE=E,AE,DE⊂平面ADE,所以BC⊥平面ADE,而DA⊂平面ADE,所以BC⊥DA.(2)不妨设DA=DB=DC=2,因为BD⊥CD,所以BC=22,DE=2,因为△ACD 与△ABD 均为等边三角形,所以AC =AB =2,所以AE ⊥BC ,AE =2,所以AE 2+DE 2=4=DA 2,所以AE ⊥DE ,又DE ∩BC =E ,DE ,BC ⊂平面BCD ,所以AE ⊥平面BCD .以E 为原点,ED ,EB ,EA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,0,0),D (2,0,0),A (0,0,2),B (0,2,0),设平面DAB 与平面ABF 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),二面角D -AB -F 的平面角为θ,而AB →=(0,2,-2),因为EF →=DA →=(-2,0,2),所以F (-2,0,2),即有AF →=(-2,0,0),1·DA →=0,1·AB →=0,1+2z 1=0,-2z 1=0,取x 1=1,所以n 1=(1,1,1).2·AB →=0,2·AF →=0,-2z 2=0,2=0,取y 2=1,所以n 2=(0,1,1),所以|cos θ|=|n 1·n 2||n 1||n 2|=23×2=63,所以sin θ=1-69=33,所以二面角D -AB -F 的正弦值为33.16.(2024·浙江台州模拟)如图,平行六面体ABCD -A 1B 1C 1D 1的体积为6,截面ACC 1A 1的面积为6.(1)求点B 到平面ACC 1A 1的距离;(2)若AB =AD =2,∠BAD =60°,AA 1=6,求直线BD 1与平面CC 1D 1D 所成角的正弦值.解(1)在平行六面体ABCD -A 1B 1C 1D 1中,ABC -A 1B 1C 1是三棱柱,V B -ACC 1A 1=23V ABC -A 1B 1C 1=13V ABCD -A 1B 1C 1D 1=2,设点B 到平面ACC 1A 1的距离为d ,则V B -ACC 1A 1=13S 四边形ACC 1A 1·d =13×6d =2,所以d =1,即点B 到平面ACC 1A 1的距离为1.(2)在▱ABCD 中,AB =AD =2,∠BAD =60°,所以四边形ABCD 是菱形,连接BD 交AC 于点O ,则BO =1,由(1)知点B 到平面ACC 1A 1的距离为1,所以BO ⊥平面ACC 1A 1.设点A 1在直线AC 上的射影为点H ,则S ▱ACC 1A 1=AC ·A 1H =23A 1H =6,则A 1H =3,且BO ⊥A 1H ,AH =AA 21-A 1H 2=(6)2-(3)2=3,所以点O 与点H 重合,即A 1O ⊥AO .以O 为原点,OA ,OB ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则B (0,1,0),A (3,0,0),D (0,-1,0),A 1(0,0,3),根据AA 1→=DD 1→=(-3,0,3),AB →=DC →=(-3,1,0),则D 1(-3,-1,3),BD 1→=(-3,-2,3),设平面CC 1D 1D 的法向量为n =(x ,y ,z ),1→·n =-3x +3z =0,·n =-3x +y =0,取x =1,则n =(1,3,1),设直线BD 1与平面CC 1D 1D 所成的角为α,则sin α=|cos 〈BD 1→,n 〉|=|BD 1→·n ||BD 1→||n |=|-3-23+3|10×5=65,所以直线BD 1与平面CC 1D 1D 所成角的正弦值为6517.(2024·海南华侨中学模拟)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AB ⊥AD ,AB =AD =1,AA 1>AB ,E ,F 分别是侧棱BB 1,DD 1上的动点,且平面AEF 与平面ABC 所成角的大小为30°,则线段BE 的长度的最大值为()A .13B .33C .12D .22答案B解析依题意,AB ,AD ,AA 1两两互相垂直,以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.设BE =m ,DF =n (m ≥0,n ≥0,且m ,n 不同时为0),则A (0,0,0),E (1,0,m ),F (0,1,n ),所以AE →=(1,0,m ),AF →=(0,1,n ).设平面AEF 的法向量为u =(x ,y ,z ),·AE →=(x ,y ,z )·(1,0,m )=x +mz =0,·AF →=(x ,y ,z )·(0,1,n )=y +nz =0,取z =1,得x =-m ,y =-n ,则u =(-m ,-n ,1),显然v =(0,0,1)为平面ABC 的一个法向量.因为平面AEF 与平面ABC 所成角的大小为30°,所以cos30°=|cos 〈u ,v 〉|=|u ·v ||u ||v |=|(-m ,-n ,1)·(0,0,1)|m 2+n 2+1=1m 2+n 2+1,即32=1m 2+n 2+1,得m 2+n 2=13,所以m=13-n2,所以当n=0时,m取得最大值,为33.故选B.18.(2024·云南昆明一中高三开学考试)如图,三棱柱ABC-A1B1C1中,平面ABC⊥平面AA1C1C,AB⊥AC,AA1=AB=AC=2,∠A1AC=60°,过A1A的平面交线段B1C1于点E(不与端点重合),交线段BC于点F.(1)证明:AA1∥EF;(2)若BF=2FC,求直线A1C1与平面AFC1所成角的正弦值.解(1)证明:在三棱柱ABC-A1B1C1中,AA1∥CC1,AA1⊄平面BCC1B1,CC1⊂平面BCC1B1,所以AA1∥平面BCC1B1,又过A1A的平面AA1EF∩平面BCC1B1=EF,所以AA1∥EF.(2)在平面AA1C1C内过A作AP⊥AC,因为平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,所以AP⊥平面ABC,又AB⊥AC,则可构建以A为原点,AB,AC,AP所在直线分别为x轴、y轴、z轴的空间直角坐标系,又AA1=AB=AC=2,∠A1AC=60°,且BF=2FC,所以A (0,0,0),A 1(0,1,3),C 1(0,3,3),,43,则A 1C 1→=(0,2,0),AC 1→=(0,3,3),AF →,43,设m =(x ,y ,z )为平面AFC 1的法向量,·AC 1→=3y +3z =0,·AF →=23x +43y =0,取y =1,则x =-2,z =-3,则m =(-2,1,-3),所以cos 〈m ,A 1C 1→〉=22×22=24,所以直线A 1C 1与平面AFC 1所成角的正弦值为24.19.(2023·河北石家庄二模)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是矩形,P 为棱A 1B 1上一点,且PA =PB ,F 为CD 的中点.(1)证明:AB ⊥PF ;(2)若AB =AD =PD =2.当直线PB 与平面PCD 所成的角为45°,且二面角P -CD -A 的平面角为锐角时,求三棱锥B -APD 的体积.解(1)证明:取AB 的中点E ,连接PE ,EF ,∵PA =PB ,∴PE ⊥AB ,∵四边形ABCD 为矩形,∴BC ⊥AB ,∵E ,F 分别为AB ,CD 的中点,∴EF ∥BC ,∴EF ⊥AB ,又PE ∩EF =E ,∴AB ⊥平面PEF ,∵PF ⊂平面PEF ,∴AB ⊥PF .(2)如图,以F 为原点,FC →,EF →的方向分别为x ,y 轴正方向,过F 与平面ABCD 垂直的直线向上的方向为z 轴正方向,建立如图所示的空间直角坐标系,则A (-1,-2,0),B (1,-2,0),C (1,0,0),D (-1,0,0),设P (0,a ,h ),h 为P 到平面ABCD 的距离,则PB →=(1,-2-a ,-h ),PD →=(-1,-a ,-h ),CD →=(-2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),·PD →=0,·CD →=0,x -ay -hz =0,2x =0,取y =-h ,则z =a ,∴n =(0,-h ,a ),又PD =2,∴a 2+h 2=3,(*)设直线PB 与平面PCD 所成的角为θ,sin θ=|PB →·n ||PB →||n |=|2h |1+(2+a )2+h 2×3=22,解得a =0或a =-32,当a =0时,平面PCD 的法向量为n =(0,-h ,0),则平面PCD 与平面ABCD 垂直,此时二面角P -CD -A 的平面角为直角,∴a =0舍去,∴a =-32,代入(*)可得h =32,∴V B -APD =V P -ABD =13×12×2×2×32=33.20.(2023·全国乙卷)如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =2,BC =22,PB =PC =6,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =5DO ,点F 在AC 上,BF ⊥AO .(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D -AO -C 的正弦值.解(1)证明:设AF =tAC ,则BF →=BA →+AF →=(1-t )BA →+tBC →,AO →=-BA →+12BC →,因为BF ⊥AO ,则BF →·AO →=[(1-t )BA →+tBC →-BA →+12BC (t -1)BA →2+12tBC →2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,因为D ,E ,O ,F 分别为BP ,AP ,BC ,AC 的中点,于是EF ∥PC ,DO ∥PC ,即EF ∥DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO .(2)证明:因为D ,O 分别为BP ,BC 的中点,所以DO =12PC =62,则AD =5DO =302,因为AO =AB 2+BO 2=6,所以DO 2+AO 2=AD 2=152,则DO ⊥AO ,由(1)可知EF ∥DO ,所以EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)如图,以B 为原点,BA ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系,则B (0,0,0),A (2,0,0),O (0,2,0),AO →=(-2,2,0).因为PB =PC ,BC =22,所以设P (x ,2,z ),z >0,则BE →=BA →+AE →=BA →+12AP →=(2,0,0)+12(x -2,2,z )x +22,22,z 2由(2)知AO ⊥BE ,所以AO →·BE →=(-2,2,0)·x +22,22,z 20,所以x =-1.又PB =6,BP →=(x ,2,z ),所以x 2+2+z 2=6,所以z =3,则P (-1,2,3).由D 为BP 的中点,得-12,22,则AD →-52,22,设平面DAO 的法向量为n 1=(a ,b ,c ),1·AD →=0,1·AO →=0,-52a +22b +32c =0,2a +2b =0,取a =1,则n 1=(1,2,3).易知平面CAO 的一个法向量为n 2=(0,0,1),设二面角D -AO -C 的大小为θ,则|cos θ|=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=36=22,所以sin θ=1-12=22,故二面角D -AO -C 的正弦值为22.。
2019-2020年高考数学一轮总复习第 7章立体几何7.1空间几何体的结构 及其三视图和直观图模拟演练理 1. [xx •云南玉溪模拟]将长方体截去一个四棱锥后得到的几何体如图所示, 则该几何体 的侧视图为( )
正视图 侧视图 俯视图
II 答案 D 解析根据几何体的结构特征进行分析即可. 2 •若某几何体的三视图如图所示,则此几何体的直观图是 ( BCD 答案 A 解析该几何体是正方体的一部分,结合侧视图可知直观图为选项 A中的图. 3. [xx •沈阳模拟]一个锥体的正视图和侧视图如图所示, 下面选项中,不可能是该锥体
解析 若俯视图为选项 C,侧视图的宽应为俯视图中三角形的高 -2,所以俯视图不可能 是选项C. 4. [xx •全国卷I ]如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三 视图,则该多面体的各条棱中,最长的棱的长度为 ( )
A. 6 !2 B. 6 C. 4 :2 D. 4
I) (:
答案 B 解析 如图,设辅助正方体的棱长为 4,三视图对应的多面体为三棱锥 A- BCD最长的 棱为AD= 4 2 2 + 22= 6,选 B.
5. [xx •临沂模拟]如图甲,将一个正三棱柱 ABC- DEF截去一个三棱锥 A- BCD得到几 何体
I) (: BCDEJF如图乙,则该几何体的正视图 (主视图)是( ) 答案 8 cm 解析 将直观图还原为平面图形,如图.
答案 C 解析由于三棱柱为正三棱柱,故平面 在后侧面上的投影为 AB的中点与D的连线, 6. ____________ 如图,正方形 OABC勺边长为1 cm, 形的周长为 .
ADEB平面DEF △ DEF是等边三角形,所以
CD的投影与底面不垂直,故选 C.
它是水平放置的一个平面图形的直观图,则原图
CD 可知还原后的图形中, OB= 2 ;2, AB= ; 12+ 2 2 2= 3, 于是周长为 2X 3+ 2X 1= 8(cm).
1 第7讲 立体几何中的向量方法(一) 一、选择题 1.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A.s1=(1,1,2),s2=(2,-1,0) B.s1=(0,1,-1),s2=(2,0,0) C.s1=(1,1,1),s2=(2,2,-2) D.s1=(1,-1,1),s2=(-2,2,-2) 解析 两直线垂直,其方向向量垂直,只有选项B中的两个向量垂直. 答案 B
2.已知a=1,-32,52,b=-3,λ,-152满足a∥b,则λ等于( ).
A.23 B.92 C.-92 D.-23
解析 由1-3=-32λ=52-152,可知λ=92. 答案 B 3.平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是 ( ).
A.12,-1,-1 B.(6,-2,-2) C.(4,2,2) D.(-1,1,4) 解析 设平面α的法向量为n,则n⊥AB→,n⊥AC→,n⊥BC→,所有与AB→(或AC→、BC→)平行的向量或可用AB→与AC→线性表示的向量都与n垂直,故选D. 答案 D 4.已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=22,E为CC1的中点,则直线AC1与平面BED的距离为 ( ).
A.2 B.3 C.2 D.1 解析 连接AC,交BD于点O,连接EO,过点O作OH⊥AC1于点H,因为AB=2,所以AC=22,又CC1=22,所以OH=2sin 45°=1. 答案 D 2
5.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5, λ),若a,b,c三向量共面,则实数λ等于( ).
A.627 B.637 C.607 D.657 解析 由题意得c=ta+μb =(2t-μ,-t+4μ,3t-2μ),
∴ 7=2t-μ5=-t+4μ,λ=3t-2μ∴ t=337μ=177λ=657. 答案 D 6.正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且AM→=12MC1→,N为B1B的中点,则|MN→|为 ( ). A.216a B.66a C.156a D.153a 解析 以D为原点建立如图所示的空间直角坐标系Dxyz,则A(a,0,0),C1(0,a,a),Na,a,a2. 设M(x,y,z), ∵点M在AC1上且AM→=12MC1→,
∴(x-a,y,z)=12(-x,a-y,a-z) ∴x=23a,y=a3,z=a3. 得M2a3,a3,a3, ∴|MN→|= a-23a2+a-a32+a2-a32=216a. 答案 A 二、填空题
7.若向量a=(1,λ,2),b=(2,-1,2)且a与b的夹角的余弦值为89,则λ=________.
解析 由已知得89=a·b|a||b|=2-λ+45+λ2·9, 3
∴85+λ2=3(6-λ),解得λ=-2或λ=255. 答案 -2或255 8.在四面体PABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为________. 解析 根据题意,可建立如图所示的空间直角坐标系P-xyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).过点P作PH⊥平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离. ∵PA=PB=PC, ∴H为△ABC的外心. 又∵△ABC为正三角形,
∴H为△ABC的重心,可得H点的坐标为a3,a3,a3.
∴PH= 0-a32+0-a32+0-a32=33a. ∴点P到平面ABC的距离为33a. 答案 33a
9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________. 解析 直线l的方向向量平行于平面α的法向量,故直线l的单位方向向量是s=
±0,22,-22.
答案 ±0,22,-22 10.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则
满足MQ→=λMN→的实数λ的有____________个. 解析 建立如图的坐标系,设正方体的边长为2,则P(x,
y,2),O(1,1,0),∴OP的中点坐标为x+12,y+12,1, 4
又知D1(0,0,2),∴Q(x+1,y+1,0),而Q在MN上,∴xQ+yQ=3, ∴x+y=1,即点P坐标满足x+y=1.∴有2个符合题意的点P,即对应有2个λ. 答案 2 三、解答题 11.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求: a,b,c.
解 因为a∥b,所以x-2=4y=1-1, 解得x=2,y=-4, 这时a=(2,4,1),b=(-2,-4,-1). 又因为b⊥c, 所以b·c=0,即-6+8-z=0, 解得z=2,于是c=(3,-2,2). 12.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点. 求证:(1)AM∥平面BDE; (2)AM⊥平面BDF. 证明 (1)建立如图所示的空间直角坐标系, 设AC∩BD=N,连接NE.
则N22,22,0,E(0,0,1),
A(2,2,0),M
22,2
2,1
∴NE→=-22,-22,1. AM→=-22,-22,1.
∴NE→=AM→且NE与AM不共线.∴NE∥AM. 又∵NE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDE.
(2)由(1)知AM→=-22,-22,1, ∵D(2,0,0),F(2,2,1), ∴DF→=(0,2,1) ∴AM→·DF→=0,∴AM⊥DF. 5
同理AM⊥BF. 又DF∩BF=F,∴AM⊥平面BDF. 13.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.
(1)求证:EF⊥CD; (2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论. (1)证明 如图,以DA、DC、DP所在直线分别为x轴,y轴、z轴建立空间直角坐标系,设AD=a,则D(0,0,0)、A(a,0,0)、
B(a,a,0)、C(0,a,0)、Ea,a2,0、P(0,0,a)、F
a2,a2,a
2.
EF→=-a2,0,a2,DC→=(0,a,0).
∵EF→·DC→=0,∴EF→⊥DC→,即EF⊥CD. (2)解 设G(x,0,z),则FG→=x-a2,-a2,z-a2, 若使GF⊥平面PCB,则由 FG→·CB→=x-a2,-a2,z-a2·(a,0,0)=ax-a2=0,得x=a2;
由FG→·CP→=x-a2,-a2,z-a2·(0,-a,a) =a22+az-a2=0, 得z=0. ∴G点坐标为a2,0,0,即G点为AD的中点. 14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.
(1)证明:CD⊥平面PAE; (2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积. 解 如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设PA=h,则相关各点的坐标为:A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),
P(0,0,h). 6
(1)易知CD→=(-4,2,0),AE→=(2,4,0),AP→=(0,0,h). 因为CD→·AE→=-8+8+0=0,CD→·AP→=0,所以CD⊥AE,CD⊥AP.而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.
(2)由题设和(1)知,CD→·PA→分别是平面PAE,平面ABCD的法向量.而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以|cos〈CD→,PB→〉|=|cos〈PA→,PB→〉|,
即CD→·PB→|CD→|·|PB→|=PA→·PB→|PA→|·|PB→|. 由(1)知,CD→=(-4,2,0),PA→=(0,0,-h), 又PB→=(4,0,-h), 故-16+0+025×16+h2=0+0+h2h×16+h2.
解得h=855. 又梯形ABCD的面积为S=12×(5+3)×4=16, 所以四棱锥P-ABCD的体积为V=13×S×PA=13×16×855=128515.