整车控制器信号控制策略
- 格式:doc
- 大小:102.00 KB
- 文档页数:2
图1 Cyclic信号发送方式图2 On Change信号发送方式
22・设计与开发
23
设计与开发 2020-06・仪表和多媒体系统均周期发送背光值1,所有节点执行背光值1。
(2)此时用户在仪表上手动设置亮度,新的设置为背光值3。
(3)仪表周期发送背光值3给总线上所有节点。
(4)多媒体系统与仪表发送的新背光值同步,周期发送背光值3。
(5)所有节点执行背光值3。
仪表和多媒体系统均发送周图3 背光调节系统结构
图4 均为Cyclic 周期型信号,在多媒体端设置图5 均为Cyclic 周期型信号,在仪表端设置
背光值的设置变化时,才发送CAN总线信号。
当用户在多媒体系统上进行设置时,流程如图8所示,同步过程描述如下:(1)上一次同步后总线上无相关背光信号。
(2)此时用户在多媒体系统Change信号,同步性没有周期信号的好,每次同步后都需要各个节点反馈一次同步结果,避免有报文丢失等情况造成背光不一致。
而且如果更换仪表或多媒体系统,由于本地均无设置变化,因此没有背光信号在总线上进行
图6 混合类型信号,在多媒体端设置
图7 混合类型信号,在仪表端设置
图8 On Change信号,在多媒体端设置图9 On Change信号,在仪表端设置来自“中国文明网”
24・设计与开发2020-06。
纯电动重卡整车控制策略开发浅析摘要:步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。
相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。
主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。
众多的技术路线其控制策略也不尽相同。
本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。
关键词:新能源重卡;整车控制器;控制策略;控制系统;引言步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。
受乘用车带动,重卡领域的电动化也在快速推进,各大重卡主机厂开始相继积极谋划布局。
着眼全局,基于国家能源安全及环保的大力推进,汽车的电动化承担着国家产业结构升级的大任,正以摧枯拉朽的不可逆之势迅速崛起,一个新的赛道已经出现。
相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。
主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。
众多的技术路线其控制策略也不尽相同。
本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。
1新能源重卡系统概述1.1新能源重卡系统简述图1纯电动重卡简图如图1所示,动力电池作为车辆的动力源,为车辆提供行驶的能量或者在能量回收时储存能量。
多合一控制器控制转向油泵,打气泵、低压蓄电池DC供电、空调及PTC和氢堆DCDC的配电。
如果是氢燃料重卡,氢堆作为增程系统为车辆行驶提供额外的能量。
电机控制器驱动电机工作,整车控制器控制车辆上所有控制模块协同工作。
1.2新能源重卡高压系统介绍图2纯电动系统架构图如图2所示,新能源技术兴起于乘用车,重卡入局较晚,由于两者面对的客户群体和工况不一样,高低压架构也有所区别。
纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。
整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。
现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。
对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。
国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。
1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。
集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。
集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。
分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。
整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。
分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。
典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。
电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。
典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。
整车控制策略与整车控制逻辑说明2017年7月17日目录1.输入模块 (5)1.1IO输入 (5)1.2CAN输入 (6)1.2.1电机控制系统 (6)1.2.2BMS (7)1.2.3仪表 (8)1.2.4DCAC (8)1.2.5DCDC (9)1.2.6绝缘检测 (9)2.控制策略模块 (10)2.1档位处理模块 (11)2.2转矩计算模块 (12)2.3工作模式 (15)2.4电机故障模块 (16)2.5车辆故障模块 (17)2.6绝缘检测仪故障模块 (17)2.7CAN故障模块 (18)2.7.1电机CAN故障 (18)2.7.2电池CAN故障 (18)2.7.3仪表CAN故障 (19)2.7.4DCDC CAN故障 (19)2.7.5DCAC CAN故障 (20)2.7.6绝缘检测CAN故障 (21)2.8速度油门模块 (21)2.9泵控模块 (22)2.10DCDC模块和DCAC模块 (23)2.11用户需求模块 (24)2.12电池模块 (24)2.13电机模块 (27)2.14电池故障模块 (28)2.15DCAC故障模块 (29)2.16DCDC故障模块 (29)2.17整车控制逻辑流程 (29)3.输出模块 (30)3.1In1 (31)3.1.1CAN输出 (31)3.1.2IO输出 (32)3.2In2 (32)3.310开关量 (33)本次整车控制器的逻辑由matlab/simulink编写。
整车控制器的工作分为:输入、控制策略、输出三个模块。
此外还有一个时间计时模块,时间计时模块分别有20、50、100、250、300、500、1000毫秒的不同计时。
所有的标定变量(包括变量名称以及变量数值)都被保存在一个名为calibrition.m文件中,包括车辆参数、踏板模拟量转换、油门踏板的map、开关制动信号制动力百分比、电机参数、电池参数、附件参数、策略相关参数。
通过在这个文件中修改标定变量的参数,十分便捷,可以有效管理众多数据。
纯电动汽车整车控制器(VCU)详细介绍⼀、国外产品介绍:(1)丰⽥公司整车控制器丰⽥公司整车控制器的原理图如下图所⽰。
该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向⾓度信号,汽车的运动传感器信号包括横摆⾓速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)⽇⽴公司整车控制器⽇⽴公司纯电动汽车整车控制器的原理图如下图所⽰。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由⾼速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的⼯况下使⽤不同的电机驱动电动汽车,或者按照⼀定的扭矩分配⽐例,联合使⽤2台电机驱动电动汽车,使系统动⼒传动效率最⼤。
当电动汽车起步或爬坡时,由低速、⼤扭矩永磁同步电机驱动前轮。
当电动汽车⾼速⾏驶时,由⾼速感应电机驱动后轮。
(3)⽇产公司整车控制器⽇产聆风LEAF是5门5座纯电动轿车,搭载锂离⼦电池,续驶⾥程是160km。
采⽤200V家⽤交流电,⼤约需要8h可以将电池充满;快速充电需要10min,可提供其⾏驶50km的⽤电量。
⽇产聆风LEAF的整车控制器原理图如下图所⽰,它接收来⾃组合仪表的车速传感器和加速踏板位置传感器的电⼦信号,通过⼦控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动⼒电池、太阳能电池、再⽣制动系统。
(4)英飞凌新能源汽车VCU & HCU解决⽅案该控制器可兼容12V及24V两种供电环境,可⽤于新能源乘⽤车、商⽤车电控系统,作为整车控制器或混合动⼒控制器。
该控制器对新能源汽车动⼒链的各个环节进⾏管理、协调和监控,以提⾼整车能量利⽤效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进⾏分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
XXX项目VCU控制策略江苏新能源有限公司编制:____________审核:____________批准:____________Document NameVCU系统目录目录 2版本历史 (5)修订历史 (5)第1版 (5)文档简介 (6)文档目的 (6)使用对象 (6)文档构成 (6)信息获得 (6)需求文档 (6)术语 (8)定义 8VCU 整车控制器总成 (8)缩略语 (8)产品原理 (9)VCU系统原理图 (9)整车高压系统框图 (9)整车网络拓扑 (10)VCU输入输出列表 (10)电源管理 (12)VCU系统功能简介 (13)VCU功能汇总及功能描述 (13)高压上下电功能 (15)功能概述 (15)系统框图 (15)驱动高压上电功能描述 (15)驱动高压上电功能框图 (15)驱动上电功能 (16)驱动下电功能描述 (19)驱动高压下电功能框图 (19)驱动下电功能 (19)碰撞绝缘故障下电 (21)功能框图 (22)功能逻辑 (22)一般故障下电功能 (23)功能框图 (23)功能逻辑 (24)充电上电 (27)功能框图 (27)功能逻辑 (27)充电下电 (30)功能框图 (30)功能逻辑 (30)高压上下电仲裁功能描述 (31)充电工况的优先级高于驱动工况 (31)满足以下两个条件之一,则可以判断处于充电工况 (31)不在充电工况,满足以下任一条件,则处于驱动工况 (31)Document NameVCU系统驱动功能说明 (32)挡位识别 (32)功能框图 (32)功能逻辑 (32)驾驶模式识别 (34)功能框图 (34)功能逻辑 (34)滑行回馈功能 (36)功能框图 (36)功能逻辑 (36)制动工况回馈扭矩响应 (39)功能框图 (39)功能逻辑 (39)驱动扭矩控制 (41)功能框图 (41)功能逻辑 (42)扭矩解析功能流程图 (43)挡位防盗 (45)功能框图 (45)功能逻辑 (45)最高车速限制 (45)功能框图 (45)功能逻辑 (46)蠕行功能 (46)功能框图 (46)功能逻辑 (47)跛行回家 (47)功能框图 (48)功能逻辑 (48)坡起辅助功能 (48)功能框图 (48)功能逻辑 (49)高压互锁防护 (51)功能框图 (51)功能逻辑 (51)VCU控制高压互锁S+发送PWM信号(低有效、频率100Hz、占空比50%)进入条件: (51)VCU控制高压互锁S+发送PWM信号退出条件: (51)高压互锁功能执行动作: (51)碰撞防护 (52)功能框图 (52)功能逻辑 (52)真空泵控制 (53)功能框图 (53)功能逻辑 (53)热管理功能 (54)热管理系统框图 (54)高压散热功能 (54)功能框图 (54)功能逻辑描述 (54)空调加热功能 (55)Document NameVCU系统功能框图 (55)功能逻辑描述 (56)空调制冷功能 (56)功能框图 (56)功能逻辑描述 (56)动力防盗 (58)动力防盗功能 (58)功能框图 (58)功能逻辑描述 (58)附件管理功能 (60)DCDC管理功能描述 (60)DCDC管理功能概述 (60)DCDC管理功能示意图 (60)DCDC管理功能详述 (60)剩余里程显示功能 (62)剩余里程显示功能概述 (62)剩余里程计算功能示意图 (62)剩余里程计算功能详述 (62)剩余里程计算功能进入条件 (62)剩余里程功能计算 (62)剩余里程退出条件 (62)故障处理功能 (63)故障故障处理功能概述 (63)故障显示和处理功能示意图 (63)故障分级 (63)故障处理功能详述 (65)网关功能 (66)功能描述 (66)系统框图 (66)信号及报文路由 (66)通讯接口 (67)接口类型 (67)参数要求 (67)BootLoader功能 (67)产品技术参数 (68)特性参数 (68)信号定义 (69)CAN通信矩阵 (69)CAN网络诊断 (69)下线匹配 (69)Document NameVCU系统版本历史修订版本日期所有者描述修订历史第1版建立XXX项目VCU控制策略.Document NameVCU系统文档简介文档目的本文档描述XXX纯电动车型的VCU的硬件接口及所有逻辑策略。
整车控制器信号控制策略
一.信号描述
整车控制器的信号包括输入信号和输出信号,有些通过电气连接直接读取,有些通过CAN总线通讯获得。
1.整车控制器信号连接关系如下:
二.整车控制器信号控制策略
整车控制器上电后,读取钥匙ACC、ON档信号,通过CAN总线对整车低压设备进行自检,同时响应ON档信号输出低压自保控制信号,防止整车低压
1
突然断电。
整车低压设备自检通过后,整车控制器输出高压接触器控制信号,并检测接触器的触点吸合之后,输出电机控制器启动信号。
电机控制器启动之后,整车控制器通过CAN总线检测电机控制器的状态,待电机控制器通过CAN总线输出就绪信号后,表明电机控制器上电工作正常,整车控制器可以通过CAN总线控制电机工作。
整车控制器检测档位、油门、制动信号,分别控制电机驱动车辆进行启动、加速、电制动和停车。
整车控制器依照电机的最优工况进行车辆驱动控制,并控制动力电池组进行充电、放电,使其在一定范围内工作,来实现整车的动力性、经济性最优,并保证整车设备可靠地工作。
整车控制器采集整车各开关、传感器信息,通过CAN总线或电平输出控制整车DCDC电源、转向助力油泵、气泵压缩机进行工作,以满足整车可靠性、操纵便利性。