第一讲 燃气涡轮发动机概述
- 格式:ppt
- 大小:6.92 MB
- 文档页数:91
航空燃气涡轮发动机概述航空燃气涡轮发动机是现代航空工业中最重要的动力装置之一、它具有高效率、高功率密度和高可靠性等优点,被广泛应用于各类飞机中。
本文将概述航空燃气涡轮发动机的工作原理、结构组成、分类、性能指标以及未来发展方向等内容。
航空燃气涡轮发动机的工作原理基于燃烧室内的燃气推动涡轮。
它由压气机、燃烧室和涡轮组成。
首先,压气机将空气压缩,提高其温度和压力。
然后,压缩空气进入燃烧室,与燃料混合并燃烧,产生高温高压的燃气。
最后,高压燃气通过涡轮使其旋转,产生推力,并从尾喷管排出。
可见,航空燃气涡轮发动机的工作原理是通过涡轮驱动压气机,提供压缩空气并将其推向尾喷管。
航空燃气涡轮发动机的结构组成包括压气机、燃烧室、涡轮、尾喷管和附属系统等。
压气机主要通过叶片的旋转将空气压缩,提高其温度和压力。
燃烧室用于将燃料与压缩空气混合并燃烧,产生高温高压的燃气。
涡轮通过燃气的膨胀驱动压气机,使其继续工作,并产生推力。
尾喷管用于将高压燃气排出,并产生反作用力。
附属系统包括供油系统、冷却系统和控制系统等,用于保证发动机的正常运行。
航空燃气涡轮发动机可以根据压气机的工作循环分类为单转子和双转子发动机。
单转子发动机只有一个压气机和一个涡轮,如连杆式发动机。
双转子发动机具有两个对称的压气机和涡轮,如军用飞机上常用的分段式发动机。
根据尾喷管的形式,航空燃气涡轮发动机还可分为直喷式和径向喷管式。
航空燃气涡轮发动机的性能指标主要包括推力、燃油消耗率、比功率、绕程推力比和起动性能等。
推力是发动机提供的推动力量,决定飞机的加速能力和最大速度。
燃油消耗率是单位推力下消耗的燃油量,直接影响飞机的航程和经济性。
比功率是单位发动机质量下产生的推力,用于衡量发动机的功率密度。
绕程推力比是发动机在巡航状态下产生的推力与起飞推力的比值,用于衡量发动机的高空巡航性能。
起动性能包括发动机的起动时间和起动能力,在冷启动和热启动时对飞机的起飞和复飞具有重要影响。
航空燃气涡轮发动机原理引言航空燃气涡轮发动机(Gas Turbine Engine)是一种利用燃烧产生的高温高压气体驱动涡轮,从而产生推力的发动机。
它广泛应用于现代航空领域,是飞机的主要动力装置之一。
本文将详细解释航空燃气涡轮发动机的基本原理,包括工作循环、组成部分以及运行过程。
工作循环航空燃气涡轮发动机的工作循环主要包括压缩、燃烧和膨胀三个过程。
1.压缩(Compression):在这个过程中,来自外部的空气经过进气口进入发动机,并经过多级压缩器(Compressor)进行压缩。
压缩器由多个转子和定子组成,通过旋转运动将空气逐渐压缩,并提高其温度和压力。
2.燃烧(Combustion):在这个过程中,经过压缩后的空气进入到燃烧室(Combustion Chamber),与喷入的燃料混合并点燃。
燃烧产生的高温高压气体通过喷嘴喷向涡轮(Turbine)。
3.膨胀(Expansion):在这个过程中,高温高压气体经过涡轮的作用,使其旋转并释放出能量。
涡轮与压缩机共用一根轴,因此涡轮的旋转也会带动压缩机的旋转。
同时,涡轮还通过输出轴将剩余的能量传递给飞机的推进系统,产生推力。
组成部分航空燃气涡轮发动机由多个组成部分构成,下面将对每个部分进行详细解释。
1.进气系统(Inlet System):进气系统负责将外界空气引入发动机内部,并通过滤清器去除杂质。
进气口通常位于飞机的前部,并采用特殊设计以确保稳定流量和适当压力。
2.压缩系统(Compression System):压缩系统由多级压缩器组成,其中的转子和定子通过旋转运动将空气逐渐压缩。
这样做不仅提高了空气的密度和温度,也为燃烧提供了必要的条件。
3.燃烧室(Combustion Chamber):燃烧室是将压缩空气与喷入的燃料混合并点燃的地方。
在燃烧过程中,释放出的能量会使气体温度和压力升高,为后续的膨胀提供动力。
4.涡轮(Turbine):涡轮是航空燃气涡轮发动机中最重要的组成部分之一。
燃气涡轮发动机—搜狗百科燃烧室和涡轮不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣,故它们是决定燃气轮机寿命的关键部件。
为确保有足够的寿命,这两大部件中工作条件最差的零件如火焰筒和叶片等,须用镍基和钴基合金等高温材料制造,同时还须用空气冷却来降低工作温度。
对于一台燃气轮机来说,除了主要部件外还必须有完善的调节保安系统,此外还需要配备良好的附属系统和设备,包括:起动装置、燃料系统、润滑系统、空气滤清器、进气和排气消声器等。
燃气轮机有重型和轻型两类。
重型的零件较为厚重,大修周期长,寿命可达10万小时以上。
轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑、最轻,但寿命较短。
与活塞式内燃机和蒸汽动力装置相比较,燃气轮机的主要优点是小而轻。
单位功率的质量,重型燃气轮机一般为2~5千克/千瓦,而航机一般低于0.2千克/千瓦。
燃气轮机占地面积小,当用于车、船等运输机械时,既可节省空间,也可装备功率更大的燃气轮机以提高车、船速度。
燃气轮机的主要缺点是效率不够高,在部分负荷下效率下降快,空载时的燃料消耗量高。
不同的应用部门,对燃气轮机的要求和使用状况也不相同。
功率在10兆瓦以上的燃气轮机多数用于发电,而30~40兆瓦以上的几乎全部用于发电。
燃气轮机发电机组能在无外界电源的情况下迅速起动,机动性好,在电网中用它带动尖峰负荷和作为紧急备用,能较好地保障电网的安全运行,所以应用广泛。
在汽车(或拖车)电站和列车电站等移动电站中,燃气轮机因其轻小,应用也很广泛。
此外,还有不少利用燃气轮机的便携电源,功率最小的在10千瓦以下。
燃气轮机的未来发展趋势是提高效率、采用高温陶瓷材料、利用核能和发展燃煤技术。
提高效率的关键是提高燃气初温,即改进涡轮叶片的冷却技术,研制能耐更高温度的高温材料。
其次是提高压缩比,研制级数更少而压缩比更高的压气机。
再次是提高各个部件的效率。
高温陶瓷材料能在1360℃以上的高温下工作,用它来做涡轮叶片和燃烧室的火焰筒等高温零件时,就能在不用空气冷却的情况下大大提高燃气初温,从而较大地提高燃气轮机效率。