关于复数的一个充要条件及其应用
- 格式:pdf
- 大小:24.15 KB
- 文档页数:2
复数相等的充要条件及应用一.复数相等的充要条件1.充要条件如果两个复数的实部与虚部分别相等,我们就说这两个复数相等.即复数z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ),那么z 1=z 2 a 1=a 2且b 1=b 2.2.注意点(1)一般地说,两个复数只能说是相等或不相等,而不能比较大小.(2)利用复数相等的充要条件解答问题时,这类问题往往容易忽略题意中给出的条件,得出错误的结论.应引起重视,认真审题,理清题目中给出的条件后再加以分析求解.二.复数相等的充要条件的应用复数相等的充要条件的用途非常广泛,是复数问题实数化的主要解题途径之一,要加以切实地掌握.1.参数取值问题例1.已知abib a b a b ab a +++++22222=i i 23827+-,求实数a ,b 的值. 分析:通过复数的四则运算,结合两个复数相等的充要条件加以求解实数a ,b 的值.解析:已知等式左边=abib a abi b a ++-+)()()(22=abi b a abi b a abi b a ++-+++)())((=a+b -abi , 而等式右边=i i 23827+-=)23)(23()23)(827(i i i i -+--=137865i -=5-6i , 那么有a+b -abi=5-6i ,由两个复数相等的充要条件可得⎩⎨⎧==+65ab b a ,解得⎩⎨⎧==23b a 或⎩⎨⎧==32b a . 点评:要求两个未知数的值,必须列出两个方程,这可以由两个复数相等的充要条件而得到.其关键是对式子进行变形.在变形中,可以结合复数的四则运算,也可以结合相应的公式加以变形.变式练习1:若(2x -y )-(x+2y )i=-1+2i (x ,y ∈R ),则x+y 等于______. 答案:-57. 2.二次方程问题例2.若方程(1+i )x 2-2(a+i )x+(5-3i )=0(a ∈R )有实数解,求实数a 的值. 分析:设原方程的实数解为x 0,代入后整理,利用复数相等的充要条件可得有关x 0的解,并结合题目条件求解对应的实数a 的值.解析:由原方程整理可得(x 2-2ax+5)+(x 2-2x -3)i=0,设原方程的实数解为x 0,代入上式可得(x 02-2ax 0+5)+(x 02-2x 0-3)i=0,根据复数相等的充要条件,可得⎩⎨⎧=--=+-032052020020x x ax x ,由方程x 02-2x 0-3=0,解得x 0=3或x 0=-1,把x 0=3或x 0=-1分别代入方程x 02-2ax 0+5=0,可得a=37或a=-3. 点评:对于复系数(系数不全为实数)的一元二次方程的实根问题,一般把实根代入方程,再利用复数相等的充要条件建立相应的关系式来分析与求解.变式练习2:关于x 的方程3x 2-a 2x -1=10i -ix -2ix 2有实数根,求实数a 的值. 答案:a=11或a=-715. 3.方程组问题例3.已知关于x ,y 的方程组⎩⎨⎧-=+--+--=+-ii b y x ay x i y y i x 89)4()2()3()12(有实数解,求实数a ,b 的值.分析:把问题中的方程组有实数解问题转化为复数相等的问题,根据复数相等的充要条件加以判断求值.解析:由方程(2x -1)i=y -(3-y )i 可得⎩⎨⎧--==-)3(112y y x ,解得⎪⎩⎪⎨⎧==425y x , 把⎪⎩⎪⎨⎧==425y x 代入方程(2x+ay )-(4x -y+b )i=9-8i ,可得(5+4a )-(6+b )i=9-8i ,则有⎩⎨⎧-=+-=+8)6(945b a ,解得⎩⎨⎧==21b a .点评:一般情况下,一个有关复数的方程,相当于两个实数方程,能求出两个未知数.而用复数相等的条件,将复数问题转化为实数来解决,这是解决复数问题最基本也是最重要的思想方法.变式练习3:满足方程组⎪⎩⎪⎨⎧-=+=|23||21|1||z z z 的复数z 的集合是______. 答案:{21+23i ,21-23i}. 4.不等问题例4.使不等式m 2-(m 2-3m )i<(m 2-4m+3)i+10成立的实数m 的取值集合为______. 分析:要使两个复数可以比较大小,那么这两个复数都是实数,根据复数的实部与虚部的关系及不等式条件,从而联立不等式求解.解析:因为只有两个复数均为实数时,才能比较大小,所以由条件得⎪⎩⎪⎨⎧<=+-=-1003403222m m m m m ,即⎪⎩⎪⎨⎧<<-====10103130m m m m m 或或,解得m=3,故填答案:{3}.点评:只有两个复数均为实数时才能比较大小,所以问题中的不等式就转化为两端必须同时为实数,并比较大小.把复数问题实数化是解决此类不等问题的关键所在.变式练习4:已知复数z=k2-3k+(k2-5k+6)i<0,则实数k=______.答案:2.。
1.A和AN的用法:词第一个字母是原音字母(a e i o u)用an.没有的话就用a2.关于复数的用法:一、最常见的名词复数(Plural)就是在单数(Singular)名词后边加上一个sboy boyscat catsroom roomshorse horsestree treesrose roses二、如果名词是以sh,ch,s或x结尾的话,那就要在单数的后面加上eslash lashes 鞭子push pushesbranch branchesmatch matchescoach coaches 教练gas gasesass asses驴子class classesbox boxesfox foxes三、如果名词结尾是一个子音(consonant,就是除了a,e,i,o,u之外的字母)加一个y,那就要将y换成i,再加上esbaby babiesfamily familiespony poniescity citiescountry countries四、可是,如果名词结尾是一个母音(vowel,就是a,e,i,o,u)加一个y,那只要在单数词后加一个s就成了play playsway waysvalley valleys 山谷donkey donkeystoy toysboy boysguy guys五、当单数名词的结尾是f或fe时,复数的写法就是将f改为v,再加esthief thievesshelf shelvesleaf leavescalf calveshalf halveswolf wolveswife wiveslife lives可是,f结尾的单数字,有许多只需加个s就成复数(你看,这又是英文的bugs)roof roofshoof hoofschief chiefscliff cliffsgulf gulfs六、结尾是o的单数词,一部份只加s就成复数词,但有的却需加es,真令人捉摸不定呀piano pianosphoto photosbamboo bambooszoo zooskangaroo kangaroos 袋鼠mulatto mulattos白黑混血儿hero heroesmango mangoespotato potatoesvolcano volcanoesnegro negroes黑人cargo cargoesecho echoesbuffalo buffaloestomato tomatoesmosquito mosquitoes七、由于古老传统的原因,一些单数词得加en才能变成复数词(鬼知道是什么原因):ox oxenchild children (你看,这个就不守规矩了,不是加en ,是ren呀)brother brethren (哎呀,这个这个……是bre,不是bro)八、一些单数词得改头换面一番,才能变成复数词的哦:analysis analyses 分析basis bases基础datum data数据foot feetformula formulae/formulas 公式goose geeselouse lice虱子man menmouse micemedium media/mediums媒介memorandum memoranda/memorandums 备忘录parenthesis parentheses 圆括号phenomenon phenomena现象radius radii 半径tooth teethwoman women九、有些名词是单数、复数不分的,很可爱是吗?deerfishcannonsheepsalmon 鲑鱼trout鳟鱼(许多鱼类都是这么"可爱"的呀。
第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。
若z=r(cos θ+isin θ),则θ称为z 的辐角。
若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。
人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。
要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。
全体复数所成的集合叫做复数集,用字母C 表示。
要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。
) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
复数的有关概念[重点难点]1.复数的定义:形如a+bi(a,b∈R)的数叫做复数。
a叫做复数的实部,b叫做复数的虚部。
复数的分类如下:a+bi(a,b∈R)2.复数相等的充要条件设a,b,c,d∈R, 则a+bi=c+di a=c且b=d。
特别地:a+bi=0 a=b=0。
应当理解:(1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样。
(2)复数相等的充要条件是将复数转化为实数解决问题的基础。
3.复数的几何表示(1)坐标表示:在复平面内以(a,b)为坐标的点Z表示复数z=a+bi。
(2)向量表示:以原点O为起点,点Z(a,b)为终点的向量表示复数z=a+bi。
向量的长度叫做复数a+bi的模,记作|a+bi|。
V=||=|z|=≥0。
应当理解:10向量可以平移,只有位置向量零向量除外可以与点Z(a,b)以及复数z=a+bi有一一对应的关系。
20两个复数不全是实数时不能比较大小,但它们的模可以比较大小。
例题选讲:例1.实数m取何值时,复数z=(m2-m-2)+(m2-3m+2)i是(1)实数;(2)虚数;(3)纯虚数。
解:(1)当m2-3m+2=0即m=1或m=2时,z为实数;(2)当m2-3m+2≠0即m≠1且m≠2时,z为虚数;(3)当即m=-1时,z为纯虚数。
例2.已知复数z=(3m2-5m+2)+(m-1)i (m∈R) 若所对应的点在第四象限,求m的取值范围。
解:∵=(3m2-5m+2)-(m-1)i∴解得m>1。
∴m∈(1,+∞)为所求。
例3.已知方程2x2-(2i-1)x+m-i=0有实根,求实数m。
解:设实根为x0, 则2x02-(2i-1)x0+m-i=0,即2x02+x0+m-(2x0+1)i=0∴解得∴m=0为所求。
例4.已知z1=3-4i, z2=2-x-1+4i(x∈R), 且|z2|≤|z1|,求x的取值范围。
解:∵|z1|==5,|z2|=。
∴≤5, 解之得x≥-2。
一、复数相等的充要条件
1.如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。
特殊地,a,b∈R时,a+bi=0a=0,b=0.
2.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
3.一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
二、复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
三、解复数相等问题的方法步骤:
1.把给的复数化成复数的标准形式;
2.根据复数相等的充要条件解之。
§15. 复 数 知识要点1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ;④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义:0==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且.⑷两个复数,如果不全是实数,就不能比较大小.注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数]2若21z z ,则021 z z -.(√)②若Cc b a ∈,,,则0)()()(222=-+-+-a c c b b a 是cb a ==的必要不充分条件.(当22)(ib a =-,0)(,1)(22=-=-a c c b 时,上式成立)2. ⑴复平面内的两点间距离公式:21z z d -=.其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00 r r z z =-. ⑵曲线方程的复数形式:①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②21z z z z -=-表示线段21z z 的垂直平分线的方程. ③212121202ZZ z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,).④),(2121202z z a a z z z z =---表示以21ZZ ,为焦点,实半轴长为a 的双曲线方程(若212z z a=,此方程表示两条射线).⑶绝对值不等式:设21z z ,是不等于零的复数,则①212121z z z z z z +≤+≤-.左边取等号的条件是),且(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. ②212121z z z z z z +≤-≤-.左边取等号的条件是),(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. 注:nn n A A A A A A A A A A 11433221=++++- .3. 共轭复数的性质:zz = 2121z z z z +=+a z z 2=+,i 2b z z =-(=z a + b i ) 22||||z z z z ==⋅2121z z z z -=- 2121z z z z ⋅=⋅2121z z z z =⎪⎪⎭⎫ ⎝⎛(02≠z ) n n z z )(=注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的] 4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z nn②对任何z ,21,z z C∈及+∈N n m ,有③nn n nm nm nm nmz z z z zz zz z 2121)(,)(,⋅=⋅==⋅⋅+注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142=-=i i 若由11)(212142===i i 就会得到11=-的错误结论.②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法.⑵常用的结论:1,,1,,143424142=-=-==-=+++nn n n ii i i i i i)(,0321Z n iiii n n n n ∈=++++++i ii i ii i i -=+-=-+±=±11,11,2)1(2若ω是1的立方虚数根,即i2321±-=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件:)(0,01,1,,121223Z n n n n∈=++=++===++ωωωωωωωωωω①z z R z =⇔∈.②若0≠z ,z 是纯虚数0=+⇔z z .⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:||||z z =.6. ⑴复数的三角形式:)sin (cos θθi r z +=. 辐角主值:θ适合于0≤θ<π2的值,记作zarg .注:①z 为零时,z arg 可取)2,0[π内任意值. ②辐角是多值的,都相差2π的整数倍. ③设,+∈R a 则πππ23)arg(,2arg ,)arg(,0arg=-==-=ai ai a a .⑵复数的代数形式与三角形式的互化:)sin (cos θθi r bi a +=+,22bar +=,rb ra ==θθsin ,cos .⑶几类三角式的标准形式:)]sin()[cos()sin (cos θθθϑ-+-=-i r i r )]sin()[cos()sin (cos θπθπθθ+++=+-i r i r)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r)]2sin()2[cos()cos (sin θπθπθθ-+-=+i r i r7. 复数集中解一元二次方程:在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根ab x 22,1∆±-=;若∆=0,则有二相等实数根ab x 22,1-=;若∆<0,则有二相等复数根aib x 2||2,1∆±-=(2,1x 为共轭复数).②当c b a ,,不全为实数时,不能用∆方程根的情况.③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立. 8. 复数的三角形式运算:)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ-+-=++i r r i r i r棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r nn+=+第三章 数系的扩充与复数一、基础知识【理解去记】1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
复数及其几何意义核心知识点一:数系的扩充及复数的引入1. 数系的扩充自然数2. 复数的概念:(1)定义:形如a +b i (a ,b ∈R)的数叫做复数,其中i 叫做虚数单位,满足i 2=-1,a 叫做复数的实部,b 叫做复数的虚部。
(2)表示方法:复数通常用字母z 表示,即z =a +bi (a ,b ∈R ),这一表示形式叫做复数的代数形式。
3. 复数的分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数;0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数。
4. 复数集:(1)定义:全体复数所构成的集合叫做复数集。
(2)表示:通常用大写字母C 表示。
(3)复数集、实数集、虚数集、纯虚数集之间的关系:5. 复数相等的充要条件:复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等。
核心知识点二:复数的几何意义1. 复平面思考:实轴上的点表示实数,虚轴上的点表示虚数,这句话对吗?提示:不正确。
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数。
2. 复数的几何意义3. 复数的模(1)定义:向量OZ 的模叫做复数z =a +bi 的模。
(2)记法:复数z =a +b i 的模记为|z |或|a +b i|且|z |=22b a +。
例题1 已知复数z =1672-+-a a a +(a 2-5a -6)i (a ∈R ),试求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数。
解:(1)当z 为实数时,则⎪⎩⎪⎨⎧≠-=--,01,06522a a a ∴⎩⎨⎧±≠=-=,1,61a a a 或∴当a =6时,z 为实数。
(2)当z 为虚数时,则⎪⎩⎪⎨⎧≠-≠--,01,06522a a a ∴⎩⎨⎧±≠≠-=,1,61a a a 且 ∴当a ≠±1且a ≠6时,z 为虚数。
复数【知识梳理】一、复数的根本概念1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四那么运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念〔1〕定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。
全体复数所成的集合C 叫做复数集。
复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否那么不是代数形式〔2〕分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数?虚数?纯虚数?二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚局部别相等注意:只有两个复数全是实数,才可以比拟大小,否那么无法比拟大小例题:0)4()3(=-+-+i x y x 求y x ,的值三、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅ 四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系〔复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量〕相等的向量表示同一个复数例题:〔1〕当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上〔2〕复平面内)6,2(=→AB ,→→AB CD //,求→CD 对应的复数3、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =假设bi a z +=1,di c z +=2,那么21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:i z +=2,求i z +-1的值五、复数的运算〔1〕运算法那么:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(dc i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= 〔2〕OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.六、常用结论〔1〕i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)i i 2)1(2=+,i i 2)1(2-=-(3)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√〞或“×〞)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比拟大小.( )(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.() 【考点自测】1.(2021·安徽)设i是虚数单位,那么复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2021·课标全国Ⅰ)复数z满足(z-1)i=1+i,那么z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.假设C为线段AB的中点,那么点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+ia,b∈R a+i=2-b i,那么(a+b i)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.(1+2i)=4+3i,那么z=________.【题型分析】题型一复数的概念例1z=a-(a∈R)是纯虚数,那么a的值为()(2)a∈R,复数z1=2+a i,z2=1-2i,假设为纯虚数,那么复数的虚部为()A.1B.iC.(3)假设z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,那么“m=1〞是“z1=z2〞的()引申探究1.对本例(1)中的复数z,假设|z|=,求a的值.2.在本例(2)中,假设为实数,那么a=________.思维升华解决复数概念问题的方法及考前须知(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)假设复数z=(x2-1)+(x-1)i为纯虚数,那么实数x的值为()A.-1B.0C.1D.-1或1(2)(2021·浙江)i是虚数单位,a,b∈R,那么“a=b=1〞是“(a+b i)2=2i〞的()题型二复数的运算命题点1复数的乘法运算例2(1)(2021·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2021·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2021·湖南)=1+i(i为虚数单位),那么复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2021·天津)i是虚数单位,假设复数(1-2i)(a+i)是纯虚数,那么实数a的值为________.(2)(2021·江苏)复数z=(5+2i)2(i为虚数单位),那么z的实部为________.命题点4复数的综合运算例5(1)(2021·安徽)设i是虚数单位,表示复数zz=1+i,那么+i·等于()(2)假设复数z满足(3-4i)z=|4+3i|,那么z的虚部为()A.-4B.-C.4D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四那么运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法那么进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2021·山东)假设复数z满足=i,其中i为虚数单位,那么z等于()A.1-iB.1+iC.-1-iD.-1+i(2)2021=________.(3)+2021=________.题型三复数的几何意义例6(1)(2021·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,假设复数z满足|z-z1|=|z-z2|=|z-z3|,那么z 对应的点为△ABC的()思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,那么图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.【思想与方法】解决复数问题的实数化思想典例x,y为共轭复数,且(x+y)2-3xy i=4-6i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的根本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最根本的思想方法. (2)此题求解的关键是先把x、y用复数的根本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)此题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.z=a+b i(a,b∈R z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两局部去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法那么,其方向是应注意的问题,平移往往和加法、减法相结合.【失误与防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比拟大小.a+b i(a,b∈R)中的实数b,即虚部是一个实数.【稳固练习】1.(2021·福建)假设(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),那么a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4z=+i,那么|z|等于()A.B.C.3.(2021·课标全国Ⅱ)假设a为实数,且(2+a i)(a-2i)=-4i,那么a等于()4.假设i为虚数单位,图中复平面内点Z表示复数z,那么表示复数的点是()A.EB.FC.GD.H5.(2021·江西)是z的共轭复数,假设z+=2,(z-)i=2(i为虚数单位),那么z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2021·江苏)设复数z满足z2=3+4i(i是虚数单位),那么z的模为________.=a+b i(a,b为实数,i为虚数单位),那么a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,那么实数m的取值范围是________.9.计算:(1);(2);(3)+;(4).z1=+(10-a2)i,z2=+(2a-5)i,假设1+z2是实数,求实数a的值.【能力提升】z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,那么λ的取值范围是()A.[-1,1]B.C.D.f(n)=n+n(n∈N*),那么集合{f(n)}中元素的个数为()z=x+y i,且|z-2|=,那么的最大值为________.a∈R,假设复数z=+在复平面内对应的点在直线x+y=0上,那么a的值为____________.15.假设1+i是关于x的实系数方程x2+bx+c=0的一个复数根,那么b=________,c=________. 【稳固练习参考答案】1A.2.B.3.B..5.D.6..7.3.8.m<.9.解(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.10.解1+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵1+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3.11.解析由复数相等的充要条件可得化简得4-4cos2θ=λ+3sinθ,由此可得λ=-4cos2θ-3sinθ+4=-4(1-sin2θ)-3sinθ+4=4sin2θ-3sinθ=42-,因为sinθ∈[-1,1],所以4sin2θ-3sinθ∈.答案C12.解析f(n)=n+n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…∴集合中共有3个元素.答案 C13.解析∵|z-2|==,∴(x-2)2+y2max==.14.解析∵z=+=+i,∴依题意得+=0,∴a=0.15.解析∵实系数一元二次方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知,∴b=-2,c=3.。
第四节复数的概念及其运算复习目标学法指导1.理解复数的基本概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.掌握复数代数形式的四则运算.4.了解复数代数形式的加、减运算的几何意义. 理解复数的有关概念是基础,解决复数问题的基本思路是把复数问题实数化.复数代数形式的运算类似多项式的运算,加法类似合并同类项,乘法类似多项式乘以多项式,除法类似分母有理化,因此要用类比的思想学习复数的运算问题.一、复数的有关概念1.复数的定义形如a+bi(a,b∈R)的数叫做复数,其中实部是a,虚部是b(i是虚数单位).2.复数的分类复数z=a+bi(a,b∈R)()()()()=0=0baba⎧⎪⎪⎧⎨⎪≠⎨⎪≠⎪⎪⎩⎩实数纯虚数虚数非纯虚数3.复数相等a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).4.共轭复数a+bi与c+di互为共轭复数⇔a=c且b=-d(a,b,c,d∈R).5.复数的模向量OZ u u u r的模叫做复数z=a+bi的模,记作|z|或|a+bi|,即|z|=|a+bi|=r=22a b+(r≥0,r,a,b∈R).二、复数的几何意义1.复平面的概念建立直角坐标系来表示复数的平面叫做复平面.2.实轴、虚轴在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数.3.复数的几何表示复数z=a+bi复平面内的点Z(a,b)平面向量OZ u u u r.三、复数的运算1.复数的加、减、乘、除运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则(1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i;(4)除法:12z z =i i a b c d ++=()()()()i i i i a b c d c d c d +-+-=22ac bd c d +++ 22bc adc d-+i(c+di ≠0). 2.复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 四、与复数运算有关的结论 1.(1±i)2=±2i.2.1i 1i +-=i,1i 1i-+=-i. 3.(a+bi)(a-bi)=a 2+b 2. 4.(a ±bi)2=a 2-b 2±2abi. 5.i i a b +=b-ai.概念理解(1)复数的代数形式z=a+bi(a,b ∈R),虚部是b 而不是bi,即实部和虚部都是实数.(2)一个复数若为纯虚数,则既要满足实数a=0,又要满足虚部b ≠0,两个条件缺一不可.(3)两个复数一般不能比较大小,只能说相等或不相等. (4)两个复数相等的充要条件是它们的实部与虚部分别相等. (5)虚轴上的点除原点外都表示纯虚数.(6)复平面内表示复数z=a+bi 的点Z 的坐标为(a,b),而不是(a,bi). 五、复数的模 1.复数的模的相关结论设z 1,z 2是任意两个复数, (1)|z 1·z 2|=|z 1|·|z 2|,|12z z |=12z z (|z 2|≠0).(2)|1n z |=|z 1|n (n ∈N *).(3)||z 1|-|z 2||≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线;②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线. 2.复数的模的几何意义(1)复数z=a+bi,则|z|表示在复平面所对应的点Z(a,b)到原点的 距离.(2)若复数z=a+bi,z 0=a 0+b 0i,则|z-z 0|表示复平面内两点(a,b)与(a 0,b 0)间的距离,即两个复数差的模就是复平面内与这两个复数对应的两点间的距离.六、与复数概念有关的结论1.实数集R 与虚数集都是复数集的真子集且互为补集,即R ∪{虚数}=C,R ∩{虚数}= .2.z=a+bi=0⇔a=b=0.3.复数能比较大小的充要条件是复数为实数.4.i 2=-1.5.i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i,i 4n +i 4n+1+i 4n+2+i 4n+3=0.6.共轭复数的性质设z=a+bi,z=a-bi(a,b∈R),则(1)z+z=2a,z-z=2bi;(2)z=z;(3)|z|=|z|=22+,z·z=a2+b2=|z|2=|z|2;a b(4)z∈R⇔z=z;(5)z与z在复平面内所对应的点关于实轴对称.1.(2019·全国Ⅱ卷)设z=i(2+i),则z等于( D )(A)1+2i (B)-1+2i(C)1-2i (D)-1-2i解析:z=i(2+i)=2i+i2=-1+2i,所以z=-1-2i,故选D.2.已知i为虚数单位,复数z1=a+i,z2=2-i,且|z1|=|z2|,则实数a的值为( C )(A)2 (B)-2 (C)2或-2 (D)±2或0解析:21a+41+,则a=±2.故选C.3.(2018·杭州高级中学月考)已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z的共轭复数为( B )(A)2-2i (B)2+2i(C)-2+2i (D)-2-2i解析:方程x2+(4+i)x+4+ai=0(a∈R)可化为x2+4x+4+i(x+a)=0,由复数相等的意义得2440,0,x x x a ⎧++=⎨+=⎩解得x=-2,a=2,方程x 2+(4+i)x+4+ai=0(a ∈R)有实根b,故b=-2, 所以复数z=2-2i,所以复数z 的共轭复数为2+2i. 故选B.4.(2019·杭州市第二学期高三教学质量检测)已知复数z=1+i(i 是虚数单位),则211z z -+等于( A )(A)i (B)-i (C)1+i(D)1-i解析:211z z -+= 12i 2i -++=(12i)(2i)5-+-=5i5=i.故选A.考点一 复数的概念及分类 [例1] 复数z=(m 2+m-6)i+27123mm m -++为纯虚数,则实数m 的值为( )(A)2 (B)-3 (C)4 (D)3或4解析:由227120,30,60,m m m m m ⎧-+=⎪+≠⎨⎪+-≠⎩得m=3或m=4.故选D.处理有关复数的基本概念问题,关键找准复数的实部和虚部,把复数问题转化为实数问题来解决.1.若复数m(m-2)+(m 2-3m+2)i 是纯虚数,则实数m 的值为( C ) (A)0或2 (B)2 (C)0 (D)1或2 解析:因为m(m-2)+(m 2-3m+2)i 是纯虚数,则()220,320,m m m m ⎧-=⎪⎨-+≠⎪⎩解得m=0.故选C. 2.复数z=(3-2i)i 的共轭复数z 等于( C )(A)-2-3i (B)-2+3i (C)2-3i (D)2+3i 解析:因为z=(3-2i)i=2+3i, 所以z =2-3i.故选C. 考点二 复数的几何意义[例2] (1)(2019·全国Ⅱ卷)设z=-3+2i,则在复平面内z 对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (2)若复数z 满足z=()2i2i -- (i 是虚数单位),则在复平面内,z 对应的点的坐标是( )(A)(425,325) (B)(-425,325) (C)(425,-325) (D)(-425,-325)解析:(1)由z=-3+2i,得z =-3-2i,对应点(-3,-2)位于第三象限.故 选C. 解析: (2)z=()2i2i --=i 44i 1+-=i 34i +=()i 34i 25-=425+325i, 所以在复平面内,z 对应的点的坐标是(425,325).故选A.判断复数所在平面内的点的位置的方法:首先将复数化成a+bi(a,b ∈R)的形式,其次根据实部a 和虚部b 的符号来确定点所在的象限及坐标.1.在复平面中,复数1-3i,(1+i)(2-i)对应的点分别为A,B,则线段AB 的中点C 对应的复数为( D )(A)-4+2i (B)4-2i (C)-2+i (D)2-i解析:(1+i)(2-i)=3+i,所以A,B 的坐标分别为(1,-3)和(3,1),所以线段AB 的中点C 的坐标为(2,-1),所以线段AB 的中点C 对应的复数为2-i,故选D.2.(2019·宁波高三上期末考试题)设i 为虚数单位,给定复数z=2(1i)1i-+,则z 的虚部为 ,模为 .解析:z=2(1i)1i-+=2i 1i -+=2i(1i)2--=-1-i, 故z 的虚部为-1,模为2.答案:-123.若复数z 满足|z-3i|=5,求|z+2|的最大值和最小值.解:由复数模的几何意义可知,|z-3i|=5表示以(0,3)为圆心,以5为半径的圆上的点.则|z+2|表示该圆上点到点(-2,0)的距离,由图可知,|z+2|的最大值为5+13,最小值为5-13.考点三 复数代数形式的运算[例3] (1)i 是虚数单位,复数7i34i ++等于( )(A)1-i (B)-1+i(C)1725+3125i (D)-177+257i (2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( )(A)-4 (B)-45 (C)4 (D)45解析:(1)复数7i 34i ++=()()()()7i 34i 34i 34i +-+-=2525i 25-=1-i.故选A.解析:(2)z=43i 34i +-=534i- =()()()534i 34i 34i +-+=()534i 25++=35+45i,所以复数z 的虚部是45,故选D.(1)复数的加法、减法、乘法运算可以类比多项式运算;复数除法运算的关键是分子、分母同乘以分母的共轭复数转化为复数的乘法运算,注意要把i 的幂化成最简形式.(2)将所求复数z 分离出来,利用复数运算法则求解.1.已知z=1i 1i+-,其中i 是虚数单位,则z+z 2+z 3+…+z 2 017的值为( C ) (A)1+i (B)1-i (C)i (D)-i解析:由于z=1i 1i+-=i, 所以z+z 2+z 3+…+z 2 017=504(i+i 2+i 3+i 4)+i=i, 故选C.2.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,z 1·z 2是实数,求z 2.解:由(z 1-2)(1+i)=1-i ⇒z 1=2-i, 设z 2=a+2i(a ∈R),则z 1·z 2=(2-i)(a+2i)=(2a+2)+(4-a)i, 因为z 1·z 2是实数,所以a=4⇒z 2=4+2i.。
复数知识点考试内容:复数的概念.复数的加法和减法.复数的乘法和除法.数系的扩充.考试要求:(1)了解复数的有关概念及复数的代数表示和几何意义.(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系到复数系的关系及扩充的基本思想.1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=.⑵复数及其相关概念:① 复数—形如a + b i 的数(其中R b a ∈,);② 实数—当b = 0时的复数a + b i ,即a ;③ 虚数—当0≠b 时的复数a + b i ;④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i.⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示.⑶两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小.注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√)②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-,0)(,1)(22=-=-a c c b 时,上式成立)2. ⑴复平面内的两点间距离公式:21z z d -=.其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离.由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.②21z z z z -=-表示线段21z z 的垂直平分线的方程. ③212121202Z Z z z a a a z z z z ,)表示以且(φφ=-+-为焦点,长半轴长为a 的椭圆的方程(若212z z a =,此方程表示线段21Z Z ,).④),(2121202z z a a z z z z ππ=---表示以21Z Z ,为焦点,实半轴长为a 的双曲线方程(若212z z a =,此方程表示两条射线).⑶绝对值不等式:设21z z ,是不等于零的复数,则①212121z z z z z z +≤+≤-.左边取等号的条件是),且(012πλλλR z z ∈=,右边取等号的条件是),(012φλλλR z z ∈=. ②212121z z z z z z +≤-≤-.左边取等号的条件是),(012φλλλR z z ∈=,右边取等号的条件是),(012πλλλR z z ∈=. 注:n n n A A A A A A A A A A 11433221=++++-Λ.3. 共轭复数的性质:z z = 2121z z z z +=+a z z 2=+,i 2b z z =-(=z a + b i ) 22||||z z z z ==⋅2121z z z z -=- 2121z z z z ⋅=⋅2121z z z z =⎪⎪⎭⎫ ⎝⎛(02≠z ) n n z z )(= 注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的] 4 ⑴①复数的乘方:)(...+∈⋅⋅=N n z z z z z nn 43421②对任何z ,21,z z C ∈及+∈N n m ,有③n n n n m n m n m n m z z z z z z z z z 2121)(,)(,⋅=⋅==⋅⋅+注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142=-=i i 若由11)(212142===i i 就会得到11=-的错误结论.②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法.⑵常用的结论:1,,1,,143424142=-=-==-=+++n n n n i i i i i i i)(,0321Z n i i i i n n n n ∈=++++++i i i i i i i i -=+-=-+±=±11,11,2)1(2 若ω是1的立方虚数根,即i 2321±-=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件:①z z R z =⇔∈.②若0≠z ,z 是纯虚数0=+⇔z z .⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:||||z z =.6. ⑴复数的三角形式:)sin (cos θθi r z +=.辐角主值:θ适合于0≤θ<π2的值,记作z arg .注:①z 为零时,z arg 可取)2,0[π内任意值.②辐角是多值的,都相差2π的整数倍.③设,+∈R a 则πππ23)arg(,2arg ,)arg(,0arg =-==-=ai ai a a . ⑵复数的代数形式与三角形式的互化:)sin (cos θθi r bi a +=+,22b a r +=,r b r a ==θθsin ,cos . ⑶几类三角式的标准形式:)]sin()[cos()sin (cos θθθϑ-+-=-i r i r)]sin()[cos()sin (cos θπθπθθ+++=+-i r i r)]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r)]2sin()2[cos()cos (sin θπθπθθ-+-=+i r i r7. 复数集中解一元二次方程:在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根a b x 22,1∆±-=;若∆=0,则有二相等实数根ab x 22,1-=;若∆<0,则有二相等复数根a i b x 2||2,1∆±-=(2,1x 为共轭复数). )(0,01,1,,121223Z n n n n ∈=++=++===++ωωωωωωωωωω②当c b a ,,不全为实数时,不能用∆方程根的情况.③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立.8. 复数的三角形式运算:)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r )]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ-+-=++i r r i r i r 棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r n n +=+。
复数及其运算知识精要复数的有关概念(一)规定:(1)1i 2-=,其中i 是一个新数.,叫做虚数单位; (2)0i 0=•,i 能与实数进行四则运算,如)R b (bi i b ∈=•,)R b (bi bi 0∈=+等.(二)复数的概念复数),(R b a bi a z ∈+=⎩⎨⎧mzb z a I —虚部——实部—Re 复数)R b ,a (bi a z ∈+=为虚数的充要条件是0≠b ;复数)R b ,a (bi a z ∈+=为纯虚数的充要条件是00a b =≠且;复数)R b ,a (bi a z ∈+=为实数的充要条件是0=b .(三)复数的分类⎩⎨⎧=≠=∈+时为纯虚数)(虚数实数复数0)0()0(),(a b b R b a bi a (四)例题选讲例、m 是什么实数时,复数i m m m m m z )2410(41222+-++--=分别是 (1)实数,(2)虚数,(3)纯虚数,(4)0. 解:)6)(4(Im ,4)3)(4(Re --=++-=m m z m m m z 64040)6)(4(0I )1(或实数:=⇒⎩⎨⎧≠+=--⇒=m m m m mz 464040)6)(4(0Im )2(-≠≠≠⇒⎩⎨⎧≠+≠--⇒≠m m m m m m z 且且虚数: 304)3)(4(0)6)(4(0Re 0Im )3(-=⇒⎪⎩⎪⎨⎧=++-≠--⇒⎩⎨⎧=≠m m m m m m z z 纯虚数:404)3)(4(0)6)(4(0Re 0Im 0)4(=⇒⎪⎩⎪⎨⎧=++-=--⇒⎩⎨⎧==m m m m m m z z :(五)两个复数相等定义:如果两个复数),(1R b a bi a z ∈+=和),(2R d c di c z ∈+=的实部与虚部分别相等,即d b c a ==且,那么这两个复数相等,记作di c bi a +=+.例、已知i y i y x )3(2)2(--=+-,其中R y x ∈,,求x,y 的值.例、当x 、y 为何实数时,复数i y y x x z )32()23(22--++-=等于2? 问题:两个复数能比较大小吗?组织学生讨论得出:只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不相等两种关系,不能比较大小.概念巩固:判断下列说法是否正确:(1)i i 5253++大于(2)若复数21z z >,则21z z 、一定都是实数(3)若复数z 满足12<z ,则11<<-z复数的坐标表示一.复平面的概念(一)概念:复平面——建立了直角坐标系来表示复数的平面。