电机学 第四篇 同步电机
- 格式:ppt
- 大小:8.81 MB
- 文档页数:150
凸极同步发电机的电动势方程式:q q d d a aq q ad d a x I j x I j r I U x x I j x x I j r I U E &&&&&&&&&+++=+++++=)()(0σσσσx x x x x x aq q ad d +=+=分别称为凸极同步电机的直轴同步电抗和交轴同步电抗。
其物理意义为当对称三相直轴或交轴电枢电流每相为1 安时,三相联合产生的电枢总磁场在电枢每一相绕组中感应的电动势。
讨论:1)由于xad> x aq,所以x d> x q。
2)对于隐极电机,由于x ad=x aq=x a,所以x d=xq =xs。
§10-6 从空载特性、短路特性求同步电抗的不饱和值和短路比¾空载特性n=n1,I=0时,E0=U0=f(i f)¾短路特性n=n1,U=0时,I k=f(i f)以隐极电机为例s ks ka ks ax I jx I jr Ix I j r IU E&&&& && &≈+=+ +=90≈ψ如果被试电机是凸极电机,由于短路时ψ≈90∘,此时电枢反应为直轴电枢反应,因此求出的同步电抗为直轴同步电抗xd的不饱和值。
q kq aQxI jx I j r IU E&& && &≈+ +=090≈ψ短路比的数值对电机性能影响很大。
短路比小,说明同步电抗大,这时短路电流小,但负载变化时发电机机端电压变化较大,并联运行时稳定性较差,但电机的成本较低;反之,短路比大则电机性能较好,但成本高,因为短路比大表示同步电抗小,故气隙大,使励磁电流增大、转子用铜量增大,所以短路比的选择要合理地统筹兼顾运行性能和电机造价这两方面地要求。
汽轮发电机的K c =0.47-0.63 ,水轮发电机的K c =1.0-1.4,水轮发电机的短路比较大是由于水轮发电机为凸极结构,气隙较大。
电机学第四篇同步电机第四章同步电机一、填空1. ★在同步电机中,只有存在电枢反应才能实现机电能量转换。
答交轴2. 同步发电机并网的条件是:(1;(2;(3)。
答发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致3. ★同步发电机在过励时从电网吸收,产生电枢反应;同步电动机在过励时向电网输出,产生电枢反应。
答超前无功功率,直轴去磁,滞后无功功率,直轴增磁4. ★同步电机的功角δ有双重含义,一是和之间的夹角;二是和空间夹角。
答主极轴线,气隙合成磁场轴线,励磁电动势,电压5. 凸极同步电机转子励磁匝数增加使Xq和Xd将。
答增加6. 凸极同步电机气隙增加使Xq和Xd将。
7. 答减小8. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为。
答mU(211?)sin?2 XqXd二、选择1. 同步发电机的额定功率指()。
A 转轴上输入的机械功率;B 转轴上输出的机械功率;C 电枢端口输入的电功率;D 电枢端口输出的电功率。
答 D2. ★同步发电机稳态运行时,若所带负载为感性cos??0.8,则其电枢反应的性质为()。
A 交轴电枢反应;B 直轴去磁电枢反应;C 直轴去磁与交轴电枢反应;D 直轴增磁与交轴电枢反应。
答 C3. 同步发电机稳定短路电流不很大的原因是()。
A 漏阻抗较大;B 短路电流产生去磁作用较强;C 电枢反应产生增磁作用;D 同步电抗较大。
答 B4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为()。
A X??Xad?Xd?Xaq?Xq;B Xad?Xd?Xaq?Xq?X?;C Xq?Xaq?Xd?Xad?X?;D Xd?Xad?Xq?Xaq?X?。
答 D5. 同步补偿机的作用是()。
A 补偿电网电力不足;B 改善电网功率因数;C 作为用户的备用电源;D 作为同步发电机的励磁电源。
答 B三、判断1. ★负载运行的凸极同步发电机,励磁绕组突然断线,则电磁功率为零。
第四 同步电机同步电机是将机械能与交流电能相互转换成的设备,可用作发电机或电动机。
由于其中涉及机械能,它的结构上需要运动部件,所以同步电机通常是一种旋转电机,本书介绍磁极旋转旋转的同步电机。
下面通过习题解答来讲授本部分内容。
本篇习题主要围绕同步电机的工作原理、结构、稳态运行过程分析、参数与性能的计算、并联运行、不对称运行、突然短路等内容。
第10章习题解答(Page 201~202)本章内容包括同步电机的工作原理、分类、主要结构部件、额定值、电枢反应、电压方程与相量图等。
10-1 试比较隐极式和凸极式同步电机转子构造上各有什么特点?据此特点,在应用场合上有何区别?在性能和分析方法上又有何不同?【解】两者共同之处都是通过在励磁绕组中通入直流来建立主磁场;通入直流的方法也相同,即通过电刷与集电环(俗称滑环),此即有刷励磁,或者直流电源与转子一道旋转,此即无刷励磁。
区别是:隐极式同步电机的转子铁心是整体锻压件,兼备导磁和承载功能,铁心的外表对称的铣有槽,其中留出两个大齿各约占六分之一圆周,大齿中心连线就是磁极轴线(称为直轴或纵轴),可见隐极机一般都做成2极机;励磁绕组是分布绕组,它分布在铁心槽中。
凸极式同步电机的转子由磁轭和磁极两部分构成,其中,磁轭是合金钢整体锻压件,兼备导磁和承载功能;主磁极铁心由1~3mm 的厚钢板冲片叠压而成,励磁绕组是集中绕组,它套在磁极铁心柱上,二者共同构成主磁极,主磁极对称地固定在磁轭上。
由于隐极机的原动机汽轮机是一种高速原动机,故其转子直径相对较小;凸极机的原动机水轮机是一种低速原动机,需要做成多个磁极才能满足频率要求,故其直径相对较大。
10-2 已制成的同步发电机转速为何要求是其原动机转速?如果原动机转速改变,该发电机能否运行?若原动机转向改变,会有什么影响?【解】同步发电机用来把机械能转换成交流电能,需要原动机拖动以输入机械能,所以原动机的转速就是其转速。
原动机转速改变时,同步发电机照常工作,但是频率将发生变化。
《电机学》复习(重点)第一篇变压器第一章概述3、S N=√3U1N I1N=√3U2N I2N式中:额定容量S N——指变压器的视在功率,单位为KV A或V A;额定电压U1N/U2N——指线值,单位为V或KV。
U1N是电源加到原绕组上的额定电压,U2N是原边加上额定电压后,副边开路即空载运行时副绕组的端电压;额定电压I1N/I2N——指线值,单位为A;Y接:U线=√3 U相△接:U线=U相I线=I相I线=√3I相习题1-2 一台三相变压器的额定容量为S N=3200千伏安,电压为U1N/U2N=35/10.5千伏,Y,d接法,求:⑴这台变压器原、副边的额定线电压、相电压及额定线电流、相电流。
⑵若副边负载的功率因数为0.85(感性),则这台变压器额定运行时能输出多少千瓦的有功功率,输出的无功功率又是多少?解:(1)额定电压及电流原边额定线电压U1N=35 KV原边额定相电压U1=35/√3=20.208 KV副边额定线电压U2N=10.5 KV副边额定相电压U2=10.5 KV原边额定线电流I1N=S N/(√3 U1N)=3200×103/(√3 ×35×103)=52.79 A原边额定相电流I1=52.79 A副边额定线电流I2N=S N/(√3 U2N)=3200×103/(√3 ×10.5×103)=175.96 A副边额定相电流I2=I2N /√3=101.59 A(2)若cosψ2=0.85(感性)额定运行时,ψ2=35.320,sinψ2=0.527输出有功功率P2=S N cosψ2=3200×0.85=2720 KVA输出无功功率Q2=S N sinψ2=200×0.527=1685.7 Kvar第二章变压器的运行分析3、[P28 式(2-7))采用折合算法后,变压器原变量仍为实际值,而副边量都为折合值,其基本方程为:(1)U1=-E1+I1 z1(2)U2’=-E2’+I2’ z2’(3)E1=-E2’(4)I1+I2’=I0(5)I0=-E1/z m(6)U2’=I2’ z L’4、折算后副边的电压、电流、阻抗的关系如何?U2’=I2’ z L’5、变压器的T型等效电路(图2-9)17、变压器参数的测定:如何对变压器进行空载实验、短路实验?其目的如何?如何求其参数:r m,x m;r K,x K。
麻省理工学院电气工程和计算机科学系6.685 电机课程讲义4:基本的同步电机模型2005年9月5日James L. Kirtley Jr.版权所有,20031.前言本节的目的在于,给出一个简单但具有物理意义的同步电机模型,这是电动机方面的主课之一。
我们可从不同角度考察该模型。
这将有助于理解电动机分析,尤其是在某一分析图像比其他图像更合适的情况下更是如此。
在此还将考察操作和尺寸估计事宜。
在此过程中,我们将从两个视角考察电动机绕组。
一方面,我们会将绕组近似为电流和磁通匝连数的正弦分布。
随后,我们将采取集中线圈观点,并将其一般化,给出更真实、更有用的绕组模型。
2.物理图像:电流片描述考虑下面给出的简单图像。
“电动机”由同轴的圆柱形转子和圆柱形定子构成,在其表面上呈正弦电流分布:转子的外表面和定子的内表面。
图1:基本电动机模型:轴视图转子和定子体由高磁导率材料制成(我们将其近似为无限的,但需要在以后仔细考察)。
此外,我们还假定转子和定子的电流分布为轴向的(z)和正弦分布:在此,角度φ是转子的实际角度。
转子上的电流分布相对于转子是固定的。
现在,假定气隙尺寸远小于半径:g << R。
不难看出,根据该假定,径向磁通密度Br在气隙上近似均匀(也就是说,不是半径的函数),并且服从:12随后,可将该情形下的径向磁通密度简化为:现在,能够计算转子和定子表面上的引力,面电流分布是方位磁场:在定子表面,,在转子表面,。
因而在转子表面,引力为:其平均值可简化为:在定子表面执行相同运算,可得到相同结果(符号相反)。
为了确定转矩,使用:考虑以下几点: 1.对于给定的表面电流值Ks 和Kr ,转矩是线性尺寸的3次幂。
这意味着,对于电动机尺寸,所达到的切应力为恒量。
电动机转矩密度和电动机体积之比为常数。
2.在另一方面,如果气隙保持不变,转矩为电动机体积的4次幂。
由于电动机的体积为3次幂,这意味着电动机转矩是电动机尺寸的4/3次幂。