离散网格上曲率计算的综述_2016
- 格式:docx
- 大小:213.79 KB
- 文档页数:9
一、基本有限元网格概念1.单元概述几何体划分网格之前需要确定单元类型。
单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。
为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。
2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。
根据不同的分类方法,上述单元可以分成以下不同的形式。
3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。
一维单元的网格为一条直线或者曲线。
直线表示由两个节点确定的线性单元。
曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。
杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。
二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。
这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。
二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。
采用薄壳单元通常具有相当好的计算效率。
三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。
在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。
4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。
线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。
这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模。
结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。
Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。
现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。
在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。
其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。
数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。
在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。
这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。
曲率计算公式的改进及应用效果李福强;蒋文杰;蔡涵鹏;蒋首进;胡英【期刊名称】《煤田地质与勘探》【年(卷),期】2013(000)002【摘要】曲率属性近年来在构造识别和解释上得到了迅速的发展和应用,而曲率计算通常使用3×3网格单元对局部曲面作最小二乘法逼近,由 Roberts 推导并给出了具体的计算公式,该方法在求取曲率值时带来了大量噪声。
采用5×5网格单元对局部曲面进行最小二乘法拟合,导出了5×5网格单元求取曲率的计算公式,并对3×3网格、5×5跳点网格、5×5网格求取曲率的结果进行了对比。
结果表明,改进后的曲率计算方法抗噪能力显著增强。
【总页数】4页(P83-86)【作者】李福强;蒋文杰;蔡涵鹏;蒋首进;胡英【作者单位】成都理工大学地球物理学院,四川成都 610059; 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059;中国矿业大学安全工程学院,江苏徐州 221116;成都理工大学地球物理学院,四川成都 610059; 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059;成都理工大学地球物理学院,四川成都 610059; 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059;成都理工大学地球物理学院,四川成都 610059; 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059【正文语种】中文【中图分类】P631【相关文献】1.关于平面曲线曲率计算公式的探讨 [J], 王晓英2.测地曲率计算公式的推导方法 [J], 邢家省;白璐;罗秀华3.曲面正交网下测地曲率和高斯曲率的计算公式的推导方法 [J], 罗秀华;张光照;邢家省4.角膜曲率对人工晶状体屈光度计算公式在高度近视伴后巩膜葡萄肿白内障中的影响研究 [J], 刘桂波;刘文文;冷林;;5.常数量曲率超曲面——高阶平均曲率拉普拉斯计算公式的一个应用 [J], 张廷枋因版权原因,仅展示原文概要,查看原文内容请购买。
利用曲率分析的三维网格质量评估方法江亮亮;杨付正【摘要】In this paper, a novel metric is proposed to evaluate the 3-D mesh quality via analyzing curvature, since the curvature describes well the visual characteristics of a 3-D mesh. Firstly, the curvature at each vertex is estimated, then a curvature matrix is constructed in the neighbourhood of each vertex, and the local distortion at each vertex is measured in terms of the differences between the singular values of the curvature matrix in the original mesh and that of the corresponding matrix in the distorted mesh. Finally, the global distortion is obtained by weighted combination of the local distortions. Experimental results reveal that the proposed metric not only achieves superior performance in prediction accuracy over all the other competing metrics, but also has very good robustness and stability.%由于顶点的曲率能够很好地反映3维网格的视觉特征,该文提出了一种利用曲率分析的3维网格质量评估方法。
浅谈曲面片体的精度控制曲面片体是一种常用的数值计算方法,用于对复杂几何形状进行离散化表示和计算。
在进行曲面片体的构建时,需要考虑其中的精度控制问题,以保证计算结果的准确性。
精度控制是指在构建曲面片体时,通过合理地选择离散化级别和控制参数,使得计算结果能够满足预定的精度要求。
曲面片体的精度一般包括几何精度和拓扑精度两个方面。
几何精度是指曲面片体离散化与原几何形状之间的差异。
一般情况下,离散化精度越高,曲面片体与原几何形状的差异越小。
几何精度的控制可以通过以下几个方面来实现:1. 离散化级别的选择:离散化级别越高,生成的曲面片体的顶点数越多,能够更加精确地表示原几何形状。
但是高级别的离散化会导致计算量增加,所以需要在计算需求和计算资源之间进行权衡。
2. 拓扑形状的选择:对于复杂的几何形状,可以采用更加灵活的曲面片体拓扑结构来提高几何精度。
采用三角形网格曲面片体可更加精确地表示有复杂曲率变化的区域。
3. 控制参数的调整:曲面片体生成算法中通常会涉及一些控制参数,如平滑因子、最大曲率等。
合理调整这些参数可以影响曲面片体的几何精度。
需要根据具体的几何形状和计算需求进行调整。
拓扑精度是指曲面片体拓扑结构与原几何形状的拓扑结构之间的差异。
拓扑精度的控制主要包括以下几个方面:1. 拓扑类型的匹配:曲面片体的拓扑类型需要与原几何形状的拓扑类型保持一致,避免因为拓扑不匹配造成误差。
2. 边界条件的处理:对于存在边界的曲面片体,需要保证边界的连续性。
可以采用调整网格密度或者插值等方法来实现。
3. 拓扑变化的处理:如果原几何形状存在拓扑变化,如拓扑孔洞或者连接等,需要特别处理,以保证曲面片体的拓扑精度。
曲面片体的精度控制对于保证计算结果的准确性至关重要。
在实际应用中,需要根据具体情况进行合理的选择和调整,以达到预设的精度要求。
第17卷第8期2005年8月计算机辅助设计与图形学学报JOURNAL OF COMPU TER 2AIDED DESIGN &COMPU TER GRAPHICSVol 117,No 18Aug 1,2005 收稿日期:2004-03-09;修回日期:2004-07-08 基金项目:国家“八六三”高技术研究发展计划重点项目(2001AA231031,2002AA231021);国家重点基础研究发展规划项目(G1998030608);国家科技攻关计划课题(2001BA904B08);中国科学院知识创新工程前沿研究项目(20006160,20016190(C ))三维网格模型的分割及应用技术综述孙晓鹏1,2) 李 华1)1(中国科学院计算技术研究所智能信息处理重点实验室 北京 100080)2(中国科学院研究生院 北京 100039)(xpsun @ict 1ac 1cn )摘要 对三维网格模型分割的定义、分类和应用情况做了简要回顾,介绍并评价了几种典型的网格模型分割算法,如分水岭算法、基于拓扑和几何信息的分割算法等;同时,对网格分割在几种典型应用中的研究工作进行了分类介绍和评价1最后对三维分割技术今后的发展方向做出展望1关键词 分割Π分解;三维分割;形状特征;网格模型中图法分类号 TP391A Survey of 3D Mesh Model Segmentation and ApplicationSun Xiaopeng 1,2) Li Hua 1)1(Key L aboratory of Intelligent Inf ormation Processi ng ,Instit ute of Com puti ng Technology ,Chi nese Academy of Sciences ,Beiji ng 100080)2(Graduate School of the Chi nese Academy of Sciences ,Beiji ng 100039)Abstract In this paper ,we present a brief summary to 3D mesh model segmentation techniques ,includ 2ing definition ,latest achievements ,classification and application in this field 1Then evaluations on some of typical methods ,such as Watershed ,topological and geometrical !method ,are introduced 1After some ap 2plications are presented ,problems and prospect of the techniques are also discussed 1K ey w ords segmentation Πdecomposition ;3D segmentation ;shape features ;mesh model1 引 言基于三维激光扫描建模方法的数字几何处理技术,继数字声音、数字图像、数字视频之后,已经成为数字媒体技术的第四个浪潮,它需要几何空间内新的数学和算法,如多分辨率问题、子分问题、第二代小波等,而不仅仅是欧氏空间信号处理技术的直接延伸[1]1在三维网格模型已成为建模工作重要方式的今天,如何重用现有网格模型、如何根据新的设计目标修改现有模型,已成为一个重要问题1网格分割问题由此提出,并成为近年的热点研究课题[223]12 网格分割概述三维网格模型分割(简称网格分割),是指根据一定的几何及拓扑特征,将封闭的网格多面体或者可定向的二维流形,依据其表面几何、拓扑特征,分解为一组数目有限、各自具有简单形状意义的、且各自连通的子网格片的工作1该工作被广泛应用于由点云重建网格、网格简化、层次细节模型、几何压缩与传输、交互编辑、纹理映射、网格细分、几何变形、动画对应关系建立、局部区域参数化以及逆向工程中的样条曲面重建等数字几何处理研究工作中[223]1同时,三维网格模型的局部几何拓扑显著性也是对三维网格模型进行检索的一种有效的索引[4]1与网格曲面分割有关、并对其影响巨大的一个早期背景工作是计算几何的凸分割,其目的是把非凸的多面体分解为较小的凸多面体,以促进图形学的绘制和渲染效率1该工作已经有了广泛的研究,但多数算法难以实现和调试,实际应用往往不去分割多面体,而是分割它的边界———多边形网格1多面体网格边界的分割算法有容易实现、复杂形体输出的计算量往往是线性的等优势[5]1另外一个早期背景工作是计算机视觉中的深度图像分割,其处理的深度图像往往具有很简单的行列拓扑结构,而不是任意的,故其分割算法相对简单[6]1三维网格模型的分割算法一般是从上述两类算法推广而来1心理物理学认为:人类对形状进行识别时,部分地基于分割,复杂物体往往被看作简单的基本元素或组件的组合[728]1基于这个原理,Hoffman 等[9]于1984年提出人类对物体的认知过程中,倾向于把最小的负曲率线定义为组成要素的边界线,并据此将物体分割为几个组成要素,即视觉理论的“最小值规则”1由此得到的分割结果称为“有意义的”分割,它是指分割得到的子网格必须具有和其所在应用相关的相对尺寸和组织结构1由于曲率计算方法不同,很多算法给出的有意义的分割结果也存在差异1诸多应用研究[10214]证明,网格模型基于显著性特征的形状分割,是物体识别、分类、匹配和跟踪的基本问题1而有意义的分割对于网格模型显著占优特征的表示和提取、多尺度的存储和传输以及分布式局部处理都是十分有意义的1211 网格分割的发展较早的三维网格分割工作可以追溯到1991年,Vincent 等[15]将图像处理中的分水岭算法推广到任意拓扑连接的3D 曲面网格的分割问题上11992年,Falcidieno 等[16]按照曲率相近的原则,把网格曲面分割为凹面片、凸面片、马鞍面片和平面片11993年,Maillot 等[17]将三角片按法向分组,实现了自动分割;1995年,Hebert 等[18]给出了基于二次拟合曲面片的曲率估计方法,并把区域增长法修改推广应用到任意拓扑连接的网格曲面分割问题中;1995年,Pedersen [19]和1996年Krishnamurthy 等[20]在他们的动画的变形制作过程中,给出了用户交互的分割的方法11997年,Wu 等[3]模拟电场在曲面网格上的分布,给出了基于物理的分割方法;1998年Lee 等[21]和2000年Guskov 等[22]给出了几个对应于简化模型的多分辨率方法;1999年Mangan 等[2]使用分水岭算法实现网格分割,并较好地解决了过分割问题;2001年,Pulla 等[23224]改进了Mangan 的曲率估计工作;1999年,Gregory 等[25]提出一个动画设计中的交互应用,根据用户选择的特征点将网格曲面分割为变形对应片;1999年,Tan 等[26]基于顶点的简化模型建立了用于碰撞检测的、更紧致于网格曲面分割片的层次体包围盒12000年,Rossl 等[27]在逆向工程应用中,在网格曲面上定义了面向曲率信号的数学形态学开闭操作,从而得到去噪后的特征区域骨架,并实现了网格分割;2001年,Yu 等[28]的视觉系统自动将几何场景点云分割为独特的、用于纹理映射和绘制的网格曲面片二叉树;Li 等[29]为了碰撞检测,给出了基于边收缩得到描述几何和拓扑特征的骨架树,然后进行空间扫描自动分割;Sander 等[30]使用区域增长法,按照分割结果趋平、紧凑的原则分割、合并分割片1所有这些方法都是为了使分割的结果便于参数化,即只能产生凸的分割片1由此产生边界不连续的效果12002年,Werghi 等[31]识别三维人体扫描模型的姿态,根据人体局部形状索引进行网格模型的分割;Bischoff 等[32]和Alface 等[33]分别给出了网格分割片光谱在几何压缩和传输中的应用;Levy 等[34]在纹理生成工作中,以指定的法向量的夹角阈值对尖锐边滤波,对保留下来的边应用特征增长算法,最后使用多源Dijkstra 算法扩张分割片实现了网格模型的分割;2003年,Praun 等[35]将零亏格网格曲面投影到球面上,然后把球面投影到正多面体上得到与多面体各面对应的网格模型分割,最后将多面体平展为平面区域以进行参数化,但其结果不是有意义的分割1212 网格分割的分类早期的网格分割算法多为手工分割或者半自动分割,近两年出现了基于自动分割的应用工作1从网格模型的规则性来看,可将分割算法分为规则网格分割、半规则网格分割和任意结构的网格分割算法,根据分割结果可以分为有意义的分割和非有意义的分割1同时,面向不同的应用目标出现了不同的分割策略(见第4节)1目前,网格分割的质量指标主要有三个方面:边界光顺程度、是否有意义、过分割处理效果1多数分8461计算机辅助设计与图形学学报2005年割算法以边界光顺为目标,采用的方法有在三角网格上拟合B样条曲面然后采样[20],逼近边界角点(两个以上分割片的公共顶点)间的直线段[30]等1近年来多数分割算法都追求产生有意义的分割结果1对于过分割的处理方法目前主要有忽略、合并和删除三种方式1多数三维网格分割算法是从二维图像分割的思想出发,对图像分割算法作三维推广得到其三维网格空间的应用1如分水岭算法[2,15,23224,36239]、K2 means算法[40]、Mean2shift算法[41]以及区域增长算法[18,30]等1同样,与图像处理问题类似,光谱压缩[33,42243]、小波变换[31]等频谱信息处理方法在三维网格分割中也有算法1除此之外,同时考虑几何与拓扑信息的分割会产生较好的结果1这方面的工作主要有基于特征角和测地距离度量[44]、基于高斯曲率平均曲率[45247]、基于基本体元[32]、基于Reeb图[48250]、基于骨架提取和拓扑结构扫描[27,29,51252]等使用三维网格曲面形状特征的算法1作为网格模型的基础几何信息,曲率估计方法目前主要为曲面拟合、曲线拟合以及离散曲率等三种1其中曲面拟合法较为健壮,但是计算量大;离散曲率法计算量小,但是除个别算法外都不是很健壮,且无主方向主曲率信息;曲线拟合的曲率估计方法则集中了上述两种方法的优势[3],实际研究中使用较多13 典型三维网格分割算法311 分水岭算法1999年,Mangan等[2]的工作要求输入的是三角网格曲面,以及任何一种可以用来计算每个顶点曲率的附加信息(如曲面法向量等),并针对体数据和网格数据给出了两种曲率计算方法;但是分水岭算法本身和曲率的类型无关1首先,计算每个顶点的曲率(或者其他高度函数),寻找每个局部最小值,并赋予标志,每一个最小值都作为网格曲面的初始分割;然后,开始自下而上或者自上而下地合并分水岭高度低于指定阈值的区域,有时平坦的部分也会得到错误的分割,后处理解决过分割问题1分割为若干简单的、无明确意义的平面或柱面,属于非有意义的分割1Rettmann等[36237]结合测地距离,并针对分水岭算法的过分割给出一个后处理,实现了MRI脑皮层网格曲面的分割12002年,Marty[38]以曲率作为分水岭算法的高度函数,给出了有意义的分割结果1 2003年,Page等[39]的算法同样只分割三角网格,依据最小值规则,他们试图得到网格模型高层描述1其主要贡献为:创建了一个健壮的、对三角网格模型进行分割的贪婪分水岭法;使用局部主曲率定义了一个方向性的、遵循最小值规则的高度图;应用形态学操作,改进了分水岭算法的初始标识集1文献[39]在网格的每一个顶点计算主方向和主曲率,根据曲率阈值,使用贪婪的分水岭算法分割出由最小曲率等高线确定的区域1形态学的开闭操作应用于网格模型每个顶点的k2ring碟状邻域,闭操作会连接空洞,而开操作会消除峡部1创建了标识集后,依据某顶点与其邻接顶点之间的方向,由欧拉公式和已知主曲率计算该顶点在该方向上的法曲率从而得到在该方向上、该顶点与邻接顶点之间的方向曲率高度图,并将其作为方向梯度1对该顶点所在的标识区域使用分水岭算法得到分割片1上述工作表明,分水岭算法在改进高度函数的定义后,可以得到有意义的分割效果1312 基于拓扑信息的网格分割基于几何以及拓扑信息的形状分割方法可以归结为Reeb图[50]、中轴线[52]和Shock图[53254]等1基于拓扑信息的形状特征描述主要有水平集法[55]和基于拓扑持久性的方法[56]11999年,Lazarus等[51]提出从多面体顶点数据集提取轴线结构,在关键点处分割网格的水平集方法,如图1所示1这种轴线结构与定义在网格模型顶点集上的纯量函数关联,称之为水平集图,它能够为变形和动画制作提供整体外形和拓扑信息1图1 人体网格模型及其水平集图文献[51]针对三角剖分的多面体,使用与源点之间的最短路径距离作为水平集函数,基于Dijkstra 算法构造记录水平集图的结构树,其根结点、内部结点和叶子分别表示源点、水平集函数的鞍点和局部最大值点1该工作可以推广到非三角网格模型1 2001年,Li等[29]基于PM算法[57]的边收缩和94618期孙晓鹏等:三维网格模型的分割及应用技术综述空间扫掠,给出了一个有效的、自动的多边形网格分割框架1该工作基于视觉原理,试图将三维物体分割为有视觉意义和物理意义的组件1他们认为三维物体最显著的特征是几何特征和拓扑特征,由此,定义几何函数为扫掠面周长在扫掠结点之间的积分为骨架树中分支的面积;定义拓扑函数为相邻两个扫掠面拓扑差异的符号函数,并定义了基于微分几何和拓扑函数的关键点1文献[29]首先基于PM算法将每条边按照其删除误差函数排序,具有最小函数值的边收缩到边中点,删除其关联的三角形面片;如果某边没有关联任何三角片则指定为骨架边,保持其顶点不变;循环上述过程,得到一个新的、通过抽取给定多边形网格曲面骨架的方法1其次,加入虚拟边连接那些脱节的骨架边,称这些虚拟边以及原有的骨架边组成的树为骨架树,即为扫掠路径1扫掠路径为分段线条1然后,定义骨架树中分支面积(扫掠面周长函数在扫掠结点之间的积分),分支面积较小的首先扫掠,以保证小的、但是重要的分割片被首先抽取出来,以免被其他较大的分割片合并1最后,沿扫掠路径计算网格的几何、拓扑函数的函数值1一旦发现几何函数、拓扑函数的关键点,抽取两个关键点之间的网格曲面得到一个新的分割片1整个过程无需用户干涉12003年,Xiao等[48249]的工作基于人体三维扫描点云的离散Reeb图,给出了三维人体扫描模型的一个拓扑分割方法:通过探测离散Reeb图的关键点,抽取表示身体各部分的拓扑分支,进而进行分割1水平集法具有较高的计算速度和健壮的计算精度1基于拓扑持久性的方法结合代数学,能更准确地计算形状特征,但是没有解决分割问题[55256]1 313 基于实体表示的网格分割2002年,Bischoff等[32]把几何形状分割为表示其粗糙外形的若干椭球的集合,并附加一个独立的网格顶点的采样集合来表示物体的细节1生成的椭球完全填充了物体的内部,采样点就是原始的网格顶点1该方法的步骤如下:Step11首先,在物体原始网格的每一顶点上生成一个椭球,或者随机在物体原始网格上采样选择种子点;每个种子点作为球面上的一个顶点,沿该点的网格法向做球面扩展,直至与网格上另外一个顶点相交;然后沿此两点的垂直方向将球面扩张为最大椭球,直至与第三个网格顶点相交;最后沿此三点平面的法向(即该三点所在平面的柱向)扩张,直至与第四个网格顶点相近,由此得到一个椭球1Step21对生成的椭球进行优化选择,体积最大的椭球首先被选中,以后每一次都将选出对累计体积贡献最大的椭球1如果有若干体积累计贡献相近的椭球同时出现的情况发生,则最小半径最短的椭球被选出1为了简化体积累计贡献的计算,对椭球体素化后计算完全包含在椭球内的体素的数目进行堆排序1发送方传送选出的椭球集合;接收方得到包含基本几何和拓扑信息的椭球集合后,使用Marching Cubes算法或者Shrink2wrapping算法抽取0等值面1显然即使部分椭球丢失,工作依然可以继续:因为椭球是互相重叠的,抽取等值面不影响它们的拓扑关系,而且如果重叠充分,丢失少部分椭球不会影响重要形状信息的重构1如图2所示1图2 以不同数目椭球表示的网格分割Step31在生成很好地逼近原始物体的初始网格后,开始将采样点(即原始网格顶点)插入网格[58]1为了提高最终重构结果的质量,由Marching Cubes算法生成的临时网格顶点在网格原始顶点陆续到来后,最终被删除,因为它们不是物体的原始顶点1314 基于模糊聚类的层次分解2003年,Katz等[44]提出了模糊聚类的层次分解算法,算法处理由粗到精,得到分割片层次树1层次树的根表示整个网格模型S1在每个结点,首先确定需要进一步分割为更精细分割片的数目,然后执行一个k2way分割1如果输入的网格模型S由多个独立网格构成,则分别对每个网格进行同样的操作1分割过程中,算法不强调每个面片必须始终属于特定的分割片1大规模网格模型的分割在其简化模型上进行,然后将分割片投影到原始网格模型上,在不同的尺度下计算分割片之间的精确边界1文献[44]算法优点是:可以对任意拓扑连接的或无拓扑连接的、可定向的网格进行处理;避免了过分割和边界锯齿;考虑测地距离和凸性,使分割边界通过凹度最深的区域,从而得到有意义的分割结果1分割结果适用于压缩和纹理映射14 三维网格分割应用411 三维检索中的网格分割算法在三维VRML数据库中寻找一个与给定物体0561计算机辅助设计与图形学学报2005年相似的模型的应用需求,随着WWW的发展正变得越来越广泛,如计算生物学、CAD、电子商务等1形状描述子和基于特征的表示是实体造型领域中基本的研究问题,它们使对物体的识别和其他处理变得容易1因为相似的物体有着相似的分割,所以分割结构形状描述子可以用于匹配算法1中轴线、骨架等网格模型拓扑结构的形状描述子在三维模型检索中也得到研究,它可以从离散的体数据以及边界表示数据(网格模型)中抽取出来1对于后者,目前还没有精确、有效的结果[39]1但我们相信,依据拓扑信息进行分割得到的分布式形状描述子也是一种值得尝试的三维模型检索思路1 2002年,Bischoff等[32]提出从椭球集合中得到某种统计信息,如椭球半径的平均方差或者标准方差,以及它们的比率,由于这些统计信息在不同的形状修改中都保持不变,作为一种检索鉴别的标识的想法1但是没有严格的理论或者实验结果证明1 2002年,Zuckerberger等[59]在一个拥有388个VRML三维网格模型的数据库上,进行基于分割的变形、简化、检索等三个应用1首先将三维网格模型分割为数目不多的有意义的分割片,然后评价每一个分割片形状,确定它们之间的关系1为每个分割建立属性图,看作是与原模型关联的索引,当数据库中检索到与给定网格模型相似的物体时,只是去比较属性图相似的程度1属性图与其三维模型的关联过程分为三步:(1)分割网格曲面为有限数目的分割片;(2)每一个分割片拟合为基本二次曲面形状;(3)依据邻接分割片的相对尺寸关系进行过分割处理,最后构造网格曲面模型的属性图1对分割片作二次拟合,由此产生检索精确性较差的问题;分割片属性图的比较采用图同构的匹配方法,计算量较大,且是一个很困难的问题;从其实验结果看,有意义的分割显然还不够,出现飞机、灯座等模型被检索为与猫相似的结构;区分坐、立不同的人体模型效果显然也很差等12003年,Dey等[4]基于网格模型的拓扑信息,给出了名为“动力学系统”的形状特征描述方法,并模拟连续形状定义离散网格形状特征1实验表明该算法十分有效地分割二维及三维形状特征1他们还给出了基于此健壮特征分割方法的形状匹配算法1 412 几何压缩传输中的网格分割健壮的网格模型压缩传输方法必须保证即使部分几何信息丢失,剩下的部分至少能够得到一个逼近原始物体的重构,即逼近的质量下降梯度,要大大滞后于信息丢失梯度1无论是层次结构的还是过程表示的多边形网格模型,它们的缺陷是:严格的拓扑信息一致性要求1顶点和面片之间的交叉引用导致即使在传输中丢失了1%的网格数据,也将导致无法从99%的剩余信息里重建网格曲面的任何一部分1对此可以考虑引入高度的冗余信息,即使传输中丢失一定额度的数据,接收方依然可以重构大部分的几何信息1问题的关键是将几何体分割为相互独立的大块信息,如单个点,这样接收方可以在不依赖相关索引信息的情况下,重构流形的邻域关系1为了避免接收方从点云重构曲面的算法变得复杂,早期的健壮传输方法总假设至少整体拓扑信息可以无损地传送1一旦知道了粗糙的形状信息,接收方可以插入一些附加点生成逼近网格12002年,Bischoff等[32,58]在网格分割工作中将每个椭球互相独立地定义自己的几何信息1由于椭球的互相重叠,冗余信息由此产生,因此如果只有很少的椭球丢失,网格曲面的拓扑信息和整体形状不会产生变化1冗余信息不会使存储需求增加,因为每个椭球和三角网格中每个顶点一样,只需要9个存储纯量1其传送过程如下:种子点采样生成椭球集合;传送优化选择的椭球子集;接收方抽取等值面重构逼近网格;以陆续到来的原始网格顶点替换临时网格顶点11996年,Taubin等[42]首先在几何压缩处理中提出光谱压缩,其工作在三维网格模型按如下方式应用傅里叶变换:由任意拓扑结构的网络顶点邻接矩阵及其顶点价数,得到网格Laplacian矩阵的定义及由其特征向量构成的R n空间的正交基底,相对应的特征值即为频率1三维网格顶点的坐标向量在该空间的投影即为该网格模型的几何光谱1网格表面较为光顺的区域即为低频信号12000年,Karni等[43]将几何网格分割片光谱推广到传输问题上1光谱直接应用于定义几何网格的拓扑信息时,会产生伪频率信息1对于大规模的网格,由于在网格顶点数目多于1000时,Laplacian矩阵特征向量的计算几乎难以进行,因此该工作在最小交互前提下,将网格模型分割为有限数目的分割片1该方法有微小的压缩损失,且在分割片边界出现人工算法痕迹12003年,Alface等[33]提出了光谱表示交叠方法:扩张分割片,使分割片之间产生交叠1具体方法是把被分割在其他邻接分割片中的、但与该分割片15618期孙晓鹏等:三维网格模型的分割及应用技术综述邻接的三角片的顶点,按旋转方向加入到该分割片中,从而由于分割片重叠搭接产生冗余信息,并称这种分割片扩展冗余处理的光谱变换为交叠的正交变换1该工作在几何网格压缩和过程传输的应用中明显地改进了Karni等的工作1显然上述工作的基础是良好的网格分割1建立分片独立的基函数将使得分割效果更为理想1413 纹理贴图中的网格分割如果曲面网格的离散化是足够精细的,如细分网格,那么直接对顶点进行纹理绘制就足够了;否则就要把网格模型分割为一组与圆盘同胚的、便于进行参数化的分割片,再对每片非折叠的分割片参数化,最后分割片在纹理空间里拼接起来1网格模型的分割显然会因其局部性而降低纹理映射纹理贴图、网格参数化的扭曲效果1面向纹理的分割算法一般要求满足两个条件:(1)分割片的不连续边界不能出现人工算法痕迹;(2)分割片与圆盘同胚,而且不引入太大的变形就可以参数化1不要求有意义的分割结果12001年,Sander等[30]基于半边折叠的PM算法,使用贪婪的分割片合并方法(区域增长法)对网格模型进行分割1首先将网格模型的每一个面片都看作是独立的分割片,然后每个分割片与其邻接分割片组对、合并1在最小合并计算量的前提下,循环执行分割片对的合并操作,并更新其他待合并分割片的计算量1当计算量超出用户指定的阈值时,停止合并操作1分割片之间的边界为逼近角点间直线段的最短路径,从而减轻了锯齿情况12002年,Levy等[34]将网格模型分割为具有自然形状的分割片,但仍然没有得到有意义的分割结果1为了与圆盘同胚,该算法自动寻找位于网格模型高曲率区域的特征曲线,避免了在平展区域内产生分割片边界,并增长分割片使他们在特征曲线上相交,尽量获得尺寸较大的分割片1414 动画与几何变形中的网格分割影视动画制作中,多个对象间的几何变形特技使用基于网格分割的局部区域预处理1如建立动画区域对应关系,对多个模型进行一致分割,然后在多个模型的对应分割片之间做变形,将提高动画制作的精度和真实性;且每个“Polygon Soup”模型都可用来建立分割片对应;模型间的相似分割有利于保持模型的总体特征1目前,多数的自动对应算法精度较低,手工交互指定对应关系的效率又太低1 1996年,Krishnamurthy等[20]从高密度、非规则、任意拓扑结构的多边形网格出发,手工指定分割边界,构造张量积样条曲面片的动画模型1文献[20]首先在多边形网格的二维投影空间交互选择一个顶点序列,然后自动地将顶点序列关联到网格上最近的顶点上;对于序列中前后两个顶点计算在网格曲面上连接它们的最短路径;对该路径在面片内部进行双三次B样条曲面拟合、光顺、重新采样,得到分割片在两个顶点之间的边界曲线1但计算量的付出依然是非常昂贵的11999年,Gregory等[25]在两个输入的多面体曲面上交互选择多面体顶点,作为一个对应链的端点,对应链上其他顶点通过计算曲面上端点对之间的最短路径上的顶点确定,由此得到这些顶点和边构成的多面体表面网格的连通子图;然后将每一个多面体分割为相同数目的分割片,每个分割片都与圆盘同胚;在分割片之间建立映射、重构、局部加细,完成对应关系的建立;最后插值实现两个多面体之间的变形12002年,Shlafman等[40]的工作不再限制输入网格必须是零亏格或者是二维流形1该算法通过迭代,局部优化面片的归属来改进某些全局函数,因此与图像分割K2means方法相近,属于非层次聚类算法1最终分割片的数目可以由用户预先指定,从而避免了过分割,且适用于动画制作的需求1分割过程的关键在于确认给定的两个面片是否属于同一个分割片1其分割工作是非层次的,因为面片可能会在优化迭代中被调整到另外一个分割片去1该工作表明,基于分割的变形对于保持模型的特征有着重要的意义1局部投影算法能够产生精细的对应区域,且能自动产生有意义的分割片1415 模型简化中的网格分割网格简化是指把给定的一个有n个面片的网格模型处理为另一个保持原始模型特征的、具有较少面片、较大简化Π变形比的新模型1三维网格分割显然可以被看作是一种网格简化,其基本思想是在简化中增加一个预处理过程,先按模型显著特征将其分割为若干分割片,然后在每个分割片内应用简化算法,由此保持了模型的显著特征,如特征边、特征尖锐以及其他精细的细节1例如,把曲率变化剧烈的区域作为分割边界,将曲率变化平缓的区域各自分割开来,就是基于曲率阈值的网格简化方法1网格曲面分割结果的分割片数目在去除过分割后被限制在指定的范围内12561计算机辅助设计与图形学学报2005年。
可视化技术课程报告 ——离散网格上的曲率计算
姓名王娜 学号 201531491 院系信息科学与技术学院 专业软件工程 年级 2015级 1
离散网格上的曲率计算 摘要:离散曲面形状分析主要研究对各种离散形式曲面的进行曲率估算,设计更准确更有效率的曲率估算方法。本文主要综述了离散网格上曲率的多种估算方法,展望了这些问题的发展趋势。 关键字:离散曲面;网格曲面;曲率
1.离散曲面发展背景 随着三维数据采样技术和硬件设备的不断改善,以及图形工业对任意拓扑结构的光滑曲面造型的迫切需求,(这里的“任意拓扑”具有两个方面的含义:一是网格的亏格和相应曲面的拓扑结构的任意的;二是由网格的顶点和边法的特点所构成的图形是任意的。)使得离散曲面日益成为计算机图形学和几何设计邻域的宠儿。因此对离散曲面的估算微分量的研究逐渐成为一个新型课题。 将离散曲面估算得到的高斯曲率应用于离散曲面形状分析工具的设计,更加有效的提取其形状和特征区域,利于特征区域边界计算,区域分割。近年来,更是将离散曲面分析应用到实际生活,在医学领域,通过对大脑皮层的扫描,建立数字化模型,分析曲面形状,来获取大脑发育信息,甚至病变区域位等。成为病变检测和获取脑部发育信息的有力途径。
2.网格曲面上离散曲率的计算 三角网格模型在计算机图形学、计算机辅助几何设计中的使用日益广泛,但 是在三角网格上任意点处得到精确的法向量和曲率十分困难,主要原因是离散三角网格曲面并不是用传统微分几何中熟知的参数方程和隐式方程来定义,而是由 离散点云以及点与点之间的拓扑关系定义的,这样,传统微分几何中一阶微分和 二阶微分的计算不能简单地应用于离散三角网格曲面上。 一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量。随着三维扫描技术的发展和逆向工程的兴起,三角网格曲面日益成为三维图形的一种通用表示方法,在计算机图形学,计算机辅助几 2
何设计中的使用日益广泛。但是由于三角网格曲面是由离散点云以及点与点之间的拓扑关系定义的,缺少曲面确切的解析表示,所以不再适用传统的解析曲面的曲率计算方法。 众所周知,曲率是曲面曲线的重要不变量,是传统微分几何中的重要基础。同样,三角网格的离散曲率也是离散曲面上应用的基础和前提。例如网格变形[1],网格曲面的特征提取,网格光顺[2],网格简化[3],模型分块[4]等等。在这些应用中,通常需要首先估计离散曲面上某点的法向量和曲率,然后根据这些法向量或曲率定义一个范数,作为一个优化的标准,利用这个关于曲率泛函的优化标准再进行离散网格曲面的进一步处理。例如,在网格简化应用中,曲率的估计对确保优化三角剖分起着至关重要的作用。在曲面建模中,许多技术是用来由原始粗糙网格来创建光滑曲面的,离散曲率是当前近似情形的重要度量。精确的曲率和法向量也是网格去噪问题的基础。好的平均曲率和法向量估计是无扭曲曲面光顺技术的关键。在计算机图形学、图像分析处理和几何建模等研究领域中,如自由曲面、反求工程、图像识别、三维医疗图像重构以及人脸识别等,经常需要计算主曲率、平均曲率和高斯曲率等值,用于折痕、棱边、隆起、沟壑等关键特征的提取、噪声的过滤和曲面的修补等。这样,三角网格曲面上离散曲率的各种估计方法应运而生。 对于给定的描述一些光滑曲面的三角网格,有许多估算顶点法向量和曲率的方法"曲率估计算法多种多样,例如,利用欧拉公式,采用最小二乘的估算方法(Chenandschmitt,1992)[5];曲率张量的估计方法(Taubin,1995)[6];法曲率积分公式的方法(Wa1LanabeandBelyaev,2001)[7];曲率算子的方法(Meyer,2002)[8]估计顶点的法曲率,权值的选取在不断革新,从最初Henri Gouraud(1971)的等加权平均,到角度权值以及面积权值,而后Max(l999)给出的与角度和边长度相关的新权值,Sheng一GwoChen(2004)等又提出选择点到相邻三角形重心距离平方的倒数为权值。 除此之外,还有比较不同算法估算精度的文章,Tatiana(2003)对三角网格上高斯曲率和平均曲率不同的估计方法作比较,ShuangthuangJin(2003)等对三角网格上点法向量的不同估计方法的比较。还有一些网格应用的文章,Dyn和Hormann不但给出新的高斯曲率和平均曲率估算定义,还应用估算的曲率定义范 3
数,进行网格简化。 本文主要综述了较为基础的Chen 和Schmitt的方法,以及介绍了罗良峰和齐宝明针对该问题提出的基于Taubin方法的改进,进行离散三角网格的曲率计算。
2.1 Chen 和 Schmitt 方法 三角网格模型一般情况下可以由一对线性表表示,M=(V,F);其中,表示顶点集,表示三角片集。如下图三角网格模型:
三角片fk的法向量气的计算式如下 其中,表示由顶点指向顶点的边向量;表示由顶点指向的边向量。我们称1-环邻域是与点相邻的三角形集合。图中除顶点外的其它顶
点组成的集合记为。如果顶点属于,则是的相邻点。中顶点个数称为其顶点的度,记为。包含的三角形片集合记为。如果三角形片记属于,记为,记为三角形片的面积。包含点的三角片的面积之和记为。 4
离散三角网格上法向量和法曲率也有一般的定义方法,这些几何估算的准确度对高斯曲率和平均曲率的准确度影响很大。对于离散三角网格曲面M=(V,F),
任意点的法向量一般可定义为1-环三角形某些几何的加权和。最简单的加权方法1-环三角形的法向量平均值,定义如下:
Taubin给出面积加权和的定义:
对于三角网格上任意点,法曲率通常使用公式 得到两个主曲率(k1,k2)后,进而计算平均曲率(H=(k1+k2)/2)和高斯曲率(K=k1*k2)。 Chen和Schmitt通过欧拉公式,给出了一种估计算法。他们的主要思想是
在切平面上选择合适的坐标。由欧拉公式可得
是选择的坐标系与主方向的夹角,上式可重写为:
C1,C2,C3是常数,是切向量与第一坐标向量r1的夹角。然后,他们选择,通过最小二乘的方法估计常数C1,C2,C3,
其中,是与的夹角。 5
曲率k1,k2可以由常数C1,C2,C3,和以下关系求得 主方向可以由下列公式计算获得 其中,{r1,r2}是选择的坐标系。 仿真实现了三角网格上的曲率计算,便于实验的效果观察,比较了三角网格上和矩形网格上的最大主曲率计算结果,如下图显示:
三角网格与矩形网格上的曲率计算 6
2.2改进的Taubin方法 罗良峰应用重心加权和新的法曲率估计方法改进原始的Taubin方法,使用重心权重相比于使用面积加权的方式而言,更加充分的考虑到了三角网格形状多实验结果的影响。但是估算法向量和法曲率这两个几何量,仍然是改进后的Taubin方法对于三角网格中任意一点曲率计算的首要任务。采用重心加权和的方法估计法向量,利用任意一点的1-环三角面片的法向信息来估计曲率,得到局部曲率张量矩阵,此后对该矩阵进行Householder变换和Givens变换,计算出对应的特征矩阵和特征向量,最后通过主曲率与矩阵特征值的关系得出两个主曲率,进而得到平均曲率和高斯曲率。 将改进Taubin方法与原始Taubin方法和Meyer方法作了比较。对于隐式曲面和参数曲面,给出详细的误差分析;对于自由曲面,根据曲率确定三角网格顶点颜色,从视觉上分析曲率估算结果。 使用多组测试用例,不论是单位球面的测试用例、环面的测试用例还是自由三角网格曲面测试用例,测试结果均表明改进的Taubin方法无论是在稳定性上,还是在精确度上,较原始Taubin方法都有明显改善。 齐宝明采用面积质心夹角的三角网格顶点向量法和三角片质心权值来改进Taubin离散曲率方法,同样忽略了三角面片的形状。但是如果只使用质心或者面积夹角的估计方法,也不能反应三角面片形状的影响。所以作者提出了新的加权方法,面积质心夹角的三角网格顶点向量法。相比较重心加权和面积夹角加权,更加明确的反映了三角片形状的影响。 不论是哪一种离散网格曲率计算方式,都相较于未改进之前的方法有很大的提高,通过误差分析,很明显,同一物体的测量数据重建而得到的两个三角网格中,顶点密度不同,曲率计算亦不同。顶点密度越大,计算结果越精密。可以得出曲率误差是和点的密度以及此点的曲面弯曲程度是有密切关系的。误差分析,可以直接找出误差最大点,而不必计算每个点的曲率误差。对误差最大点进行分析,减小误差,提高算法精度。 7
3.发展趋势 未来的工作,除了进一步提高计算精度以及算法的稳定性和适应性外,在该领域里有许多重要方向值得研究探索。如网格光顺、网格简化、网格分割、特征识别等等,这些方向都是以离散网格上曲率估计为基础而展开的。在不同场合,计算曲率的方法效率会有所不同,并非某一个特定的方法会占有绝对优势,寻找一种更加快速、准确地对海量数据的离散曲面的曲率计算,将成为这个研究课题不断发展的源源动力。 8
参考文献: [1] Warren J, Schaefer S, Hirani A N, Desbrun M.Barycentric coordinates for convexsets. Technical report, Rice University, 2003. [2] Taubin G. A signal processing approach to fair surface design. In:Proc. of theSIGGRAPH' 95. New York: ACM Press, 1995. p.351-358. [3] Garland M, Heckbert P S. Surface simplification using quadric error metrics[A].In:Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles,1997. p.209-216. [4] G.Lavoue, F.Dupont and A.Baskurt, Constant. Curvature Region Decomposition of3D-Meshes by a Mixed. Approach Vertex-Triangle. Journal of WSCG, 2004, vol. 12, no.2, p. 245-252. [5]Chen,X.,Sehmitt,F.,1992.IntrinsieSurfaeePropertiesfromSurfaeeTrian即lation. ProeeedingsoftheEuroPeanConfereneeonComPuterVersion,P.739一743. [6]Taubin,G.,1995.EstimatingtheTensorofCurvatureofaSurfaeefromaPolyhedral ApproximationProeeedingsoftheFifthInternationalConfereneeonComputerVision, P.902一907. [7]K.WatanabeandA.GBelyaev.Deteetionofsalieuteurvaturefeaturesonpolygonal surfaees.In:EUROGRAPHICS2001,volume20,2001. [8]MeyerM,DesbrunM,SehloderP,BarrAH.Diseretedifferential一geometryoperatorsfor triangulatedZ,anifolds.In:VisualizationandMathematies,Berlin,Ge伽any,2002, P.52一58. [8]罗良峰.离散三角网格上的法向量和曲率估计[ D].大连:大连理工大学.硕士学位论文, 2007 [9]齐宝明.三角网格离散曲率估计和Taubin方法改进[D].大连:大连理工大学硕士学位论文,2008 [10]熊芳,方逵,欧新良.离散曲面高斯曲率估算的研究[J].长沙大学学报, 2010,2VOL.24:53-55.