锡须的成长机制
- 格式:pdf
- 大小:870.83 KB
- 文档页数:12
锡须标准
锡须是一种从元器件和接头的锡镀层表面生长出来的细长形状的锡单晶,直径通常在0.3-10um之间,典型值为1-3um,长度在1-1000um之间,锡须有不同的形状,如针状、小丘状、柱状、花状、发散状等。
锡须的生成机理主要与热力学和电化学因素有关。
在热力学方面,锡须的形成是锡金属在一定温度下的自然生长过程。
在电化学方面,锡须的形成是锡金属在一定电位差下的电化学行为,当锡金属表面存在电位差时,会产生电化学腐蚀,从而形成锡须。
锡须的危害主要表现在电气短路、机械卡死、接触不良等方面。
如果这些导电的锡须长得太长,可能连到其他线路上,并导致电气短路;断裂后落在某些移动及光学器件之间可能产生弧光放电,烧坏电气元件等。
因此,针对锡须的生成和危害,可以采取以下预防措施:
1. 不要使用亮锡,最好使用雾锡。
2. 使用较厚的雾锡镀层(8-10um),以抑制应力的释放。
3. 电镀后24小时内退火(150℃/2hrs或180℃/lhrs),以减少锡层的应力。
4. 电镀后24小时内回流焊接,作用同退火。
5. 用N或Ag做阻挡层(1.3-2um),防止Cu扩散形成Cu6Sn5的IMC。
錫鬚生長試驗報告
一﹑試驗目的﹕
檢驗產品在試驗后是否有錫鬚產生﹐以確認產品的可靠性。
二﹑試驗樣品﹕
DIP產品
三﹑試驗樣品周期﹕
周期為﹕2028W
四﹑試驗樣品數量﹕
5PCS
五﹑試驗材料﹕
錫材(100%BAR)
六﹑試驗項目及條件﹕
1﹑高溫試驗﹕溫度﹕125±2℃﹐時間﹕1000小時參照(GB2423.2-89)
2﹑恆定濕熱試驗﹕溫度﹕85℃±2℃﹐濕度﹕85%±2%RH﹐時間﹕1000小時參照(GB2423.3-93) 3﹑熱沖擊試驗﹕最低溫度﹕-45℃最高溫度﹕85℃﹐保持時間﹕10分鐘﹐循環次數﹕1000次參照(GB2423.22-87)
七﹑試驗設備﹕
1﹑高溫試驗﹕高溫箱(PHH-101)
2﹑恆定濕熱試驗﹕高低溫交變潮濕試驗箱(ESL-04AGP)
3﹑熱沖擊試驗﹕溫試沖擊試驗箱(TSG-70H-W)
4﹑影像式精密測繪儀18-230倍
八﹑檢驗項目﹕
1﹑試驗前用影像式精密測繪儀18-230倍觀察焊點
2﹑試驗后用影像式精密測繪儀18-230倍觀察焊點
九﹑檢驗環境要求及標准﹕
1﹑環境要求﹕溫度﹕15~~30度﹔濕度45~~45%RH,
2﹑錫鬚標准﹕用影像式精密測繪儀18-230倍觀察焊點錫鬚小于600u"(約為最小PIN距1.27mm 的1/2)
十﹑試驗前后圖片如附件﹕
用影像式精密測繪儀18-230倍觀察焊點無錫錫鬚產生
DIP產品高溫試驗前﹑高溫試驗后無錫鬚產生
DIP產品恆定濕熱試驗試驗前﹑定濕熱試驗試驗后無錫鬚產生
十一﹑試驗結論﹕
合格
DIP產品溫度沖擊試驗前﹑溫度沖擊試驗后無錫鬚產生。
减轻镀锡表面的锡须生长使用纯锡铅表面处理时,可能会生长锡须,这是值得关注的问题之一。
近年来,人们已经做了大量的测试和分析工作,对于锡须在各种不同环境条件下的生长成因,有更多了解。
本文将讨论,在电子设备工程联合委员会(JEDEC)标准推荐的三个加速测试期间,锡须生长的机制。
作者:Sheila Chopin、Peng Su博士人们对减轻纯锡表面处理中生长锡须的现象已经有了广泛的研究。
这些研究数据说明,形成锡须的主要原因是表面的应力增大,它受到由各种因素的影响。
举个例子,电镀过程会因为颗粒大小、厚薄和污染物水平不同而影响镀锡表面的应力状态。
像温度和湿度这样的应用条件,也会诱导微观结构发生某种改变,从而影响锡须的生长速度。
本文讨论在电子设备工程联合委员会(JEDEC)推荐的三个测试条件下进行的测试。
在一定程度上,这些测试代表一些常见的实地应用条件。
在测试结果的基础上研制减轻锡须生长的技术,可以有效地用于现实环境。
加速测试JEDEC推荐的测试条件摘要列于表1。
对于空气对空气温度循环(AATC)测试,允许的温度范围是-40℃到85℃;但本文中所有研究使用的温度范围是-55℃到85℃。
在热循环测试中,导致锡须生长的原因,是三个测试中最简单的。
因为锡和引脚结构材料之间的热膨胀系数(CTE)不同,温度变化会在锡表面产生热应力。
由于使用的温度范围较宽,在一个很短的时间内,在表面中会产生很高的热应力,因而忽视由于速度较慢的机制而产生的应力。
在确定热应力大小时,锡颗粒的结晶方向是另一个重要因素。
锡晶格是各向异性的,这意味着,在不同的结晶面,或者沿着不同结晶方向,机械特性(如杨氏模量和热膨胀系数)有可能会发生变化。
对于镀锡表面,因为它通常由一层晶粒组成,我们需要关注只是水平方向元件的膨胀系数(CTE)和膨胀量(E)。
图1是这个模型的简化一维视图。
图1说明晶粒方向影响的一维视图。
当晶粒1和晶粒2的膨胀量和膨胀系数数值不同时,两种晶粒之间的应力就可能不同,即使它们的热应变相同也是如此。
锡须产生机理
1、内应力:一旦焊料或表面处理层中掺入有机杂质而影响晶格正常发展,即将会存在压缩性的内应力(Comp-ressive Inner Stress)。
锡须的发生其实就是一种“释放应力”的行为。
即应力是生须的主要原因。
如图:有机物参与电镀锡层中,造成彼此倾轧排挤的内应力。
有机物杂质越多,内在压缩应力越大,也就越容易生须。
2、晶格结构:当晶粒尺寸介于2-5mm之间时,结构较稳定,生须现象较少。
但当晶粒尺寸缩小到1mm以下时,其结构中的内应力开始累积,而使生须的潜力大为增加。
在这种内应力的彼此挤压下,会出现再结晶效应,进而逐渐产生锡须。
电镀锡过程中,如果锡原子沉积的表面已经形成螺型位错,则其后的锡原子只能按位错线的方向着落在有缺陷的晶格上,这种潜在性的内应力就是锡须产生的主要原因。
锡须常识目录第一部分:锡须图片第二部分:什么是锡须?第三部分:锡须的形成原因第四部分:抑制锡须的方法第五部分:关于锡须的其他信息第一部分:锡须图片第二部分:什么是锡须?*要了解锡须,先对晶须有个概念:1) 晶须是一种头发状的晶体,它能从固体物质的表面直接生长出来,形状类似胡须,其直径是微米级,其长度达到数毫米级.2) 晶须的危害是:诱发电子线路短路,打火,噪音等问题.3) 晶须的生长速度随着温度的升高而加快,随着湿度的增加而加快.*锡须,也就是锡的晶须:1)它首先具备了晶须的主要特性.2)锡须主要从电镀层开始生长,尤其在铜或者黄铜表面镀亮面锡的镀层最为敏感.3)从晶须的历史来看发现只要添加微量的铅就可以抑制晶须的产生随着RoHS法令实施日期的日益临近从而就使得这个30年前的老问题再次浮出了水面主要针对在无铅焊接,引脚镀层采用纯锡工艺第三部分:锡须的形成原因*锡须形成的原因是应力,具体又可分为以下两种:1) 电镀后的残留应力为使焊点有光亮的外观,在引脚的电镀液中加入光亮剂,光亮剂的主要成分是碳和氢,电镀时,碳和氢,会附着在引脚上,导致镀层因材料的不匹配而引发内力的存在,将锡由内向外推,变成我们所说的锡须.2) 介金属化合物生成所引起的应力在储存的阶段中,锡与铜反应生成介金属化合物,镀层表面会因为氧化而形成氧化锡.由于介金属化合物与锡的密度/热膨胀系数等等参数都不一样,而氧化锡的生成会抑制应力的释放,所以会有一种由内而外的应力将锡向外推,变成我们所说的锡须.第四部分:抑制锡须的方法1) 采用雾面锡,镀液中不填加光亮剂2) 退火: 把电镀完的元件拿去烘烤一般要求150第五部分: 关于锡须的其他信息1) 锡须的接收标准:在500倍放大镜下观察,锡须<50um可接收.2) 当斜率>20高温情况下不会长锡须. 4) 晶须发现条件:一般来说+8585%但在室温因此用原来的试验方法很难判断有没有因晶须导致的故障。
一、什么是锡须生长锡须生长是在锡的表面按照锡的结晶形式生长的锡的可以导电的须状物,这种锡须的生长尤其是电镀锡比较明显。
锡须一般可以长到几个毫米,但是个别的可以长到10毫米,直径可以是几个微米,10个微米的比较少见。
美国宇航局太空飞行中心的一个电磁继电器发生的一次短路现象二、产生的机理有各种说法,但是比较主要的是应力产生机制。
对影响锡须生长的因素主要有:温度、湿度、热循环、应力、电场等温度循环对锡须的生长有很大的促进作用。
生长的温度在50℃最快,在20~25℃也可以生长,但一般认为在150℃就会结束生长。
三、可能产生的影响可能引起稳定的短路、瞬态短路(锡须熔断)、电弧、产生多于物(主要发生在密闭的腔体内,例如继电器、混合集成电路等)、使元件脱落,使电子元件的电性能和机械性能下降。
四、降低锡须生长引起的风险的方法:1、浸焊这种方式是在纯锡的表层浸一层锡铅的焊料,可以减缓纯锡的锡须生长。
2、给镀层覆盖一层物质锡须还可能生长。
3、剥掉原来的纯锡层后重新电镀一层锡铅对我公司生产的产品如果一定要进行端头的锡铅化我想到的有如下的方法:1、采购端头只有银钯的产品后自己进行镍和锡铅的电镀困难是采购的周期要长,现在有厂家可以生产,但是产品的容量范围没有现在的宽。
2、将现有的产品进行浸焊,这种方法的风险比较大,而且很容易引进缺陷。
3、直接对现有产品进行电镀,这种方法的缺点是容易引起损耗、绝缘电阻的降低。
其中2、3这两种方法生产的产品尺寸不容易控制,容易做大。
说明:锡须的生长和纯锡的东西在低温下的粉碎是两个概念,纯锡在低温下的粉碎是因为其发生相变而引起的,是整块金属的变化;锡须的生长是单个晶粒由于条件的允许而引起的生长,是部分金属的变化。
以下是美国军用的失效案例1. Military Airplane:G. Davy,, Northrop Grumman Electronic Systems Technical Article, October2002军用飞机2. Patriot Missile:Suspected tin whisker related problems (Fall 2000)爱国者导弹3. Phoenix Air to Air Missile:L. Corbid, "Constraints on the Use of Tin Plate in Miniature ElectronicCircuits", Proceedings 3rd International SAMPE Electronics Conference, pp. 773-779, June 20-22, 1989.Phoenix 空空导弹4. F-15 Radar: B. Nordwall, "Air Force Links Radar Problems to Growth of Tin Whiskers", AviationWeek and Space Technology, June, 20, 1986, pp. 65-70F-15 雷达5. U.S. Missile Program:J. Richardson, and B. Lasley, "Tin Whisker Initiated Vacuum Metal Arcingin Spacecraft Electronics," Proceedings 1992 Government Microcircuit Applications Conference, Vol.XVIII, pp. 119 - 122, November 10 - 12, 1992.导弹的一个部位(不会翻译)因为锡须产生了电弧(发生在电路中)6. U.S. Missile Program:K Heutel and R. Vetter, "Problem Notification: Tin Whisker growth inelectronic assemblies", Feb. 19, 1988, memorandum锡铅合金端头的产品主要应用在MIL-PRF-55681和高可靠领域。
电子封装锡和锡合金表面晶须标准研究发布时间:2022-05-09T08:14:17.102Z 来源:《新型城镇化》2022年9期作者:杨雅丽曲乐[导读] 本文简述了晶须的来源,形成机理及抑制措施,并结合JEDEC的标准对锡晶须标准制定进行指导。
珠海格力电器股份有限公司广东珠海 519000摘要:在当前电子封装行业,锡和锡合金易于产生锡须致使电器发生故障是一直以来困扰的难题,随着环保要求的提高,在锡中添加铅可以抑制锡晶须的生长已经不再是解决这一难题的绝佳方案,因此对锡晶须标准的研究成为必不可少的课题。
本文简述了晶须的来源,形成机理及抑制措施,并结合JEDEC的标准对锡晶须标准制定进行指导。
1引言锡和锡合金由于本身物理特性,易于在表面形成晶须致使电器发生故障,这一现象严重阻碍了电子封装行业的发展,尤其在航空航天、军事等高精端应用场景中,这一难题始终悬而未决。
而在实际应用过程中,针对晶须建立相关标准对于评价其使用性能尤为重要,因此对晶须的标准研究也是电子封装中必不可少的课题。
本文结合JESD22-A121A和JESD201A标准,即锡和锡合金表面晶须生长测量的测试方法、锡和锡合金表面涂层的锡须灵敏度环境验收要求,深入对锡晶须标准分析研究。
2晶须来源晶须是指一种呈纤维状的晶体,均匀的横截面积是其主要特征。
锡晶须则是在锡或锡合金表面自发生长出的晶须。
电子器件使用过程中晶须的存在造成相邻导体间短路、晶须短路导致金属蒸发放电等。
晶须的形成机理一直是业界研究的重点也是难点问题,目前尚无公认一致的结论。
目前提出的生长机制主要有位错机制、再结晶机制、氧化膜破裂(COT)机制、金属间化合物氧化分解机制、氢致晶须生长机制5种。
基于对晶须生长机制的探讨研究,提出了合金化、去应力退火[1]、中间隔离层、镀后重熔[2]、有机涂层、电镀工艺改进等几种锡晶须的抑制措施。
尽管目前除添加铅元素外还发现一些抑制锡晶须的措施,但仍无可量产并实现产业性抑制晶须的措施,锡晶须的产生无可避免,因此亟需建立对电子元器件中锡晶须的标准要求。