高三数学直线的方程
- 格式:pdf
- 大小:1.08 MB
- 文档页数:8
高三数学平面解析几何部分直线的方程知识精讲一. 本周教学内容:平面解析几何部分:直线的方程二. 教学目的:掌握直线方程的几种形式及其相关应用三. 教学重点、难点: 重点:(1)直线的斜率与倾斜角;(2)直线方程的几种形式及求法;(3)两直线的位置关系;(4)点到直线的距离;(5)有关对称问题. 难点:(1)注意斜率与倾斜角的区别:每条直线都有倾斜角,其X 围是0°≤θ<180°,但并不是每条直线都有斜率.(2)直线方程的五种形式之间要熟练转化,在使用直线方程时,要注意方程表示直线的“局限性”.(3)判断两条直线平行或垂直时,不要忘记考虑两条直线中有一条或两条直线均无斜率的情形.(4)在运用公式=d 求平行直线间的距离时,一定要把,x y 项的系数化成相等.(5)中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具,解析几何中的中心对称和轴对称问题最终都归结为关于点的对称问题加以解决.四. 知识分析: 【知识梳理】1. 直线的斜率与倾斜角(1)已知两点1122(,),(,)P x y Q x y ,如果12≠x x ,那么直线PQ 的斜率为2121-=-y y k x x 。
(2)在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的角度,称为这条直线的倾斜角,由定义可知倾斜角的取值X 围是[)0,π。
2. 两条直线平行或垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//⇔=l l k k 。
(2)两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121⊥⇔⋅=-l l k k 。
3. 直线的点斜式方程如果直线l 经过点000(,)P x y ,且斜率为k ,则把方程00()-=-y y k x x 叫做直线的点斜式方程。
高三数学直线方程试题1.若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(其中e为自然对数的底数),根据你的数学知识,推断h(x)与φ(x)间的隔离直线方程为________.【答案】y=2x-e【解析】容易观察到h(x)和φ(x)有公共点(,e),又(x-)2≥0,即x2≥2x-e,所以猜想h(x)和φ(x)间的隔离直线为y=2x-e,下面只需证明2eln x≤2x-e恒成立即可,构造函数λ(x)=2eln x-2x+e.由于λ′(x)= (x>0),即函数λ(x)在区间(0,)上递增,在(,+∞)上递减,故λ(x)≤λ()=0,即2eln x-2x+e≤0,得2eln x≤2x-e.故猜想成立,所以两函数间的隔离直线方程为y=2x-e.2.已知点A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.【答案】3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.作x轴3.(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1的垂线交椭圆于A、A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【答案】(1)(2)【解析】(1)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(2)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求椭圆方程为.4.直线2x﹣3y+1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)【答案】D【解析】由题意可得:直线2x﹣3y+1=0的斜率为k=,所以直线2x﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D.5.已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.(1)求与圆C相切,且与直线l垂直的直线方程;(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点B的坐标.【答案】(1)y=-2x±3(2)【解析】(1)设所求直线方程为y=-2x+b,即2x+y-b=0,∵直线与圆相切,∴=3,得b=±3,∴所求直线方程为y=-2x±3.(2)(解法1)假设存在这样的点B(t,0),当P为圆C与x轴左交点(-3,0)时,=;当P为圆C与x轴右交点(3,0)时,=,依题意,=,解得,t=-5(舍去),或t=-.下面证明点B对于圆C上任一点P,都有为一常数.设P(x,y),则y2=9-x2,∴=,从而=为常数.(解法2)假设存在这样的点B(t,0),使得为常数λ,则PB2=λ2PA2,∴(x-t)2+y2=λ2[(x+5)2+y2],将y2=9-x2代入得,x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2),即2(5λ2+t)x+34λ2-t2-9=0对x∈[-3,3]恒成立,∴解得(舍去),所以存在点B对于圆C上任一点P,都有为常数6.已知点P1(2,3)、P2(-4,5)和A(-1,2),求过点A且与点P1、P2距离相等的直线方程.【答案】y-2=-(x+1)或x=-1.【解析】(解法1)设所求直线方程为y-2=k(x+1),即kx-y+k+2=0.由点P1、P2到直线的距离相等得.化简得,则有3k-1=-3k-3或3k-1=3k+3,解得k=-或方程无解.方程无解表明这样的k不存在,但过点A,所以直线方程为x=-1,它与P1、P2的距离都是3.∴所求直线方程为y-2=- (x+1)或x=-1.(解法2)设所求直线为l,由于l过点A且与P1、P2距离相等,所以l有两种情况,如下图:①当P1、P2在l的同侧时,有l∥P1P2,此时可求得l的方程为y-2= (x+1),即y-2=-(x+1);②当P1、P2在l的异侧时,l必过P1、P2的中点(-1,4),此时l的方程为x=-1.∴所求直线的方程为y-2=-(x+1)或x=-1.7.直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.【答案】2x+11y+16=0【解析】在直线l1上取一点A(2,0),又设点A关于直线l的对称点为B(x,y),则解得B .又l1与l2的交点为M(3,-2),故由两点式可求得直线l2的方程为2x+11y+16=0.8.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.【答案】3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.9.过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.【答案】x+4y-4=0.【解析】(解法1)由于过点M(0,1)且与x轴垂直的直线显然不合题意,故可设所求直线方程为y=kx+1,与已知两条直线l1、l2分别交于A、B两点,联立方程组xA=,x B =,∵点M平分线段AB,∴xA+xB=2xM,即有+=0,解得k=-.故所求的直线方程为x+4y-4=0.(解法2)设所求的直线与已知两条直线l1、l2分别交于A、B两点,∵点B在直线l2:2x+y-8=0上,∴设B(t,8-2t),由于M(0,1)是线段AB的中点,∴根据中点坐标公式得A(-t,2t-6),而A点在直线l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解之得t=4,∴B(4,0).故所求直线方程为x+4y-4=0.10.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【答案】(1)x+y+2=0(2)a≤-1.【解析】(1)当直线过原点时,该直线在x轴和y轴上的截距均为零,∴a=2,即方程为3x+y=0符合题意.当直线不过原点时,由截距存在且均不为0,∴=a-2,即a+1=1,∴a=0,即方程为x+y+2=0.(2)(解法1)将l的方程化为y=-(a+1)x+a-2,∴∴a≤-1.综上可知a的取值范围是a≤-1.(解法2)将l的方程化为(x+y+2)+a(x-1)=0(a∈R).它表示过l1:x+y+2=0与l2:x-1=0交点(1,-3)的直线系(不包括x=1).由图象可知l的斜率-(a+1)≥0,即a≤-1时,直线l不经过第二象限.11.不论m取何值,直线(m-1)x-y+2m+1=0恒过定点________.【答案】(-2,3)【解析】把直线方程(m-1)x-y+2m+1=0,整理得(x+2)m-(x+y-1)=0,则得12.经过直线x+2y-3=0与2x-y-1=0的交点且和点(0,1)的距离等于1的直线方程为.【答案】x-1=0【解析】设所求直线的方程为(x+2y-3)+λ(2x-y-1)=0,即(1+2λ)x+(2-λ)y-3-λ=0,由于点(0,1)到该直线的距离为1,即1==,所以|2λ+1|=,解得λ=2.故所求直线方程为(x+2y-3)+2(2x-y-1)=0,即x-1=0.13.若直线ax+by+c=0经过第一、二、三象限,则有()A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0【答案】D【解析】易知直线的斜率存在,将直线ax+by+c=0变形为y=-x-,如图所示.数形结合可知即ab<0,bc<0.14.已知△ABC三顶点坐标A(1,2),B(3,6),C(5,2),M为AB中点,N为AC中点,则直线MN的方程为()A.2x+y-8=0B.2x-y+8=0C.2x+y-12=0D.2x-y-12=0【答案】A【解析】由中点坐标公式可得M(2,4),N(3,2),再由两点式可得直线MN的方程为=,即2x+y-8=0.15.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为()A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0【答案】A【解析】由题意知直线l与直线PQ垂直,所以kl=-=1,又因为直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.16.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.【答案】x+2y-5=0或x-6y+11=0【解析】解:解方程组得交点P(1,2).(1)若点A,B在直线l的同侧,则l∥AB.而kAB==-,由点斜式得直线l的方程为y-2=- (x-1),即x+2y-5=0;(2)若点A,B分别在直线l的异侧,则直线l经过线段AB的中点,由两点式得直线l的方程为=,即x-6y+11=0.综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.17.已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值为________.【答案】2【解析】依题意得k==2,解得a=2.AB18.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为________.【答案】x+y-2=0【解析】当OP与所求直线垂直时面积之差最大,故所求直线方程为x+y-2=0.19.若直线与直线垂直,则的值是()A.或B.或C.或D.或1【答案】B【解析】直线的斜率乘积等于-1,或根据求解。
g3.1075 直线与直线的位置关系一、知识要点(一)平面内两条直线的位置关系有三种:重合、平行、相交。
(二)点到直线的距离、直线与直线的距离1、点P(x 0,y 0)到直线Ax+By+C=0的距离为:d=)0(222200≠++++B A B A CBy Ax2、直线l 1∥l 2,且其方程分别为l 1:Ax+By+C 1=0,l 2:Ax+By+C 2=0,则l 1与l 2的距离为:d=)0(222221≠++-B A B A C C(三)两条直线的交角公式若直线l 1的斜率为k 1,l 2的斜率为k 2,则(1)直线l 1到l 2的角满足:tan )1(1212112-≠+-=k k k k k k θ. (2) 直线l 1与直线l 2所成的角(简称夹角)θ满足:tan )1(1212112-≠+-=k k k k k k θ 说明:(1)当l 1和l 2的斜率都不存在时,所成的角为00;(2)当l 1与l 2的斜率有一个存在时,可画图、观察,根据另一条直线的斜率得出所求的角;(3)l 1到l 2的角1θ不同于l 2到l 1的角2θ,它们满足:πθθ=+21.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。
二、考试要求掌握两条直线平行与垂直的条件,能够根据直线的方程判定两直线的位置关系;会求两条相交直线的夹角和交点;掌握点到直线的距离公式。
三、基本训练1、点(4,a )到直线4x -3y =1的距离不大于3,则实数a 的取值范围是………………………( )(A )[2,12] (B )[1,12] (C )[0,10] (D )[-1,9]2、两直线的斜率相等是两直线平行的: ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3设方程f(x, y)=0表示定直线,M(x 0, y 0)是直线L 外的定点,则方程f(x, y)-f(x 0, y 0)=0表示直线:( )A 、过M 与l 相交,但与l 不垂直B 、过M 且与l 垂直C 、过M 与l 平行D 、以上都不对4、已知直线l 和直线m 的方程分别为2x -y+1=0,3x -y=0,则直线m 关于直线l 的对称直线m ′的方程为 。
直线与圆知识点及典型例题1.直线的倾斜程度用倾斜角表示,倾斜角的范围是:倾斜角与斜率的关系是:斜率如何随倾斜角的变化而变化:注:①每一条直线都有倾斜角,但不一定有斜率.②当α时,直线l垂直于x轴,它的斜率k不存在.90=③过两点P1(x1,y1)、P2(x2,y2)(x1≠x2)的直线斜率公式k=2.直线的方程:名称形式适用条件3.平面内两直线的位置关系:平行相交相交中的垂直重合斜截式一般式4.距离公式:点到点:点到线:两条平行线间:5.圆的定义:6.圆的方程:(标准式)圆心为半径为(一般式)圆心为半径为7.点与圆的位置关系及成立条件:8.直线与圆的位置关系及成立条件:位置关系图形表示交点个数()d,r的关系圆上的点到直线距离的最大值与最小值涉及到弦长问题要想垂径定理构造直角三角形在圆上某点(x 0,y 0)处的切线方程:9.求圆与圆的位置关系:10.两个圆的方程相减得到的是: 11.曲线轨迹方程的方法有: 12.直线与圆锥曲线相交的弦长公式:类型一:直线的问题1.与直线ℓ:2x +3y +5=0平行且过点A(1,−4)的直线ℓ′的方程是__________。
2.已知二直线l 1:mx +8y +n =0和l 2:2x +my −1=0,若l 1⊥l 2,l 1在y 轴上的截距为-1,则m =_____,n =____.3. 经过两直线11x -3y -9=0与12x +y -19=0的交点,且过点(3,-2)的直线方程为_______. 位置关系 图形表示公切线条数 d,r 1,r 2的关系4.已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:⑴BC边上的高所在直线方程;⑵AB边中垂线方程;⑶∠A平分线所在直线方程.类型二:对称问题5.求点A(0,1)关于点B(1,3)的对称点6. 求点A(0,1)关于直线l1:x−y−1=0的对称点7.求直线l1:x−y−1=0 关于点A(0,1)的对称线。
高三数学第一轮知识点:直线与方程第1篇:高三数学第一轮知识点:直线与方程导语:直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的*质。
以下是小编整理高三数学第一轮知识点的资料,欢迎阅读参考。
(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴未完,继续阅读 >第2篇:高三数学一轮直线与方程的知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高三数学参数方程知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!高三数学参数方程知识点高三数学参数方程知识点总结高中数学讲究掌握,牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据,概念模糊,公式、法则含混,必定影响运算的准确性。
2010高三数学高考复习:直线的方程 - 1 - / 2 直线的方程
1.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是 . 2.在平面直角坐标系中,设三角形ABC的顶点分别为A(0,a),B(b,0),C(c,0),点P(0,p)在线段AO上(异于端点),设a,b,c,p均为非零实数,直线BP,CP分别交
AC,AB于点E,F,一同学已正确算的OE的方程:,01111yapxcb请你求OF
的方程:( ▲ )011yapx
3.过点)1,4(A和双曲线116922yx右焦点的直线方程为 .
4.过点)1,0(P与圆03222xyx相交的所有直线中,被圆截得的弦最长时的直线方程是 ( ) A.0x. B.1y. C.01yx. D.01yx.
5、已知圆的方程为.08622yxyx 设该圆过点(3,5)的最长弦和最短弦分别 为AC和BD,则四边形ABCD的面积为 (A)106 (B)206 (C)306 (D)406 2010高三数学高考复习:直线的方程
- 2 - / 2 高考真题答案与解析
数 学(理) 直线的方程 1.答案:10xy
【解析】圆心C(-1,0),所求直线的斜率为1,故填10xy. 2.答案:11cb 【解析】画草图,由对称性可猜想填11cb.事实上,由截距式可得直线AB:1xyba,
直线CP:1xycp ,两式相减得 11110xycbpa
,显然直线AB与CP 的交点F 满足此方程,又原点O 也满
足此方程,故为所求直线OF 的方程. 3.答案:5yx
【解析】双曲线116922yx的右焦点为(5,0),过(4,-1)和(5,0)两点的直线方程为5yx.
4.答案:C 【解析】被圆截得的最长弦是直径,于是所求直线过圆心(1,0)及点)1,0(P,故直线方程是01yx。 5.答案:B
【课前测试】1、过点P(2,3)且在两坐标轴上截距相等的直线方程为.2、直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.3、过点(5,10)且到原点的距离是5的直线的方程为________________.12直线方程【知识梳理】一、直线方程1、直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的取值范围是[0,π]. 2、斜率公式(1)定义式:若直线l 的倾斜角α≠π2,则斜率k =tan α.(2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3、直线方程的五种形式二、两直线的位置关系1、两条直线平行与垂直的判定 (1)两条直线平行3①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2、两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3、距离问题(1)平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ). (2)垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.(3)过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).4【课堂讲解】考点一 直线的倾斜角与斜率例1、(1)直线2xcos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)已知直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 的斜率的取值范围是________. 变式训练:1、若图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B.k 3<k 1<k 2 C .k 3<k 2<k 1D .k 1<k 3<k 22、直线x sin α+y +2=0的倾斜角的范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 3、已知点(-1,2)和⎝⎛⎭⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 倾斜角的取值范围是________. 考点二 求直线方程例2、(1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程.变式训练:1、经过点P(4,1),且在两坐标轴上的截距相等;562、经过点P (1,2),倾斜角α的正弦值为45;3、经过点B (3,4),且与两坐标轴围成一个等腰直角三角形.考点三 直线方程的综合应用命题点1 与基本不等式结合求最值问题例3、已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为坐标原点,当△AOB 面积最小时,直线l 的方程为__________________. 变式训练:1、若直线l :x a +yb =1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.2、直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于A 、B 两点,O 为坐标原点,当|OA |+|OB |最小时,求l 的方程. 命题点2 由直线方程求参数问题例4、已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________. 变式训练:1、已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.2、已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S 的最小值并求此时直线l的方程.78考点四 两直线的平行与垂直 命题点1 两直线位置关系的判断例5、(1)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件(2)已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B. 13或-1 C. 13 D .-1变式训练:1、直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( ) A .2 B .-3 C .2或-3D .-2或-32、已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.命题点2 根据两直线的位置关系求直线方程例6、经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为________.变式训练:求满足下列条件的直线方程.(1)过点P(-1,3)且平行于直线x-2y+3=0;(2)已知A(1,2),B(3,1),线段AB的垂直平分线.910考点五 距离问题例7、(1)已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则|PM |的最小值为( ) A.12 B .1 C .2D .3(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.变式训练:1、若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A.95 B.185 C.2910D.2952、已知直线3x +2y -3=0与直线6x +my +7=0互相平行,则它们之间的距离是( )A .4 B.132C.21313D.713263、若直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )与原点之间的距离的最小值为( )A.5B.6 C .23D .25考点六 对称问题命题点1 点关于点对称问题例8、已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( )A.11B.10C.9 D.8变式训练:已知点A(x,5)关于点(1,y)的对称点是(-2,-3),则点P(x,y)的坐标为()A.(4,1) B. (1,4)C. (2,3)D. (1,6)命题点2 点关于线对称问题例9、已知直线l:2x-3y+1=0,点A(-1,-2),则点A关于直线l的对称点A′的坐标为________.1112变式训练:1、如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0D .x +y -1=02、坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( ) A.⎝⎛⎭⎫-45,85 B.⎝⎛⎭⎫-45,-85 C.⎝⎛⎭⎫45,-85 D.⎝⎛⎭⎫45,853、已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A 对称的直线m 的方程为________________. 命题点3 线关于线对称问题例10、已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (2)直线l 关于点A (-1,-2)对称的直线l ′的方程.变式训练:1、直线3x-4y+5=0关于x轴对称的直线的方程是()A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=02、直线2x-y+1=0关于直线x=1对称的直线方程是()A.x+2y-1=0 B.2x+y-1=0C.2x+y-5=0 D.x+2y-5=01314【课后练习】1、直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π2、已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -3=0 B .3x -4y -3=0 C .3x -4y -4=0D .4x -3y -4=03、点(1,-1)到直线x -y +1=0的距离是( ) A.12 B.32 C.322D.224、已知直线l 1:3x +2ay -5=0,l 2:(3a -1)x -ay -2=0,若l 1∥l 2,则a 的值为( ) A .-16B .6C .0D .0或-165、过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( D ) A .19x -9y =0 B .9x +19y =0 C .19x -3y =0D .3x +19y =06、直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0157、直线l :4x +3y -2=0关于点A (1,1)对称的直线的方程为( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0D .4x -3y -12=08、若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点 ( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)9、不论m 为何值时,直线l :(m -1)x +(2m -1)y =m -5恒过定点( ) A.⎝⎛⎭⎫1,-12 B .(-2,0) C .(2,3)D .(9,-4)10、若直线(m -1)x +3y +m =0与直线x +(m +1)y +2=0平行,则实数m =________. 11、过两直线7x +5y -24=0与x -y =0的交点,且与点P (5,1)的距离为10的直线的方程为________.12、设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是 5 .13、已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.14、已知点A (0,1),直线l 1:x -y -1=0,直线l 2:x -2y +2=0,则点A 关于直线l 1的对称点B 的坐标为________,直线l 2关于直线l 1的对称直线的方程是__________.16【课后测试】1、已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( ) A .1或3 B .1或5 C .3或5 D .1或22、若直线l 经过点(a -2,-1)和(-a -2,1),且与经过点(-2,1)、斜率为-23的直线垂直,则实数a 的值为( ) A .-23B .-32C.23D.32。