生物活性炭滤池的反冲洗方式研究4500字
- 格式:doc
- 大小:18.50 KB
- 文档页数:8
生物活性炭(BAC)技术在废水处理中的应用与研究
生物活性炭(BAC)技术在废水处理中的应用与研究
总结了生物活性炭技术在废水处理和污水再生利用处理中的应用,并进一步阐述了生物活性炭对污染物的去除机理,归纳了生物活性炭技术在水处理中的优势,以推广生物活性炭技术的应用.
作者:崔鹏昌刘键 CUI Peng-chang LIU Jian 作者单位:崔鹏昌,CUI Peng-chang(天津港务设施管理中心,天津,300456) 刘键,LIU Jian(中海油能源发展有限公司天津分公司,天津,300456)
刊名:山西建筑英文刊名:SHANXI ARCHITECTURE 年,卷(期):2009 35(22) 分类号:X703 关键词:生物活性炭(BAC) 含油污水污水处理反冲洗 Biological Active Carbon (BAC) oily wastewater wastewater treatment backwashing。
2301 微生物技术是处理反冲洗水中污物的好方法在油田采出水的处理过程中,过滤罐的滤料都要进行反冲洗,反冲洗的水进入回收水池,经过一定时间的沉降,再提升到沉降罐进行处理。
这个过程中出现了三个问题,一是污染物的恶性循环;二是沉降于回收池中的污染物,处理起来很困难,而且造成环境污染;三是如果频繁更换滤料,费工费时,停产之外,还增加了运行成本[1-4]。
如果利用污水回收池,建立一个微生物处理的生化系统,接入有效微生物菌种,通过适当改变操作参数,使之形成适应微生物生长的环境,利用微生物直接降解回收池中的污染物,就能够减少污染物的恶性循环,减少对滤料的污染,保护环境,从而取得良好的社会效益和经济效益。
2 微生物处理的方法和原理利用现成的污油回收池,建立微生物处理系统,就是采取活性污泥法与氧化塘法相结合的方法对反冲洗水进行处理。
活性污泥法是利用含有好氧微生物的活性污泥,在曝气条件下,使污水净化的生物学方法。
氧化塘法是利用适宜的自然池塘或人工池塘,使污水在池塘中停留较长时间,通过水中微生物代谢活动将有机物降解,使污水得到净化,废水中的有机物主要是通过有机菌藻共生作用去除。
氧化塘中同时可以进行好氧和厌氧作用和光合作用,从而对污染物进行持续的降解。
3 大庆油田的污水处理系统的工作条件适合进行微生物处理通过收集有关信息和初步筛选,我们选择的微生物菌种为ADB350M和配套的微生物营养物/增效剂BioControl1000s。
ADB350M是一种含有经特殊筛选的、适应性强的高性能微生物群,产品为浅褐色松散的粒状粉末,含有菌群数量为50×109个/g,为好氧微生物和兼氧微生物。
目前大庆油田回收池的工作条件与微生物种群生长的要求条件非常接近,水中有丰富的有机物可供给微生物营养物,水温一般在25~40℃,水的pH值在7~9之间,回收池为曝氧状态,很适合好氧微生物的生存和繁殖。
如果通过技术管理手段,提供微生物生存繁殖的合适环境,包括合适的温度、合理的水的流速、保持适当的液面高度等。
快滤池反冲洗方式试验研究摘要:对比气水反冲洗的三种方式进行试验分析,可以看出:方式三(即先单独空气冲洗,再气水同时反冲洗,最后单独水冲洗)的冲洗效果最好,在第15分钟初滤水即降至0.3NTU以下,并且其过滤周期也明显大于另三种方式。
其它三种方式初滤水达到要求的时间是在20~30分钟内,并且在过滤运行中发现水头损失较大,过滤周期较短等问题。
由试验分析,确定冲洗最佳冲洗参数为:气冲洗强度为15 L/s·m2,时间为2min;气水同时冲洗的气冲强度为15 L/s·m2,水冲强度为8L/s·m2,时间为4min,单独水冲洗强度为8 L/s·m2,时间为4min。
关键词:普通快滤池;气水反冲洗;Study on the mode of filter backwashLiu Yanyan1,Fan Shen2(1.Tianjin Public Utility Design&Research Institute,Tianjin 300100,China;2.China TianChen Engineering Corporation,,Tianjin 300400)Abstract:Through comparison of three ways of air-water backwash, we can see: the effect of the third way( firstly is single air backwash, then is air water backwash, finally is water backwash) is the best, which can make the filter water less than 0.3NTU in the initial fifteenth minutes, thus the filtration cycle is longer than the other three methods, as which are in in 20 ~30 minutes to meet the requirements with higher loss of water-head in filtering operation and shorter filtration cycle. By the test analysis, it determines the best flushing parameters: the strength of air flushing is 15 L/s·m2, time is 2min; the strength of air flushing is 15 L/s·m2, water backwash is 8 L/s·m2in air-water backwash, time is 4min; the strength of water flushing is 8 L/s·m2, time is 4min.Key words: ordinary rapid filter; air-water backwash普通快滤池在净水工艺中是一种适应广泛、性能稳定、容易操作管理的过滤构筑物,但是要想使它性能稳定、处理水质好、效率高,关键的一个环节就是反冲洗。
生物活性炭滤池的反冲洗方式研究在臭氧—生物活性炭深度处理技术应用中,生物活性炭(BAC)滤池的反冲洗问题非常棘手又亟需解决。
随着BAC滤池运行时间的延长,炭粒表面和滤床中积累的生物和非生物颗粒量不断增加,导致炭粒间隙减小,影响滤池的出水水质和产水量[1]。
反冲洗方式与相关参数直接影响BAC滤池的运行效果和成本。
有研究表明[2],采用单独水冲的滤池出水中生物可同化有机碳(AOC)和细菌量高于采用气水联合反冲的滤池,而充分去除过量的生物膜是保证滤池成功运行的重要前提。
国外对生物滤池反冲过程中的颗粒脱附机理进行了研究[3],但关于其程序及相关参数选取的报道较少,而这又恰是指导生产所必须解决的重要问题。
国内对此方面的研究起步较晚,个别采用生物活性炭技术的水厂只能直接参照国外经验,如昆明、北京水司均采用单独水冲(滤层膨胀率为25%)。
1 试验方法1.1 工艺流程及装置中试的工艺流程为预臭氧化→混凝、沉淀、过滤→臭氧—生物活性炭,试验装置包括常规处理、臭氧化和BAC滤池处理系统。
BAC滤池横断面尺寸为500 mm×500 mm,高度为4.92 m,内部均分为两格,采用小阻力配水系统。
池内装填ZJ-15型柱状活性炭,其碘值和亚甲蓝吸附值分别为961、187 mg/ g。
运行之前采用未加氯的砂滤出水先浸泡活性炭1周,再反洗清洁。
试验期间,臭氧化与常规处理工艺参数基本恒定。
预臭氧化的接触时间和投量分别为4.5min和1.5 mg/L左右;主臭氧化的接触时间和投量分别为16 min和2.0mg/L左右。
常规处理水量为3~3.5m3/h,混合时间为6~6.5s,反应时间为23.2~19.9 min,沉淀池清水区上升流速为1.39~1.62 mm/s、斜管内上升流速为1.60~1.87mm/s,滤池滤速为6.49~7. 57 m/h。
混凝剂和pH值调节剂分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5、6 mg/L左右。
活性炭反洗流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!活性炭是一种常用于水处理领域的吸附材料,其主要作用是吸附水中的有机物质、余氯、异味等杂质,从而提高水质。
活性炭滤池反冲洗废水的超滤工艺处理效果
董岳;张冬;鲁子健;林涛;陈卫
【期刊名称】《净水技术》
【年(卷),期】2016(000)004
【摘要】该文采用浸没式超滤工艺处理活性炭池反冲洗排水,探究超滤对炭池反冲洗排水的处理效果及膜污染控制作用.结果表明,为有效控制膜污染,炭池反冲洗排水宜采用预混凝后静沉10 min,再经超滤净化处理;在超滤通量为20 L/(m2·h)时,运行周期为1h.超滤系统运行25 d后,跨膜压差达到60 kPa,化学清洗后跨膜压差基本恢复到初始状态.超滤工艺使炭池反冲洗排水中颗粒物得到有效去除,有机物的去除主要表现为对类腐植酸、类色氨酸有机物、大分子有机物和疏水性有机物的控制作用.
【总页数】5页(P73-76,103)
【作者】董岳;张冬;鲁子健;林涛;陈卫
【作者单位】南京水务集团有限公司,江苏南京210008;南京水务集团有限公司,江苏南京210008;河海大学环境学院,江苏南京210098;河海大学环境学院,江苏南京210098;河海大学环境学院,江苏南京210098
【正文语种】中文
【中图分类】TU991
【相关文献】
1.超滤膜在水厂滤池反冲洗废水处理中的应用 [J], 姚左钢
2.超滤在水厂滤池反冲洗废水处理中的应用 [J], 刘晓平
3.反硝化滤池应用新型陶粒滤料的水处理效果及反冲洗性能分析 [J], 操家顺;姚博宇;薛朝霞;商凯航;费罗兰
4.混凝-臭氧-超滤工艺处理活性炭滤池反冲洗废水 [J], 于晓斐; 周冰洁; 林涛
5.砂滤池和活性炭滤池前后组合工艺对西江水的处理效果研究 [J], 何晓梅;胡克武;陈振华
因版权原因,仅展示原文概要,查看原文内容请购买。
生物活性炭滤池反冲洗技术的优化张朝晖1, 吕锡武1, 乐林生2, 鲍士荣2, 陈妍清1(1.东南大学环境工程系,江苏南京210096;2.上海市自来水市北有限公司,上海200082) 摘 要: 反冲洗是生物活性炭滤池运行中的一个关键步骤,合理优化反冲洗过程有助于改善其整体运行性能。
为此,采用反冲洗废水的浊度、滤池运行中的水头损失变化、对有机物的去除效果以及出水细菌数等指标,比较分析了4种不同的反冲洗方式对生物活性炭滤池运行效果的影响,最终认为气水联合反冲洗更适合于生物活性炭滤池。
关键词: 生物活性炭滤池; 反冲洗; 优化中图分类号:TU991.2 文献标识码:C 文章编号:1000-4602(2005)04-0051-03O ptm i ization of Back w ash i n g T echnol ogy for B i olog i cal A cti vatedCarbon F ilterZ HANG Zhao -hui 1, LV X i -w u 1, LE Lin -sheng 2, BAO Shi -rong 2, CHEN Yan -qing1(1.D e pt .of Environm e n t a lEng i n eering ,Sout h eastUn iversity ,Nanji n g 210096,Ch i n a ;2.Shangha iWater works Sh i b ei Co .Lt d .,Shanghai 200082,Ch i n a ) Abst ract : Backw ash ing process is a critica l step in t h e operation o f bio log ica l activated carbon (BAC )filter .Op ti m izati o n of backw ashing process is favorab l e t o t h e i m pr ove m ent of ope r a tion perfor m -ance as a who le .Therefore ,t h e evalua tive i n dexes such as backw ashing w aste w ater tur b i d ity ,variation i nhead loss ,r e m oval o f organic po ll u tants ,and bacteria coun t in trea ted w ate r are used t o co m pare and an -alyze t h e effect of four diffe r ent backw ashing m e t h ods on t h e operation of B AC filt e r .It is be lieved tha t air -w ater backw ashing ism ost suitab l e f o r the filter . K ey w ords : b iolog ical acti v a t e d car bon filt e r ; backw ashing ; opti m ization 基金项目:国家高技术研究发展计划(863)项目(2002AA 601130) 臭氧—生物活性炭工艺是我国试推广的微污染源水深度处理技术之一。
生物活性炭滤池的工艺参数试验研究生物活性炭滤池的工艺参数试验研究随着水源污染的日益严重,为了克服常规处理工艺的不足,满足不断提高的饮用水水质标准,对常规处理工艺出水再进行深度净化将成为自来水厂的选择之一。
生物活性炭技术能有效去除水中有机物(尤其是可生物降解部分)和嗅味等,从而提高饮用水化学和微生物安全性,目前它已作为自来水深度净化的一个重要途径而被水工业界重视[1,2]。
该技术要点是:以粒状活性炭为载体富集水中的微生物而形成生物膜,通过生物膜的生物降解和活性炭的吸附去除水中污染物,同时生物膜能通过降解活性炭吸附的部分污染物而再生活性炭,从而大大延长活性炭的使用周期。
生物活性炭滤池的工艺参数直接影响其处理效果和成本,并且合适的参数值还和滤池边水水质有一定关联,在大规模应用前进行针对性的研究很有必要。
1.试验研究方法l.1 试验工艺流程及装置本次试验为中试规模,试验工艺流程为预臭氧化十混凝、沉淀、过滤+臭氧--生物活性炭,试验装置(图1)设于深圳大涌水厂内,包括常规处理、臭氧化和活性炭滤池处理系统。
活性炭滤池横截断面尺寸为500×500mm,高度为4.92m,内部均分两格,采用小阻力配水系统。
装填ZJ-15型柱状活性炭(山西新华化工厂产品),该炭碘值和亚甲兰吸附值分别为961和187mg/g,堆积密度460g/L。
活性炭在使用之前,先用未加氯的砂滤出水浸泡1周,再用未加氯的砂滤出水反洗清洁,然后装池。
生物活性炭滤池采用下向流型式,进水溶解氧含量一般在7.50mg/L左右,能充分保证生物降解对溶解氧的需求。
滤池采用两段式气水反冲洗,即首先以空气擦洗、再以未加氯的砂滤出水反冲,反冲洗周期为7天。
臭氧采用Ozonia公司的CFS-1A型臭氧发生器现场制备,以空气为气源、以自来水为冷却介质。
预臭氧化的臭氧接触时间和投加量分别为4.5min和1.5mg/L左右,水在塔内流速40m/h左右。
主臭氧化的臭氧接触时间和投加量分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5mg/L和6mg/L左右。
生物砂滤池处理微污染原水及滤池反冲洗试验研究的开题报告一、选题背景随着农业、工业、城市化进程的加快,环境污染问题日益突出。
特别是水污染问题已成为当前最为紧迫的环境问题之一,对人类健康和生态环境造成了极大威胁。
为应对这一问题,各种水处理技术不断涌现。
生物砂滤池技术因其低成本、高效率、易维护等优点,在水处理领域得到了广泛应用。
然而,传统的生物砂滤池在处理微污染水源方面存在一些问题:一是水质处理效果不够稳定,易受到水源水质波动的影响;二是滤池反冲洗水量较大,造成水资源浪费。
因此,本文计划通过对生物砂滤池进行微污染原水处理的试验,探究如何提高生物砂滤池处理效果及降低反冲洗水量,为实际水处理工程提供理论指导及技术支持。
二、研究方法本文拟采用以下方法:(1)采用二级处理结构,将微污染原水先通过预处理器处理,然后进入生物砂滤池处理。
(2)对生物砂滤池中的生物菌群进行优化,通过改变滤料配置、水力负荷等参数,提高其对COD、NH3-N、NO3-N等污染物的去除效率。
(3)在滤池运行过程中,通过监测水源水质变化、滤料压力变化等参数,分析滤池处理效果的稳定性及其受到的影响因素。
(4)针对反冲洗水量过大的问题,采取改进措施,如增大反冲洗周期、采用新型反冲洗装置等,降低反冲洗水量。
三、预期结果本文预期通过试验,得到以下结果:(1)找到优化滤料配置、水力负荷等参数的方法,提高生物砂滤池对微污染原水的处理效率,使其达到国家标准的要求。
(2)分析生物砂滤池处理效果的稳定性及其受到的影响因素,为实际水处理工程提供技术支持。
(3)提出改进反冲洗措施,降低反冲洗水量,减少水资源浪费。
四、结论本研究将探究生物砂滤池处理微污染原水及滤池反冲洗的问题,为水处理领域提供理论指导及技术支持。
通过优化滤料配置、水力负荷等参数,改进反冲洗措施,可以降低滤池运行成本,提高水资源利用效率,对于保障水资源安全具有重要意义。
污水处理系统过滤罐反冲洗方法研究与效果分析污水处理系统中的过滤罐是一种常见的污水处理设备,用于去除污水中的悬浮物和颗粒物。
过滤罐在长时间运行后,过滤介质会堵塞,从而影响其过滤效果。
因此,反冲洗方法就非常重要,可以有效地清洗和恢复过滤介质的滤下性能。
反冲洗方法有多种,其基本原理是在电动或气动控制的作用下,通过水泵将清水从过滤器的下部或侧部进入过滤介质,从而逆向清洗过滤介质,使其松动或排除。
常见的反冲洗方法有以下几种:1.压力反冲洗法:通过压力差将清洗水从过滤器下部进入过滤介质,鼓励过滤介质松动、冲刷和增大间距。
该方法适用于较短时间的反冲洗,效果较好。
2.放空反冲洗法:通过排空罐将过滤介质内部的污染物和悬浮物排出。
该方法适用于较长时间的反冲洗,清洗效果较为彻底。
3.气力反冲洗法:通过高压气体在过滤介质中形成冲击波,使过滤介质分离和气泡冲刷。
该方法适用于微介质堵塞,清洗效果较好。
对于属于重组式过滤罐的设备,反冲洗的位置和反冲洗次数也会影响到反冲洗的效果。
在反冲洗过程中,清洗的位置不同,影响到了介质中附着的污染物的清除程度。
较高位置的反冲洗效果较好,在过滤介质表面附着的污染物更容易被清除。
而在反冲洗时,反冲洗的次数的不同也会对清洗效果产生影响。
反冲洗次数过多会造成过滤介质的磨损,反冲洗次数过少则无法清洗干净过滤介质。
通过以上分析可以得出,反冲洗方法的研究和效果分析对于保持污水处理系统过滤罐的正常运行和效果具有重要意义。
合理选择反冲洗方法、控制反冲洗位置和次数,可以保证过滤介质的有效清洗,提高过滤罐的处理效果。
同时,在实际运行中,需要根据不同的情况对反冲洗方法进行调整和优化,以便获得最佳的清洗效果。
反冲洗对生物增强活性炭工艺稳定性的影响研究生物增强活性炭技术是在活性炭载体上通过固定从自然界中筛选的优势菌种,增强水处理过程中的降解作用,并且提高降解效率的一种方法和措施。
通过向活性炭投加人工筛选的优势菌种进行生物增强,不仅可以加快系统启动,增强系统稳定性,而且有较强抗冲击负荷能力。
反冲洗包含了水流剪切摩擦、滤料颗粒间碰撞摩擦等过程,在反冲洗过程的多重作用下,促使老化的生物膜及杂质在强烈的剪切、碰撞作用下快速脱落,加速优势菌株的更新,提高活性,对控制生物增强活性炭工艺稳定性具有重要意义。
标签:生物增强活性炭;反冲洗;生物量;初滤水1 试验材料与方法1.1 试验装置试验原水经砂滤柱过滤进入水箱,臭氧发生器中产生的臭氧送往臭氧化柱与原水进行充分混合,混合后的水经过紫外发生器进行消毒后进入生物活性炭滤柱,设置紫外发生器的目的主要是通过紫外杀菌灭活原水中的杂菌,以尽量消除杂菌对试验效果的影响。
试验采用的装置见图1。
当活性炭滤柱需要进行反冲洗时,在反冲洗水泵的作用下,水经由水箱进入活性炭滤柱底部,自下往上对滤柱进行反冲洗作用,反冲洗过程中产生的废水经由活性炭滤柱顶部的反冲洗排水管排走,按照25~30%的膨胀度对反冲洗过程给予控制。
原水各项水质参数见表1。
1.2 分析参数与监测方法试验中的各项水质指标分析均依照现行的规范和标准执行,主要包括《生活饮用水标准检验法》、《生活饮用水卫生规范》和《水和废水监测分析方法》(国家环境保护总局第四版)试验过程中涉及的主要参数及测定方法如下:水温:采用普通玻璃温度计。
pH值:采用pHS-2C型酸度计。
浊度:采用TSZ-1台式智能散射光浊度仪。
溶解氧(DO):采用碘量法。
CODMn:采用酸性高锰酸钾氧化法。
UV254:用UV756PC型紫外可见分光光度计测定水样在254nm处的吸光度值。
生物量:采用生物量磷脂法测定技术。
出水细菌总数:采用普通琼脂培养基培养计数。
2 结果与讨论2.1 反冲洗周期与时间确定反冲洗周期与生物增强活性炭工艺随时间的处理效果息息相关。
生物活性炭滤池的反冲洗方式研究4500字摘要:反冲洗是保证生物活性炭滤池成功运行的一个重要环节。
对不同反冲洗方式的效果进行了比较,根据反冲洗废水浊度变化及对滤池出水水质的影响,确立了合理的反冲洗方式,并给出相关的反冲洗强度和反冲洗历时参数,以期为生物活性炭滤池的设计和运行提供参考。
在臭氧—生物活性炭深度处理技术应用中,生物活性炭(BAC)滤池的反冲洗问题非常棘手又极需解决。
随着BAC滤池运行时间的延长,炭粒表面和滤床中积累的生物和非生物颗粒量不断增加,导致炭粒间隙减小,影响滤池的出水水质和产水量[1]。
反冲洗方式与相关参数直接影响BAC滤池的运行效果和成本。
有研究表明[2],采用单独水冲的滤池出水中生物可同化有机碳(AOC)和细菌量高于采用气水联合反冲的滤池,而充分去除过量的生物膜是保证滤池成功运行的重要前提。
国外对生物滤池反冲过程中的颗粒脱附机理进行了研究[3],但关于其程序及相关参数选取的报道较少,而这又恰是指导生产所必须解决的重要问题。
国内对此方面的研究起步较晚,个别采用生物活性炭技术的水厂只能直接参照国外经验,如昆明、北京水司均采用单独水冲(滤层膨胀率为25%)。
1试验方法1.1工艺流程及装置中试的工艺流程为预臭氧化→混凝、沉淀、过滤→臭氧—生物活性炭,试验装置包括常规处理、臭氧化和BAC滤池处理系统。
BAC滤池横断面尺寸为500mm×500mm,高度为4.92m,内部均分为两格,采用小阻力配水系统。
池内装填ZJ-15型柱状活性炭,其碘值和亚甲蓝吸附值分别为961、187mg/g。
运行之前采用未加氯的砂滤出水先浸泡活性炭1周,再反洗清洁。
试验期间,臭氧化与常规处理工艺参数基本恒定。
预臭氧化的接触时间和投量分别为4.5min和1.5mg/L左右;主臭氧化的接触时间和投量分别为16min和2.0mg/L左右。
常规处理水量为3~3.5m3/h,混合时间为6~6.5s,反应时间为23.2~19.9min,沉淀池清水区上升流速为1.39~1.62mm/s、斜管内上升流速为1.60~1.87mm/s,滤池滤速为6.49~7.57m/h。
混凝剂和pH值调节剂分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5、6mg/L 左右。
1.2反冲方式第一阶段单独水反冲试验的炭床高度分别为2.0、2.5m,冲洗强度分别为12、14、18L/(m2·s),冲洗历时约为10min。
第二阶段气水联合反冲洗试验的炭床高度为2.0m,气冲强度分别为8、11、14L/(m2·s),气冲历时分别为3、5min;水冲强度分别为6、8、10、12、14L/(m2·s),水冲历时约为10min。
试验期间BAC滤池进水水温较高(平均为29℃),采用自然挂膜(生物膜成熟时间约为15d),其反冲洗周期一般为7d。
2结果与分析水中生物颗粒的相对含量以浊度表示,其微生物最低检测浓度为3.7×105个/mL[4]。
BAC滤池反冲废水中微生物浓度(个/mL)的数量级一般不低于105[2、3],故以反冲废水的浊度作为一项主要检测指标。
2.1水反冲①冲洗强度试验中以相同反冲历时下的反冲废水浊度、反冲废水浊度与初始浊度的比值、从高浊度到持续低浊度的出现历时作为评价指标。
在一定范围内提高水冲强度会改善反冲洗效果。
当运行条件相近、水冲强度分别为14、18/(m2·s)时,反冲废水初始浊度分别为34.3、116NTU。
去除负荷相同导致二池截污量大致相等,而初始浊度高意味着被冲下的杂质多,由此推知经低强度水冲后的BAC滤池残余杂质较多,这主要是由于水冲强度高会产生较大的剪切力和拖拽力,更好地促使炭、水以及炭粒间的摩擦碰撞。
两种水冲强度下反冲废水浊度比值为10%的历时分别为200s和80s,反冲废水浊度由高到趋于平稳的历时分别为210s和180s,这间接表明采用高强度水冲对滤层冲洗得较为彻底、排出被冲杂质较为容易。
炭床高度为2.5m的BAC滤池的试验结果与此类似。
在低强度水冲后期换以高强度水冲的过程中,反冲废水浊度随反冲洗历时呈倒V”形变化。
说明高、低强度联合水冲的效果优于单一低强度水冲。
虽然组合强度的水反冲效果有所改善,但不显著,还大大增加了反冲洗耗水量,由此认为单独水反冲的适宜水冲强度为14L/(m2·s)左右,对应滤层膨胀率为20%左右。
②水冲历时试验中发现反冲废水初期浊度、色度高,后期浊度、色度低,水冲强度为14、18L/(m2·s)时肉眼可见少量微生物絮体。
这说明BAC滤池的反冲废水中生物颗粒和非生物颗粒均占相当比例,并且生物颗粒的出现时间相对滞后。
一般,颗粒脱附的前提条件是外加脱附力大于颗粒所受的粘附力,而非生物颗粒的粘附力主要由范德华力和化学键力等构成。
对于生物颗粒,微生物的疏水性及胞外物质会产生比前述引力大得多的微观引力[3]。
非生物滤池的反冲废水中非生物颗粒占绝大多数,一般以反冲废水浊度达到5NTU作为反冲洗结束条件。
生物滤池中生物颗粒的脱附较难,其含量又难以浊度指标来间接反映,故以反冲废水浊度<5NTU作为反冲洗结束的上限条件。
同时,BAC滤池在反冲废水浊度达到3NTU以后则很难下降,故将3NTU作为反冲洗结束的下限条件。
对应浊度为3~5NTU的反冲洗历时为6~8min,即采用水冲强度为14L/(m2·s)的适宜历时为6~8min。
③反冲洗排水槽与滤层间距反冲洗排水槽与滤层的间距过小易造成滤料流失,间距过大则不利于反冲废水的及时排出,还会消耗较多的反冲洗用水。
如采用14、18L/(m2·s)强度联合反冲洗、在去除负荷相近的情况下,炭床高度为2.0m和2.5m的BAC滤池反冲废水浊度变化趋于平稳的历时分别为210s和180s,反冲废水浊度比值为10%的所需历时分别为200s和110s,反冲废水浊度达到5NTU的历时分别为170s和160s。
在保证活性炭不被冲出池外的前提下,此高度差可适当降低,建议实际应用中以1.5~2.0m为宜。
2.2两段式气水联合反冲洗因长有生物膜的活性炭体积质量小、气水同时反冲洗的控制要求高,故采用两段式气水联合反冲洗,即先排水至炭床表面下10cm处,然后通入压缩空气反洗,停气后再用水反冲。
为更准确地比较不同方式的反冲洗效果,采用浊污比(反冲废水浊度与反冲之前去除CODMn总量之比)、浊污比与初始浊污比的比值、从高浊污比到持续低浊污比的出现历时作为评价指标。
①气水反冲与单独水反冲的比较炭床高度为2.0m的BAC滤池在去除负荷相近时,尽管水冲强度均为14L/(m2·s),但先气冲5min的效果明显较好。
气水联合反冲时反冲废水的初始浊污比(1.39NTU/gCOD)高于单独水反冲的值(0.79NTU/gCOD),前者反冲废水的浊污比从高到趋于平稳的时刻(300s)迟于后者(210s),反冲废水浊污比与初始浊污比的比值达到10%的历时也如此,原因在于较大的紊流气体能预先冲松滤层并更好地冲刷活性炭表面的生物膜。
和普通滤池类似,单独采用水反冲的BAC滤池具有一定的局限性。
②气冲强度与水冲强度的匹配气、水强度的匹配是优化气、水联合反冲洗的重要方面。
气、水强度组合分别为14、8L/(m2·s)和8、10~12L/(m2·s)的试验结果表明,在反冲洗初期(0~60s),相同反冲历时下的反冲废水浊污比是前者大于后者,而反冲废水的持续低浊污比及浊污比与初始浊污比的比值为10%的出现历时大体相近;所需反冲水量大致相等。
由此决定采取高气冲强度、低水冲强度的匹配方式。
其他条件相同,增大水冲强度会改善反冲洗效果,表现为反冲废水初期浊污比增大,反冲废水浊污比从高值到持续低值及浊污比与初始浊污比的比值为10%的所需历时缩短,达到反冲废水浊度为3~5NTU的所需耗水量大体相等。
虽然水冲强度为6、8L/(m2·s)的试验结果也类似,但因常规工艺出水中会残存一定的溶解性有机污染物,臭氧化又减小了其粒径,增大了微粒扩散常数,增加了微粒间碰撞几率和范德华引力,促使微粒被粘附的强度和机会增加而更难于脱附。
建议气冲后采用微膨胀水冲[强度为8L/(m2·s)]。
③气冲强度固定气冲历时为5min、后续水冲强度为8L/(m2·s),分别以气冲强度为8、11、14L/(m2·s)进行气、水反冲洗的试验结果表明,提高气冲强度可改善反冲洗效果,主要表现为初期反冲废水的浊污比基本随气冲强度增大而增大。
在气冲强度为14L/(m2·s)的反冲洗试验中发现生物膜的脱落较为明显,且气冲后的新一轮运行初期,BAC滤池对CODMn、藻类等的去除效果下降,这又说明反冲洗的关键是既要去除过量的老化生物膜,又要充分保证新一轮启动所需的生物量。
建议生产中采用11~14L/(m2·s)的气冲强度,待积累一定经验后再取适当高值。
④反冲历时反冲历时直接影响反冲洗的效果和能耗。
当采用气、水冲强度分别为14、8L/(m2·s),气冲历时分别为5、3min时,反冲废水的初期浊污比差别不明显;但浊污比从高值到持续低值、浊污比与初始浊污比的比值为10%、反冲废水浊度达到5~3NTU的出现历时有所差异,原历时为3min的值约延长了1~2min。
这说明延长气冲历时可使炭粒表面污物受到更为持久的剪切和剥离,使脱落污物的排出较为容易,但因总体效果相近,实际气冲历时可视情况选3~5min。
综合气冲强度为11~14L/(m2·s)、气冲历时为(3~5min、水冲强度为8L/(m2·s)的反冲洗试验结果可知,反冲废水浊度达到5~3NTU的所需历时为260~550s,即所需的水冲历时约为5~7min。
3结语①炭粒表面生物颗粒的脱附难于非生物颗粒,建议生产中反冲洗结束的控制指标为反冲废水浊度达到3~5NTU。
②两段式气、水联合反冲洗的效果优于单独水反冲,并可节约耗水量,推荐采用先以高强度空气擦洗、再以微膨胀水漂洗的方式。
适宜的气冲强度为11~14L/(m2·s)、历时为3~5min,水冲强度为8L/(m2·s)、历时为5~7min。
③如采用单独水反冲,建议适宜的反冲强度为12~14L/(m2·s)、滤层膨胀率为20%左右,反冲历时为6~8min。
④炭床上表面与反冲废水排水槽间的高度差对反冲洗效果有一定影响,实际应用中以1.5~2.0m为宜。