dna双螺旋结构模型的要点
- 格式:docx
- 大小:36.75 KB
- 文档页数:1
DNA双螺旋结构模型的主要内容一、发现DNA双螺旋结构的历史1. 1953年,詹姆斯·沃森和弗朗西斯·克里克提出了DNA双螺旋结构模型2. 他们在《自然》杂志上发表了有关DNA结构的历史性文章3. 这一发现为后续的分子生物学研究奠定了重要基础二、DNA双螺旋结构的组成和特点1. DNA由两条螺旋状的核苷酸链组成2. 每条核苷酸链由磷酸基团、脱氧核糖和碱基组成3. 碱基与对应的碱基之间通过氢键相互配对,形成稳定的双螺旋结构4. DNA双螺旋结构的特点包括双链性、螺旋性和碱基配对规律性三、DNA双螺旋结构的功能1. DNA作为遗传物质,承载着生物体的遗传信息2. DNA双螺旋结构的稳定性保证了遗传信息的准确传递3. DNA通过编码蛋白质的方式参与了生物体的基因表达过程4. DNA双螺旋结构的解旋和复制是生物体遗传信息传递的重要基础四、DNA双螺旋结构的意义和应用1. 对DNA双螺旋结构的理解有助于揭示生命活动的分子机制2. DNA双螺旋结构的研究为生物医学领域的发展提供了重要支持3. DNA双螺旋结构的技术应用已扩展到分子生物学、生物工程等领域4. 对DNA双螺旋结构的深入认识有望为治疗人类疾病提供新的思路和方法五、DNA双螺旋结构的未来发展1. 随着科学技术的不断进步,对DNA双螺旋结构的研究将迎来新的发展阶段2. 新的理论和技术将进一步揭示DNA双螺旋结构的奥秘3. DNA双螺旋结构的发展将为生命科学领域带来更多的突破和创新4. 应用DNA双螺旋结构的相关技术将为人类社会带来更多的福祉和进步六、总结1. DNA双螺旋结构作为生物学领域的重要课题,其研究内容丰富多样,具有重要的理论和应用价值2. 对DNA双螺旋结构的深入研究有助于推动生命科学领域的发展,为人类社会的进步做出贡献3. 期待未来对DNA双螺旋结构的研究能够取得更多的突破和进展,为人类社会带来更多的惊喜和收获。
七、DNA双螺旋结构的新进展1. 近年来,随着生物技术的飞速发展,对DNA双螺旋结构的研究迎来了新的进展。
∙DNA右手双螺旋结构的基本要点?答:①DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,以右手螺旋方式绕同一公共轴盘。
②.两链以-脱氧核糖-磷酸-为骨架,在外侧;碱基垂直螺旋轴,居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; GC)③.螺旋直径为2nm;相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。
④DNA 双螺旋结构稳定的因素:a.氢键维持双链横向稳定性;b.碱基堆积力维持双链纵向稳定性。
∙蛋白质的沉淀与变性的定义与方法?答:(1)蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀;(2)当天然蛋白质受物理或化学因素影响后,失去原有的生物活性,并且物理化学性质均以改变的作用称为蛋白质的变性。
(3)沉淀的方法:盐析法,有机溶剂沉淀法,等电点沉淀法,重金属盐沉淀法,生物碱试剂,加热变性沉淀法(4)变性方法:①物理因素:高温,紫外线,X射线,超声波,高压,剧烈的搅拌,震荡②化学因素:强酸和强碱,尿素和胍盐,,去污剂,浓乙醇,重金属盐和三氯乙酸。
∙酶的诱导契合学说?答:酶对于它所作用的底物有着严格的选择,只能催化一定结构或者一些结构近似的化合物,使这些化合物发生生物化学反应。
有的科学家提出,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。
酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁钥学说”。
∙为什么说TCA循环式连接糖代谢,脂代谢和氨基酸代谢的枢纽?答:因为三羧酸循环中很多的中间体都可成为其他反应的起始物质或中间物质糖代谢的3-磷酸甘油酸和磷酸二羟丙酮是糖酵解中的果糖-1,6-二磷酸的裂解的产物脂代谢中每脱去2个皆可以产生一个乙酰CoA和一个FADH2 一个NADH 这些都可以进入TCA或者氧化磷酸化产生能量氨基酸代谢中谷氨酸脱去氨基的中间体α-酮戊二酸也存在于TCA中。
∙生物氧化的特点和方式是什么?答:特点:常温、酶催化、多步反应、能量逐步释放、放出的能量贮存于特殊化合物。
DNA双螺旋模型基本要点:1)两条反向平行的多核苷酸链围绕同一条中心轴相互盘曲而成;两条链均为右手螺旋2)链的外侧是核糖与磷酸,内侧是碱基.碱基平面与螺旋轴垂直;3)螺旋的两条链具有互补序列;两条链由碱基对间的氢键加以稳定;其中G与C 配对;A与T配对4)螺旋的直径约为2nm; 沿螺旋轴方向每一圈有10个碱基对,相邻两个碱基对间的夹角为36℃,双螺旋螺距为3.4nm.5) 双螺旋表面有大沟(major groove)和小沟(minor groove)之分;一般大沟较宽,而小沟较窄.由于大沟和小沟中暴露的碱基对可供利用来形成形成氢键的基团不同,所含有的化学信息不同.大沟一般为蛋白质与DNA相互作用的位点.6)双螺旋结构在不同条件下可以不同形式存在,如B-DNA, A-DNA及Z-DNA 其中B-DNA最接近生理条件下DNA存在形式;而A-DNA结构更为紧密,一般存在于RNA-RNA及RNA-DNA螺旋中,而Z-DNA为左手螺旋,常见于高盐浓度条件下嘌呤嘧啶交替存在的序列中,生物学功能还不确定.DNA分子的其它性质:1)在较高温度下或较高pH条件下,双螺旋的两条链可以分开,称为变性(denaturation);1)变性过程是可逆的;当较高温度下变性的DNA分子逐渐冷却时,互补的两条链又可以重新形成双螺旋,称为复性(renautration); 是核酸杂交技术(hybirdization)的基础.3) 双螺旋DNA分子在260nm波长下具有最大吸收度.变性过程中, DNA分子的吸光度逐渐增加,称为增色效应(hyperchromicity); 相反,在复性过程中,由于碱基堆积效应, 吸光度逐渐降低,称为减色效应(hypochromicity).4) DNA分子的熔点温度(melting temperature, Tm)是一个其特征常数,与DNA分子的G:C含量及溶液离子浓度有关, G:C含量越高及离子浓度越大, Tm越大.5) 某些DNA分子是环状的如细菌染色体,质粒DNA(plasmid)等.DNA的一级结构:指核酸分子中4种核苷酸的连接方式及其排列顺序.基本单位是脱氧核糖核苷酸由于DNA中核苷酸彼此之间的差别仅见于碱基部分,因此DNA的一级结构又指碱基顺序DNA的三级结构(DNA topology):DNA双螺旋进一步盘曲而形成的一种更为复杂的结构, 称为DNA的三级结构. 其中以超螺旋最为常见(supercoil).DNA超螺旋可分为负超螺旋(negatively supercoiled)和正超螺旋(positively supercoiled).由于DNA本身具有相当的柔性, 对简单线性DNA分子,由于其末端是自由的,所以较容易承受双螺旋两条链间相互缠绕的变化; 对于一个闭合共价环状DNA (covalently closed, circular, cccDNA)分子来讲,只要磷酸二酯键不被打断,则两条链间的绝对缠绕次数是不会改变的。
图7-7核苷酸及碱基结构图7-8 DNA 链及RNA 链7.2.2 DNA 的双螺旋结构1953年,美国分子生物学家沃森(Watson )和英国分子生物学家克里克(Crick )根据X 射线衍射图谱研究,提出了DNA 双螺旋结构的模型(如图7-9所示)。
・193 ・图7-9 DNA 双螺旋结构模型DNA 双螺旋结构模型的要点如下。
(1)DNA 分子是由两条多核苷酸链螺旋平行盘绕于共同的纵轴上,形成双螺旋结构。
两条多核苷酸链的走向相反。
一条为5′-3′,另一条则为3′-5′,习惯上以3′-5′的为正方向。
(2)碱基位于螺旋内部,磷酸及糖在螺旋表面,碱基的平面与纵轴垂直,糖平面几乎与碱基平面垂直。
(3)两条多核苷酸链上的碱基两两配对,即一条链上的A 与另一条链上的T 之间通过两个氢键配对,同时G 与C 之间通过三个氢键配对,这种碱基间互相匹配的情形称为碱基互补。
(4)在多核苷酸链中碱基的顺序各不相同,具体碱基的顺序就是遗传信息。
(5)配对的碱基平面与螺旋纵轴相垂直,碱基之间堆积距离为0.34nm ,双螺旋直径为2nm 。
顺轴方向,每隔0.34nm 有一个核苷酸,两核苷酸夹角为36°,因此沿中心轴每旋转一周有10个核苷酸,每隔3.4nm (即螺距高度为3.4nm )重复出现同一结构(如图7-9所示)。
DNA 是一种生物超分子,两条互补的DNA 单链通过互相之间的识别和作用,自组装形成稳定的DNA 双螺旋结构。
由于碱基互补原则,当一条核苷酸链的顺序确定以后,即可推知另一条互补核苷酸链的碱基顺序。
DNA 的自我复制、转录及反转录的分子基础都是碱基互补。
・194 ・7.2.3 RNARNA 有几种类型,它们基本上是单链分子,并且分子中并不严格遵守碱基配对原则。
经常遇到的RNA 结构是一条单链在分子的某一段或几段具有两股互补的排列,其他区域则以单股形式存在。
例如,从酵母中分离出的丙氨酸转移核糖体结构(如图7-10所示)因其形状像三叶草,故称三叶草结构。
dna双螺旋结构模型的要点及意义
DNA双螺旋结构模型的要点包括以下几点:
1、主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成,主链有二条,它们似“麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。
主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。
2、碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。
同一平面的碱基在二条主链间形成碱基对。
配对碱基总是A与T和G与C。
碱基对以氢键维系,A与T 间形成两个氢键。
3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。
小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。
这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。
在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。
4、结构主要参数:螺旋直径2nm;螺旋周期时间包括10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
此外,DNA双螺旋结构模型的意义在于揭示了DNA分子的结构特点和遗传信息存储方式,为进一步研究DNA的复制、转录和表达奠定了基础,并促进了基因工程、生物技术和其他相关领域的发展。
同时,该模型也为其他复杂生物分子结构和功能的探索提供了启示和借鉴。
dna双螺旋结构模型的要点DNA双螺旋结构模型是由詹姆斯·沃森和弗朗西斯·克里克于1953年提出的。
他们的发现是当代生物学史上的重大突破,对于遗传信息的传递和维持起了关键作用。
以下是DNA双螺旋结构模型的要点:1. DNA是脱氧核糖核酸(Deoxyribonucleic Acid)的缩写,由磷酸基团、脱氧核糖糖分子和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟腺嘧啶)组成。
2. DNA的双螺旋结构由两根相互缠绕的链组成,两条链以氢键相互连接。
这两条链通过碱基之间的互补配对形成。
腺嘌呤与鸟嘌呤之间形成三个氢键,胸腺嘧啶与鸟腺嘧啶之间形成两个氢键。
3. DNA的两条链是反向的,即一个链的5'末端与另一个链的3'末端相连。
这种反向排列使得DNA分子能够稳定地保存遗传信息,并在复制过程中减少错误。
4. DNA的结构有规则的直径和螺距。
直径为20埃,螺距为34埃,即相邻两个碱基之间的垂直距离。
5. DNA的双螺旋结构具有不对称性,即在一个链上的碱基序列完全可以确定另一个链上的序列。
这种互补配对意味着DNA的复制是半保留的,即每条新的DNA分子都包含了一个原有链和一个新合成出的链。
6. DNA的双螺旋结构是稳定的,不易被外界因素破坏。
DNA能够包裹在具有抗腐蚀性的蛋白质(称为组蛋白)中,进一步保护其结构和功能。
7. DNA的双螺旋结构具有很高的信息密度,碱基的排列顺序决定了遗传信息的编码。
通过DNA的转录和翻译,遗传信息可以被转化为蛋白质,从而决定了生物的特征和功能。
8. DNA双螺旋结构模型的提出使得我们能够更好地理解遗传信息的传递和变异。
这一发现为后续的基因工程、遗传学研究和生物技术的发展提供了坚实的基础。
9. DNA双螺旋结构模型的发现被认为是20世纪最重要的科学突破之一,沃森和克里克因此获得了1962年的诺贝尔生理学或医学奖。
总结来说,DNA双螺旋结构模型的要点包括:DNA由磷酸基团、脱氧核糖糖分子和四种碱基组成;两条链以氢键互相连接,并通过互补配对形成双螺旋结构;DNA是稳定的且具有高信息密度;双螺旋结构为遗传信息的传递和变异提供了基础。
dna双螺旋结构模式特点DNA(脱氧核糖核酸)是一种重要的生物分子,它在细胞中负责存储和传递遗传信息。
DNA的双螺旋结构模式是其最基本的结构形式之一,由两条互补的螺旋状链合并而成。
以下是DNA双螺旋结构模式的特点:1.双链结构:DNA的双螺旋结构由两条互补的链组成,形成一个螺旋状的结构。
这两条链呈螺旋状缠绕在一起,使得DNA分子具有良好的稳定性和强度。
2.互补配对:DNA的两条链之间的碱基具有互补的配对关系。
具体而言,腺嘌呤(A)总是与胸腺嘧啶(T)配对,胞嘧啶(C)总是与鸟嘌呤(G)配对。
这种互补配对保证了DNA双螺旋的稳定性,并且能够通过碱基配对准确地复制自身,保持遗传信息的传递。
3.碱基堆叠:DNA的双螺旋结构中,碱基以层状的形式堆叠在一起。
其中,两条链的碱基通过氢键相互连接,形成了DNA分子的中轴线。
4.右旋结构:DNA的双螺旋结构呈右旋结构,即两条链沿着螺旋轴向右旋转。
此特点与DNA的构造有关,更直观地表现为双螺旋模型中的螺旋线从底部向上顺时针旋转。
5.多重平面:DNA的双螺旋结构不是一个简单的螺旋线,而是由许多平面组成。
具体而言,每一个DNA螺旋周期包含两个磷酸核糖骨架和其上的碱基对,这些磷酸核糖骨架和碱基对在空间中形成了平面。
6.适应多样性:DNA的双螺旋结构具有很高的适应性,能够适应细胞内多种生物学特定的要求。
不仅不同的DNA分子,甚至同一条DNA分子的不同部分也可以具有不同的结构和特征。
这对于DNA的功能发挥起到了重要的作用。
总之,DNA的双螺旋结构模式是一种高度有序且稳定的结构。
它通过特定的碱基配对方式,帮助DNA分子精确地复制和传递遗传信息。
同时,DNA双螺旋结构的适应性使得它能够具有多样性的结构和功能,有助于维持生物体正常的生物学活动。
dna双螺旋结构模型的要点
DNA 双螺旋结构模型是1953 年由 James Watson 和 Francis Crick 首次开创的,他们将细胞构造中的DNA 巨型的分子模型化成一个两个螺旋楔子组成的双螺旋模型。
这一双螺旋模型有一系列核心要点,如下:
1. DNA 双螺旋模型由两条细胞膜向外旋转组成,这是分子层构建的基础。
它们是由
十七个有机化学元素组成的,名为碱基的小单位组成,它们具有转动、环绕和相互作用的
属性。
2. DNA 有四种碱基,分别是腺嘌呤、胞嘧啶、胞糖和半胱氨酸。
它们分别以特定的
密度配置在双螺旋的两个楔子,并以其物理特性组成双螺旋的核心结构。
3. 双螺旋的每一条轴上都有一些不同的碱基,以两个碱基构成碱基对,而这些碱基
中的一些是反向的。
这种特殊的结构有助于DNA 分子的分裂和维持,为有机体的各种生物过程提供支持。
4. DNA 双螺旋结构表明,它们是有序组织的和互相精密联系的。
它们控制细胞形态,保存着基因组成的分子结构,同时,它们也参与了细胞的再生和分裂,从而控制有机体的
进化。
5. DNA 双螺旋模型表明,DNA 分子是由两个碱基螺旋组成,它们具有基因信息的存
储功能,这是细胞的运行活动的重要基础,也是生物进化和发展的基础。
综上所述,DNA双螺旋结构模型的关键要点是,由两条细胞膜向外旋转结构组成;DNA 有四种碱基,通过特定的密度配置在双螺旋上;碱基分别以反向组成碱基对;DNA 双螺旋
模型控制细胞形态、保存着基因组成的分子结构、参与细胞的再生和分裂;它们具有基因
信息的存储功能,这是有机体的运行活动的重要基础。