封开县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 格式:doc
- 大小:236.50 KB
- 文档页数:6
封开县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列函数在(0,+∞)上是增函数的是( )A.B .y=﹣2x+5C .y=lnxD .y=2. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非3. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)4. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x xf e e = C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 5. 点A是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A.B.C.D.6. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( ) A.B.C.D.7. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个8. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <010.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2 B .12πcm 2 C .16πcm 2 D .20πcm 211.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 12.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx ex x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 14.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .15.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.16.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .17.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .18.在矩形ABCD 中,=(1,﹣3),,则实数k= .三、解答题19.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.20.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.21.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.22.设函数f (x )=lnx+a (1﹣x ). (Ⅰ)讨论:f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围.23.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .24.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若BC B =,求实数a 的取值范围.封开县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:对于A ,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.2. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C3. 【答案】A【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键.4. 【答案】D. 【解析】5. 【答案】B【解析】解:设△AF 1F 2的内切圆半径为r ,则S △IAF1=|AF 1|r ,S △IAF2=|AF 2|r ,S △IF1F2=|F 1F 2|r ,∵,∴|AF 1|r=2×|F 1F 2|r ﹣|AF 2|r ,整理,得|AF1|+|AF 2|=2|F 1F 2|.∴a=2,∴椭圆的离心率e===.故选:B .6. 【答案】D【解析】解:依题意可知F 坐标为(,0)∴B 的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B 到抛物线准线的距离为=,则B 到该抛物线焦点的距离为.故选D .7. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15. .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。
开封市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列中,若,,则这个数列的第10项( ) A .19B .21C .D .2. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2 B. C. D .33. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .24. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2} 5. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( ) A.B.C.D.6. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题7.定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A.B.C.D.8. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣29. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .等腰三角形B .正三角形C .直角三角形D .钝角三角形10.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A ) 8( B ) 4 (C ) 83(D )4311.设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b >12.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.二、填空题13.已知函数f (x )=,若f (f (0))=4a ,则实数a= .14.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤15.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .16.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.17.设函数,若用表示不超过实数m的最大整数,则函数的值域为.18.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.三、解答题19.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.20.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.21.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.22.设0<||≤2,函数f(x)=cos2x﹣||sinx﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.23.数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1,等差数列{b n}满足b3=3,b5=9,(1)分别求数列{a n},{b n}的通项公式;(2)若对任意的n ∈N *,恒成立,求实数k 的取值范围.24.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]开封市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C2.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.3.【答案】A【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.4.【答案】A【解析】解:N={x|x=2a,a∈M}={﹣2,0,2},则M∩N={0},故选:A【点评】本题主要考查集合的基本运算,求出集合N是解决本题的关键.5.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.6.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.7.【答案】C【解析】解:由定义的行列式运算,得====.将函数f(x)的图象向左平移m(m>0)个单位后,所得图象对应的函数解析式为.由该函数为奇函数,得,所以,则m=.当k=0时,m有最小值.故选C.【点评】本题考查了二阶行列式与矩阵,考查了函数y=Asin(ωx+Φ)的图象变换,三角函数图象平移的原则是“左加右减,上加下减”,属中档题.8.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.9.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.10.【答案】A【解析】根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于1⨯⨯-⨯⨯⨯=2232238311.【答案】D【解析】考点:不等式的恒等变换.12.【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.二、填空题13.【答案】 2 .【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2故答案为:2.14.【答案】①②③④ 【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误, 故正确答案①②③④答案:①②③④15.【答案】12 【解析】考点:分层抽样 16.【答案】32π 【解析】17.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.18.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.三、解答题19.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.20.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.21.【答案】【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE∥平面A1AB,得,即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E,E为BC1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力22.【答案】【解析】解:f(x)=cos2x﹣||sinx﹣||=﹣sin2x﹣||sinx+1﹣||=﹣(sinx+)2++1﹣||,∵0<||≤2,∴﹣1≤﹣<0,由二次函数可知当sinx=﹣时,f(x)取最大值+1﹣||=0,当sinx=1时,f(x)取最小值﹣||﹣||=﹣4,联立以上两式可得||=||=2,又∵与的夹角为45°,∴|+|===【点评】本题考查数量积与向量的夹角,涉及二次函数的最值和模长公式,属基础题.23.【答案】【解析】解:(1)由a n+1=2S n+1①得a n=2S n﹣1+1②,①﹣②得a n+1﹣a n=2(S n﹣S n﹣1),∴a n+1=3a n (n ≥2)又a 2=3,a 1=1也满足上式,∴a n =3n ﹣1;b 5﹣b 3=2d=6∴d=3∴b n =3+(n ﹣3)×3=3n ﹣6;(2),∴对n ∈N *恒成立,∴对n ∈N *恒成立,令,,当n ≤3时,c n >c n ﹣1,当n ≥4时,c n <c n ﹣1,,所以实数k 的取值范围是【点评】已知数列的项与前n 项和间的递推关系求数列的通项,一般通过仿写作差的方法得到数列的递推关系,再据递推关系选择合适的求通项方法.24.【答案】(1)证明见解析;(2【解析】试题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)136V PA AB AD AB ==,由V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313PA AB AH PB ==,所以A 到平面PBC 的距离为.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.。
开封市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列命题中的说法正确的是()A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题2. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .3. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数4. 将函数(其中)的图象向右平移个单位长度,所得的图象经过点x x f ωsin )(=0>ω4π,则的最小值是( ))0,43(πωA . B .C .D .31355. 复数z=(其中i 是虚数单位),则z 的共轭复数=()A .﹣iB .﹣﹣iC . +iD .﹣ +i6. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .27. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+8. f ()=,则f (2)=( )A .3B .1C .2D .9. 若某程序框图如图所示,则该程序运行后输出的值是( )A. B. C. D. 78910班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.10.已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的部分图象如图所示,△EFG是边长为2 的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位11.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为()A.1B.C.D.212.函数y=(x2﹣5x+6)的单调减区间为()A.(,+∞)B.(3,+∞)C.(﹣∞,)D.(﹣∞,2)二、填空题13.在复平面内,复数与对应的点关于虚轴对称,且,则____.14.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .15.与圆22:240C x y x y +-+=外切于原点,且半径为的圆的标准方程为16.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .17.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)18.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).正确命题的个数是 . 三、解答题19.(本小题满分12分)已知函数.2()xf x e ax bx =--(1)当时,讨论函数在区间上零点的个数;0,0a b >=()f x (0,)+∞(2)证明:当,时,.1b a ==1[,1]2x ∈()1f x <20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.0,1n =()s n n=+⋅1n n +3?>输出s21.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OA′B′C′,如图所示.(1)求矩阵M;(2)求矩阵N及矩阵(MN)﹣1.22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.23..(1)求证:(2),若.24.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.开封市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.2.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.3.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“. 4. 【答案】D考点:由的部分图象确定其解析式;函数的图象变换.()ϕω+=x A y sin ()ϕω+=x A y sin 5. 【答案】C 【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题. 6. 【答案】A【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),∴AB 是正方体的体对角线,AB=,设正方体的棱长为x ,则,解得x=4.∴正方体的棱长为4,故选:A .【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题. 7. 【答案】C 【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C .1n =2n =(1)2n n n a +=121,3a a ==考点:数列的通项公式.8. 【答案】A 【解析】解:∵f ()=,∴f(2)=f()==3.故选:A.9.【答案】A=========【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n=====4,i5;n2,i6;n1,i7,到此循环终止,故选A.10.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.11.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x P|=2,∴S△POF=|0F|•|x P|=.故选:C.12.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.二、填空题13.【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-214.【答案】 .【解析】解:∵tan β=,α,β均为锐角,∴tan (α﹣β)===,解得:tan α=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题. 15.【答案】 20)4()2(22=-++y x 【解析】由已知圆心),(b a 在直线上,所以圆心x y 2-=,又因为与圆22:240C x y x y +-+=外切于原点,)2,(a a -且半径为,可求得52)2(22=-+a a ,舍去。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件2. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .04. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=8. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5B .C .D .21-7-10.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2 B .1C .2D .312.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-14.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .17.数列{a n }是等差数列,a 4=7,S 7= .18.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为.三、解答题19.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A D C C C C D111]D题号1112答案A B二、填空题13.7 14⎛⎤ ⎥⎝⎦,14.2016 15.1016.20 17.4918.4π三、解答题19.20.21.22.23.24.。
封开县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.2. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=3. 设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,4. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)5. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 4±C .D .2±6. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a7. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅B .{1,4}C .MD .{2,7}8. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .589. 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣1A .甲B .乙C .丙D .丁11.已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .212.点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )A .[﹣1,﹣]B .[﹣,﹣]C .[﹣1,0]D .[﹣,0]二、填空题13.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .14.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为.15在这段时间内,该车每100千米平均耗油量为升.16.若函数y=ln(﹣2x)为奇函数,则a=.17.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)18.已知x,y满足条件,则函数z=﹣2x+y的最大值是.三、解答题19.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.20.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.21.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.22.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.23.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.24.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.封开县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B2.【答案】C【解析】解:A.未注明a,b,c,d∈R.B.实数是复数,实数能比较大小.C.∵=,则z1=z2,正确;D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.3.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.4.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.5. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.6. 【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1; 2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b . 故选C7. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M , ∴集合N 不可能是{2,7}, 故选:D【点评】本题主要考查集合的关系的判断,比较基础.8.【答案】B【解析】9.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.10.【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.11.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.12.【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系.则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),∴=﹣x (1﹣x )﹣y (1﹣y )+0=x 2﹣x+y 2﹣y=+﹣,由二次函数的性质可得,当x=y=时,取得最小值为﹣;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是[﹣,0],故选D .【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.二、填空题13.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外), 均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD , 可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ), 由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.14.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.15.【答案】8升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8.16.【答案】4.【解析】解:函数y=ln(﹣2x)为奇函数,可得f(﹣x)=﹣f(x),ln(+2x)=﹣ln(﹣2x).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4.17.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.18.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.三、解答题19.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.21.【答案】【解析】解:(1)∵f(x)=x3+3ax2+bx,∴f'(x)=3x2+6ax+b,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.22.【答案】【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.又f(x﹣y)=,所以f(﹣x)=f[(1﹣x)﹣1]======,故函数f(x)奇函数.(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,设2<x<3,则0<x﹣2<1,则f(x﹣2)=,即f(x)=﹣<0,设2≤x1≤x2≤3,则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,则f(x1)﹣f(x2)=,∴f (x 1)>f (x 2),即函数f (x )在[2,3]上为减函数,则函数f (x )在[2,3]上的最大值为f (2)=0,最小值为f (3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.23.【答案】【解析】解:(1)∵向量=(,1),=(cos ,),记f (x )=.∴f (x )=cos +=sin +cos +=sin (+)+,∴最小正周期T==4π,2k π﹣≤+≤2k π+,则4k π﹣≤x ≤4k π+,k ∈Z .故函数f (x )的单调递增区间是[4k π﹣,4k π+],k ∈Z ;(2))∵将函数y=f (x )=sin (+)+的图象向右平移个单位得到函数解析式为:y=g (x )=sin[(x ﹣+)]+ =sin (﹣)+,∴则y=g (x )﹣k=sin (x ﹣)+﹣k ,∵x ∈[0,],可得:﹣≤x ﹣≤π,∴﹣≤sin (x ﹣)≤1,∴0≤sin (x ﹣)+≤,∴若函数y=g (x )﹣k 在[0,]上有零点,则函数y=g (x )的图象与直线y=k 在[0,]上有交点,∴实数k 的取值范围是[0,].∴当k <0或k >时,函数y=g (x )﹣k 在的零点个数是0;当0≤k <1时,函数y=g (x )﹣k 在的零点个数是2;当k=0或k=时,函数y=g (x )﹣k 在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.24.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .132. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny 3. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④4. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .15. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .47. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于()A .B .5C .3D .8. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4) 9. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a u r =133(,)n a a r=-且,则的最小值为( )0m n u r r ×=2163n n S a ++A .B.C .D .432-92【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .13二、填空题13.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P 14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是 .17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全19.0校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.20.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .22.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围. 23.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]24.(本小题满分13分)在四棱锥中,底面是直角梯形,,,.P ABCD -ABCD //AB DC 2ABC π∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若,,求直线与平面所成角的大小.PA PD ==PB PC =PA PBC ABCDP城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C DCBADBAB题号1112答案CD二、填空题13.14. (x ﹣1)2+(y+1)2=5 .15.649π16. (﹣1,﹣]∪[,) . 17.2518. (x ﹣5)2+y 2=9 .三、解答题19.20. 21. 22.23.(1)或;(2).{|1x x ≤8}x ≥[3,0]-24.。
封开县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若关于的不等式的解集为或,则的取值为( )2043x ax x +>++31x -<<-2x >A . B . C .D .1212-2-2. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a 3. 函数f (x )=,则f (﹣1)的值为()A .1B .2C .3D .44. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*1332()n n a a n N +=-∈()A .和B .和C .和D .和21a 22a 22a 23a 23a 24a 24a 25a 5. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是()cm 3A .πB .2πC .3πD .4π6. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )7. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .28. 已知函数f(x)是定义在R上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C[]D[]9. 复数z=(其中i 是虚数单位),则z 的共轭复数=()A .﹣iB .﹣﹣iC .+iD .﹣+i10.设为数列的前项的和,且,则( )n S {}n a n *3(1)()2n n S a n =-∈N n a =A .B .C .D .3(32)nn-32n+3n 132n -⋅11.抛物线y 2=8x 的焦点到双曲线A .1B .C .12.O 为坐标原点,F 为抛物线的焦点,P 是抛物线的面积为( )A .1B .C .D .2二、填空题13()23k x =-+14加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 升.15.设平面向量,满足且,则,的最大()1,2,3,i a i =u rL 1i a =u r 120a a ⋅=u r u u r 12a a +=u r u u r 123a a a ++u r u u r u u r值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.16.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 . 17.= .18.函数f (x )=(x >3)的最小值为 .三、解答题19.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.20.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc .(Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a 的值.21.已知m ∈R ,函数f (x )=(x 2+mx+m )e x .(1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3. 22.(本小题满分10分)选修4—5:不等式选讲已知函数.3212)(-++=x x x f(I )若,使得不等式成立,求实数的最小值;R x ∈∃0m x f ≤)(0m M (Ⅱ)在(I )的条件下,若正数满足,证明:.,a b 3a b M +=313b a+≥23.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值. 24.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.封开县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D C A C B B A B C C 题号1112答案A C二、填空题13.53, 124⎛⎤ ⎥⎝⎦14. 8 升.15.116. ∃x0∈R,都有x03<1 .17. 2 .18. 12 .三、解答题19.20.21.22.23.24.。
开江县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣82. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B. C. D .133. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( ) A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 4. 下列函数在其定义域内既是奇函数又是增函数的是( ) A . B . C . D .5. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( ) A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}6. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R7. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)8. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 29. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题. 10.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .12B .20C .D .11.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个 12.下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示二、填空题13.当时,4x<log a x ,则a 的取值范围 .14.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.已知(2x ﹣)n展开式的二项式系数之和为64,则其展开式中常数项是 .17.在(1+x )(x 2+)6的展开式中,x 3的系数是 .18.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.三、解答题19.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
封开县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若f(x)为定义在区间G上的任意两点x1,x2和任意实数λ(0,1),总有f(λx1+(1﹣λ)x2)≤λf(x1)+(1﹣λ)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是()①f(x)=,②f(x)=,③f(x)=,④f(x)=.A.4 B.3 C.2 D.12.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”3.设{}n a是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1 B.2 C.4 D.64.若f(x)=﹣x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是()A.(﹣∞,1] B.[0,1]C.(﹣2,﹣1)∪(﹣1,1] D.(﹣∞,﹣2)∪(﹣1,1]5.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.36.如图,正六边形ABCDEF中,AB=2,则(﹣)•(+)=()A.﹣6 B.﹣2C.2D.67.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有()①三棱锥M﹣DCC1的体积为定值②DC1⊥D1M③∠AMD1的最大值为90°④AM+MD1的最小值为2.A .①②B .①②③C .③④D .②③④8. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错9. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.4510.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . ±C .D .11.已知α是三角形的一个内角,且,则这个三角形是( )A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形12.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.二、填空题13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .14.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .15.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .17.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .18.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .三、解答题19.已知函数()()x f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.20.已知椭圆Γ:(a >b >0)过点A (0,2),离心率为,过点A 的直线l 与椭圆交于另一点M .(I )求椭圆Γ的方程;(II )是否存在直线l ,使得以AM 为直径的圆C ,经过椭圆Γ的右焦点F 且与直线 x ﹣2y ﹣2=0相切?若存在,求出直线l 的方程;若不存在,请说明理由.21.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.22.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.23.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?24.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.封开县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:由区间G 上的任意两点x 1,x 2和任意实数λ(0,1), 总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),等价为对任意x ∈G ,有f ″(x )>0成立(f ″(x )是函数f (x )导函数的导函数),①f (x )=的导数f ′(x )=,f ″(x )=,故在(2,3)上大于0恒成立,故①为“上进”函数;②f (x )=的导数f ′(x )=,f ″(x )=﹣•<0恒成立,故②不为“上进”函数;③f (x )=的导数f ′(x )=,f ″(x )=<0恒成立,故③不为“上进”函数;④f (x )=的导数f ′(x )=,f ″(x )=,当x ∈(2,3)时,f ″(x )>0恒成立.故④为“上进”函数. 故选C .【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.2. 【答案】 D【解析】解:若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为假命题,故A 不正确; 命题“若xy=0,则x=0”的否命题为:“若xy ≠0,则x ≠0”,故B 不正确;“”⇒“+2k π,或,k ∈Z ”,“”⇒“”,故“”是“”的必要不充分条件,故C 不正确;命题“∀x ∈R ,2x>0”的否定是“”,故D 正确. 故选D .【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.3. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质.4. 【答案】D【解析】解:∵函数f (x )=﹣x 2+2ax 的对称轴为x=a ,开口向下,∴单调间区间为[a ,+∞)又∵f (x )在区间[1,2]上是减函数,∴a ≤1∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,∵g (x )=在区间[1,2]上是减函数,∴﹣a >2,或﹣a <1, 即a <﹣2,或a >﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1], 故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.5. 【答案】C【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题; 故其逆否命题也为真命题;其逆命题为“设a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”在c=0时不成立,故为假命题 故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个 故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.6. 【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6.故选:D.【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.7.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.8.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.9.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.10.【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.11.【答案】A【解析】解:∵(sin α+cos α)2=,∴2sin αcos α=﹣,∵α是三角形的一个内角,则sin α>0, ∴cos α<0, ∴α为钝角,∴这个三角形为钝角三角形.故选A . 【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.12.【答案】C二、填空题13.【答案】2 .【解析】解:如图所示, 连接A 1C 1,B 1D 1,相交于点O . 则点O 为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣AB1C1D1的体积V==2.1故答案为:2.14.【答案】a≤0或a≥3.【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.15.【答案】4【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说,当条件中同时出现ab及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++. 16.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义 17.【答案】 菱形 ; 矩形 .【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且EF=AC ,GH=AC∴四边形EFGH 是平行四边形又∵AC=BD ∴EF=FG∴四边形EFGH 是菱形.②由①知四边形EFGH 是平行四边形 又∵AC ⊥BD , ∴EF ⊥FG∴四边形EFGH 是矩形. 故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.18.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.三、解答题19.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.【解析】(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值;当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e-=-=-最小值.(3)()(221)xg x x k e =-+,∴'()(223)xg x x k e =-+,由'()0g x =,得32x k =-, 当32x k <-时,'()0g x <; 当32x k >-时,'()0g x >,∴()g x 在3(,)2k -∞-上递减,在3(,)2k -+∞递增,故323()()22k g x g k e -=-=-最小值,又∵35,22k ⎡⎤∈⎢⎥⎣⎦,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,∴()g x λ≥对[]0,1x ∀∈恒成立等价于32()2k g x e λ-=-≥最小值;又32()2k g x e λ-=-≥最小值对35,22k ⎡⎤∀∈⎢⎥⎣⎦恒成立.∴32min (2)k ek --≥,故2e λ≤-.1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的. 20.【答案】【解析】解:(Ⅰ)依题意得,解得,所以所求的椭圆方程为;(Ⅱ)假设存在直线l ,使得以AM 为直径的圆C ,经过椭圆后的右焦点F 且与直线x ﹣2y ﹣2=0相切,因为以AM 为直径的圆C 过点F ,所以∠AFM=90°,即AF ⊥AM ,又=﹣1,所以直线MF 的方程为y=x ﹣2,由消去y ,得3x 2﹣8x=0,解得x=0或x=,所以M (0,﹣2)或M(,),(1)当M 为(0,﹣2)时,以AM 为直径的圆C 为:x 2+y 2=4,则圆心C 到直线x ﹣2y ﹣2=0的距离为d==≠,所以圆C 与直线x ﹣2y ﹣2=0不相切;(2)当M 为(,)时,以AM 为直径的圆心C 为(),半径为r===,所以圆心C 到直线x ﹣2y ﹣2=0的距离为d==r ,所以圆心C 与直线x ﹣2y ﹣2=0相切,此时k AF=,所以直线l 的方程为y=﹣+2,即x+2y ﹣4=0,综上所述,存在满足条件的直线l ,其方程为x+2y ﹣4=0.【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.21.【答案】【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,当0m =时,直线l 与x轴垂直,21||2b MF a ==,由212c b a=⎧⎪⎨=⎪⎩解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2212x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知12121122||3||MF F NF F S MF y S NF y ∆∆===.联立方程22112x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22(2)210m y my +--=,解得y =∴1y =,同样可求得2y =, (11分)由123y y =得123y y =3=,解得1m =, 直线l 的方程为10x y -+=. (13分) 22.【答案】【解析】解:将圆的方程写成标准形式,得x 2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l 被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l 的距离为.…因为直线l 的斜率为2,所以可设所求直线l 的方程为y=2x+b ,即2x ﹣y+b=0.所以圆心到直线l 的距离为,…因此,解得b=﹣2,或b=﹣12.… 所以,所求直线l 的方程为y=2x ﹣2,或y=2x ﹣12.即2x ﹣y ﹣2=0,或2x ﹣y ﹣12=0.… 【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.23.【答案】【解析】 解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟.24.【答案】【解析】解:(1).∴=1﹣i.(2)a(1+i)+b=1﹣i,即a+b+ai=1﹣i,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.。
封开县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 实数x ,y
满足不等式组
,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3) C
.(,2) D
.(,0)
2. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为0
D .样本点(3,4.8)的残差为0.65
3. 设a ,
b ∈R ,i 为虚数单位,若2+a i
1+i =3+b i ,则a -b 为( )
A .3
B .2
C .1
D .0
4. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )
A .(﹣2,0)∪(2,+∞)
B .(﹣∞,﹣2)∪(0,2)
C .(﹣∞,﹣2)∪(2,+∞)
D .(﹣2,
0)∪(0,2)
5. 如图所示,在三棱锥P ABC 的六条棱所在的直线中,异面直线共有( )111]
A .2对
B .3对
C .4对
D .6对
6. 已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,
)时,f (x )=e x
+sinx ,则( )
A .
B .
C .
D .
7. 阅读下面的程序框图,则输出的S=( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .14
B .20
C .30
D .55
8. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
9. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1
10.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)
B .45(8)
C .50(8)
D .55(8)
11.设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 12.在三角形中,若,则
的大小为( )
A .
B .
C .
D .
二、填空题
13.自圆C :2
2
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
14.设
为单位向量,①若为平面内的某个向量,则=||•
;②若
与平行,则=||•
;③若
与平行且||=1,则=.上述命题中,假命题个数是 .
15.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .
16.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
17.已知函数f (x )=x m 过点(2
,),则m= .
18.复数
z=(i 虚数单位)在复平面上对应的点到原点的距离为 .
三、解答题
19.已知二阶矩阵M 有特征值λ1=4及属于特征值4
的一个特征向量
=并有特征值λ2=﹣1及属于特征值
﹣1
的一个特征向量
=
,
=
(Ⅰ)求矩阵M ;
(Ⅱ)求M
5.
20.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .
(Ⅰ)求线段AD 的长;
(Ⅱ)比较∠ADC 和∠ABC 的大小.
21.已知椭圆
,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .
(Ⅰ)求该椭圆的离心率;
(Ⅱ)已知点A 的坐标为(0,b ),椭圆上存在点P ,Q ,使得圆x 2+y 2
=4内切于△APQ ,求该椭圆的方程.
22.已知函数f (x )=
(Ⅰ)求函数f (x )单调递增区间;
(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.
23.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
24.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.
如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,
所以P2具有性质Ω.
(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.
(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.
(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.
封开县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
13.D
14.3.
15.[1,)∪(9,25].
16.
17.﹣1.
18..
三、解答题
19.
20.
21.
22.
23.
24.。