空分分离的方法和原理
- 格式:ppt
- 大小:1.99 MB
- 文档页数:45
空分的工艺流程空分工艺是一种将混合气体中的氧气和氮气分离的工艺。
通过空分工艺,可以得到高纯度的氧气、氮气和稀有气体产品,广泛应用于医疗、化工、石油、电子等领域。
空分工艺的主要流程包括空气压缩、预处理、空分、产品分离和制品回收等步骤。
首先是空气的压缩,将自然界的空气通过压缩机加压至一定压力。
压缩后的气体会进入预处理系统,经过脱水、脱油和脱硅等工艺,去除其中的杂质和水分,以保证后续空分过程的顺利进行。
接下来是空分过程,将预处理后的空气送入空分装置。
空分装置中通常包含一个吸附器和一个脱附器,通过吸附材料的选择和适当的操作条件,可以使氧气和氮气在吸附器和脱附器之间进行选择性吸附和脱附。
这样,空气中的氧气和氮气就可以被分离出来。
在空分过程中,一般会使用分子筛或活性炭等材料作为吸附剂。
吸附剂的选择要考虑吸附能力、选择性和经济性等因素。
当空气通过吸附器时,分子筛会吸附氮气,而氧气则通过未被吸附的气体从吸附器中排出。
经过一段时间后,分子筛饱和饱和,需要进行脱附操作。
在这个过程中,通过减压或加温等方法,可以使吸附在分子筛上的氮气脱附出来,并排出空分装置以外。
在产品分离阶段,从空分装置中分离出来的氧气和氮气还需要经过一系列的处理,分别得到高纯度的氧气和氮气产品。
这包括常见的冷却、压缩和精馏等操作。
最后,得到的氧气、氮气和稀有气体可以进行包装和储存,以便后续的运输和使用。
最后,在制品回收阶段,对空分过程中产生的废气和废液进行处理和回收。
其中,废气主要是回收氮气、氧气和其他稀有气体的残余气体,废液主要是废气吸附装置中吸附剂的再生液。
通过适当的处理和回收,可以减少对环境的污染和资源的浪费。
综上所述,空分工艺是一种重要的工艺流程,通过空分可以将混合气体中的氧气和氮气分离出来,生产高纯度的氧气、氮气和稀有气体产品。
这一工艺在医疗、化工、石油、电子等领域具有广泛的应用,对于推动工业化进程和提高生产效率具有重要意义。
空分制氮原理一、介绍空分制氮是一种常见的气体分离技术,它通过将空气中的氮气与其他气体分离,得到高纯度的氮气。
本文将介绍空分制氮的原理及其应用。
二、空分制氮原理空分制氮的原理基于空气中氮气和氧气的差异化,利用吸附剂对气体的吸附和解吸作用进行分离。
1. 吸附剂吸附剂是空分制氮中的关键材料,常用的吸附剂包括活性炭和分子筛。
它们具有高度的选择性,能够选择性地吸附氮气或氧气。
2. 吸附过程空分制氮的吸附过程包括吸附和解吸两个阶段。
在吸附阶段,空气中的氮气和氧气会被吸附剂分别吸附。
氮气由于其较大的分子尺寸和较低的极性而被吸附得更强,而氧气则被吸附得较弱。
在解吸阶段,通过改变吸附条件,使吸附剂释放吸附的氮气和氧气。
3. 分离原理空分制氮的分离原理是基于吸附剂对氮气和氧气的不同吸附能力。
在吸附过程中,氮气被吸附剂更强地吸附,而氧气则被吸附剂吸附得较弱。
通过调整吸附条件和周期,可以实现氮气和氧气的有效分离。
三、空分制氮的应用空分制氮广泛应用于各个领域,下面列举几个常见的应用领域。
1. 化工工业在化工工业中,空分制氮被用于提供高纯度的氮气,用于保护化工设备和储存液体化学品。
此外,氮气还可以用于氧化反应、氢化反应和氯化反应等过程中的惰性气体。
2. 电子工业在电子工业中,空分制氮被用于保护电子元件和设备。
由于氮气具有干燥和惰性的特性,可以有效地防止电子元件的氧化和腐蚀。
3. 食品工业在食品工业中,空分制氮被用于食品包装和贮存过程中的惰性气体。
氮气可以有效地延长食品的保质期,并防止食品变质和氧化。
4. 医疗行业在医疗行业中,空分制氮被用于医药生产和诊断设备。
氮气可以用于药物的生产和储存,同时也可以用于呼吸机和麻醉机等设备的供气。
5. 环境保护在环境保护领域,空分制氮被用于净化废气和废水中的有害物质。
氮气的惰性和高纯度使其成为一种理想的清洗和净化剂。
四、总结空分制氮是一种重要的气体分离技术,通过吸附剂对氮气和氧气的吸附和解吸作用进行分离。
空分装置基本原理和过程以空分装置基本原理和过程为标题,我们来详细介绍一下。
一、基本原理:空分装置是一种用于将混合气体分离成不同组分的装置。
其基本原理是根据组分在给定条件下的物理性质差异,通过一系列分离步骤将混合气体分离成纯净的组分。
常见的物理性质包括沸点、相对挥发性、溶解度等。
二、过程:空分装置的过程通常包括压缩、冷却、脱水、除尘、分离等多个步骤。
下面将逐一介绍各个步骤的基本原理和操作过程。
1. 压缩:混合气体首先经过压缩,提高气体的密度和压力,以便后续步骤的操作。
压缩过程通常采用压缩机完成。
2. 冷却:经过压缩后的混合气体需要冷却,以降低气体温度并增加气体的相对密度。
冷却过程通常采用冷却器,利用冷却介质(如水或液氨)与混合气体进行热交换,使气体冷却至接近露点温度。
3. 脱水:混合气体中的水分会影响后续分离步骤的效果,因此需要对气体进行脱水处理。
常见的脱水方法包括冷凝法、吸附法和膜分离法。
冷凝法利用温度差使水分在冷凝器中凝结,吸附法利用吸附剂吸附水分,膜分离法则利用特殊的膜材料将水分与气体分离。
4. 除尘:混合气体中可能存在固体颗粒或液滴,需要进行除尘处理,以保护后续设备的正常运行。
除尘方法包括重力沉降、惯性除尘器、过滤器等。
5. 分离:经过前面的处理步骤后,混合气体进入分离装置进行最终的组分分离。
常见的分离方法包括吸收、吸附、膜分离和蒸馏等。
吸收法利用不同组分在吸收剂中的溶解度差异,将目标组分吸收至吸收剂中,然后再通过脱吸收剂的方式将目标组分从吸收剂中提取出来。
吸附法利用不同组分在吸附剂上的相对吸附性差异,将目标组分吸附在吸附剂上,然后通过变换吸附剂的条件(如温度、压力等)将目标组分从吸附剂上解吸出来。
膜分离法利用薄膜的选择性透过性,将目标组分通过膜材料的选择性通透性而分离出来。
蒸馏法利用组分的沸点差异,在适当的压力下将混合物加热至沸腾,然后通过冷凝和回收收集不同沸点的组分。
以上就是空分装置的基本原理和过程。
空分气体安全操作规程一、空分分离常用方法空气中的要紧成分是氧气和氮,它们分别以分子状态存在。
分子是保持它原有属性的最小颗粒,直径在10-8cm,而分子的数目专门多,同时不停地在作无规则运动,因此,空气中的氧、氮等分子是平均地相互混合在一起的,要将它们分离开始较困难的。
目前要紧有三种分离方法:(1)低温法(2)吸附法(3)膜分离法二、工艺流程2.1 差不多原理和过程空气分离的差不多原理,是利用液化空气中各组份沸点的不同而将各组份分离出来,要达到那个目的,空分装置的工作包括下列过程:(1) 空气的过滤和压缩(2) 空气中水份和二氧化碳的清除(3) 空气被冷却到液化温度(4) 冷量的制取(5) 液化(6) 精馏(7) 危险杂质的排除2.1.1 空气的过滤和压缩:大气中的空气先通过空气自洁式过滤器过滤其灰尘等机械杂质,然后在空气透平压缩机中被压缩到所需的压力。
•压缩产生的热量被冷却水带走。
2.1.2 空气中水份和二氧化碳碳氢化合物的清除:加工空气中的水份和二氧化碳若进入空分设备的低温区后,会形成冰和干冰,就会堵塞换热器的通道和塔板上的小孔。
因而配用分子筛吸附器来预先清除空气中的水份和二氧化碳,进入分子筛吸附器的空气温度约为~21℃。
分子筛吸附器成对切换使用,一只工作时另一只在再生。
2.1.3 空气被冷却到液化温度:空气的冷却是在中压换热器I、中压换热器II中进行的,在其中循环空气被来自膨胀后的返流空气和返流气体冷却、增压空气被来自膨胀后的返流空气和返流气体冷却到超临界状态。
与此同时,冷的返流气体被复热。
2.1.4 冷量的制取:由于绝热缺失、换热器的复热不足缺失和冷箱中向外直截了当排放低温流体,分馏塔所需的冷量是由空气在高、低温膨胀机中等熵膨胀和等温节流效应而获得的。
2.1.5 液化在起动时期,加工空气在中压换热器I、中压换热器II和过冷器中与返流冷气流换热而被部分液化。
在正常运行中,氮气和液氧的热交换是在冷凝蒸发器中进行的,由于两种流体压力的不同,氮气被液化而液氧被蒸发,氮气和液氧分别由下塔和上塔供给,这是保证上、下塔精馏过程的进行所必需具备的条件。
分离氮气和氧气的方法
分离氮气和氧气的方法是通过空分法进行的。
这种方法使用氧气和氮气的沸点差异,将它们从空气中分离出来。
具体过程如下:
1. 压缩空气:将空气经过压缩,使氧气和氮气的密度增加。
2. 冷却空气:将压缩后的空气通过冷却器冷却,使氧气和氮气的沸点差异更加明显。
3. 分离氧气和氮气:将已经冷却的空气通过吸附剂进行分离。
吸附剂通常是一种多孔的物质,如分子筛。
当空气通过吸附剂时,氮气会被吸附在吸附剂上,而氧气会通过吸附剂流出。
这样就可以将氮气和氧气分离开来。
4. 再生吸附剂:吸附剂吸附了氮气之后,需要经过再生,将吸附在吸附剂上的氮气释放出来。
这个过程通常是通过提高温度来实现的,被释放的氮气可以重新用于其他目的。
以上就是分离氮气和氧气的主要过程和方法。
这种方法在工业生产中得到了广泛的应用,可以用来生产氧气、氮气和其他化学品。
- 1 -。
一、描述:采用低温精馏的方法,将空气压缩机岗位送来的0.5MPa原料空气经预冷、净化、精馏、分离等过程,生产出合格的氧、氮气体,送氧、氮压机岗位供甲醇主装置使用.空分装置的工作包括下列过程:⑴空气的过滤和压缩⑵空气中水份和二氧化碳的消除⑶空气被冷却到液化温度⑷冷量的制取⑸液化⑹精馏⑺危险杂质的排除1. 空气的过滤和压缩大气中的空气先经过空气过滤器过滤其灰尘等机械杂质,然后在空气透平压缩机中被压缩到所需的压力,由中间冷却器提供级间冷却,压缩产生的热量被冷却水带走。
2. 空气中水份和二氧化碳的清除原料空气中的水份和二氧化碳若进入空分设备的低温区后,会形成冰和干冰,就会阻塞换热器的通道和塔板上的小孔,因而配用分子筛吸附器来予先清除空气中的水份和二氧化碳,进入分子筛吸附器的空气温度约为10℃。
分子筛吸附器成对切换使用,一只工作时另一只在再生。
3 .空气被冷却到液化温度空气的冷却是在主换热器中进行的,在其中空气被来自精馏塔的返流气体冷却到接近液化温度。
与此同时,低温返流气体被复热。
4. 冷量的制取由于绝热损失、换热器的复热不足损失和冷箱中向外直接排放低温流体,分馏塔所需的冷量是由空气在膨胀机中等熵膨胀和等温节流效应而获得的。
5. 液化在起动阶段,加工空气在主换热器和过冷器中与返流低温气体换热而被部分液化,在正常运行中,氮气和液氧的热交换是在冷凝蒸发器中进行的,由于两种流体压力的不同,氮气被液化而液氧被蒸发,氮气和液氧分别由下塔和上塔供给,这是保证上、下塔精馏过程的进行所必需具备的条件(注:起动时,大部分气体也是在主冷中被冷却至液化温度而被液化的)。
6. 精馏空气中主要组份的物理特性如下表2.1和表2.2表2.2空气中99.04%是氧气和氮气,0.932%是氩气,它们基本不变。
氢、二氧化碳和碳氢化合物视地区和环境在一定范围内变化,空气中的水蒸汽含量随着饱和温度和地理环境条件影响而变化较大。
水蒸汽和二氧化碳具有和空气大不相同的性质,在大气压力下,水蒸汽达到0℃和二氧化碳达到-79℃时,就分别变成冰和干冰,就会阻塞板式换热器的通道和筛板上的小孔。
空分车间生产基本工艺与原理1、空分综述1.1、空气及空气分离空气存在于我们地球表面,属典型的多组分混合物,主要成分有氮气、氧气及惰性气体,按体积含量计,氧气占20.95%、氮气占78.09%、氩占0.932%,此外还有微量的氢、氖、氦、氪、氙、氡,以及不定量的水蒸汽及二氧化碳。
在标准状况下,空气液化温度为87.7K。
空气分离是指把空气通过一定的方法分离出氧气、氮气和惰性气体的过程。
目前分离的方法主要有深冷法、变压吸附法、膜分离法,它们各有自己的优缺点。
变压吸附法、膜分离法主要用于低纯度、小型空分设备;焦炉煤气制合成氨项目用产品气量大且纯度要求高,故采用深冷法。
深冷法基本原理是:将空气液化后,根据各组份沸点不同,通过精馏将各组分进行分离。
空气分离的主要产品为氧气及部分氮气。
1.2、空分装置简介1.2.1.装置特点我公司选用了由开封黄河制氧厂生产的第六代空分装置,流程上采用全低压、外压缩,不提氩的结构。
主要特点:⑴采用带自动反吹的自洁式空气过滤器,保证了运行周期及运行效果;⑵预冷系统利用多余的污氮气及氮气对水进行冷却,降低冷水机组热负荷,减小冷水机组功率选型,不但节能且充分利用了富余气体干基吸湿潜热;⑶采用分子筛吸附,大大简化空气净化工艺,延长了切换周期,减少加工空气切换损失。
利用分子筛所具有的选择性高吸附率,提高了净化效果,减少碳氢化合物、氮氧化物及二氧化碳进入液氧的量,确保主冷的安全同时延长装置大加温周期;⑷采用增压机制动的透平膨胀机,提高单位气体制冷量,减少膨胀空气对上塔精馏段的影响,优化了精馏操作;⑸分馏塔下塔采用高效塔板,上塔采用规整填料,降低精馏塔操作压力,提高了塔板和填料的精馏效率,保证了氧的提取率、降低制氧单耗;⑹设置液氧贮槽及汽化系统,加大主冷液氧排放量,杜绝碳氢化合物、氮氧化物及二氧化碳在液氧中析出,最大限度保证主冷安全。
液氧汽化系统为空分装置短停时系统用氧提供了方便,确保后工段工艺连续,减少后工段开停车损失;⑺装置采用DCS集散控制系统,使操作更加方便和稳定。
空分设备工作原理
空分设备是一种用于分离和纯化混合物中组分的装置。
它通常由列管、内波纹管、调节装置和收集器等组成。
空分设备的工作原理可以分为以下几个步骤:
1. 进料:混合物通过进料管道进入空分设备的列管。
2. 分离:混合物在列管内经历物质分离过程。
该过程是基于组分之间的物理和化学特性差异进行的。
常见的分离原理包括蒸馏、吸附、萃取等。
3. 内波纹管:在分离过程中,列管内的内波纹管起到关键作用。
内波纹管有助于提高传质效率和增加传质面积,从而增强分离效果。
4. 调节装置:调节装置用于控制混合物的进料速度、温度、压力等参数。
调节装置可以根据具体的实验或工业需求进行调整,以实现最佳的分离效果。
5. 收集器:分离后的组分分别经过收集管道进入收集器。
收集器可以单独收集每个组分,以便后续使用。
通过以上步骤,空分设备可以有效地将混合物中的组分进行分离和纯化,从而得到所需的纯净物质。
空分设备广泛应用于石油化工、制药、环保等领域。
空分的主要设备及原理以空分的主要设备及原理为标题,我们来探讨一下空分技术中的核心设备和其工作原理。
空分技术是一种利用气体混合物中成分的不同物理性质进行分离的方法。
它广泛应用于工业领域,包括空气分离、石油化工、化学制药等。
而空分的主要设备包括蓄热器、分离塔和冷却器。
我们来介绍一下蓄热器。
蓄热器是空分装置中的重要组成部分,它的主要作用是通过吸收和释放热量来提高分离塔的效率。
当混合气体进入蓄热器时,其温度会显著下降。
在蓄热器内部,有一种叫做吸附剂的物质,它能够吸附和释放气体分子。
当混合气体通过蓄热器时,其中的一部分气体分子会被吸附在吸附剂上,从而使其他成分的浓度得以提高。
然后,在蓄热器中加热吸附剂,使其释放吸附的气体分子。
通过这种方式,蓄热器能够实现气体的分离和浓缩。
接下来,我们来介绍一下分离塔。
分离塔是空分技术中最关键的设备之一,它主要用于将混合气体分离成不同成分。
分离塔通常是一个垂直圆筒形的容器,内部有多个层,每个层之间通过板式堵塞物分隔开来。
混合气体从分离塔的底部进入,然后通过各个层之间的孔洞向上流动。
不同成分的气体在分离塔中会发生物理或化学反应,从而实现分离。
例如,在空气分离中,通过调整分离塔中的压力和温度,可以将空气分离成液态氮、液态氧和其他稀有气体。
分离塔中的板式堵塞物能够增加气体与液体之间的接触面积,从而提高分离效率。
我们来介绍一下冷却器。
冷却器是空分技术中的另一个重要设备,它用于将分离塔中的气体冷却成液态。
冷却器通常是一个管道或换热器,通过将分离塔中的气体与冷却介质进行热交换,使气体温度降低,从而使其变成液态。
冷却器的工作原理是基于热量传递的原理,即将热量从高温物体传递到低温物体。
在空分中,冷却器能够将分离塔中的气体冷却成液态,方便后续的收集和利用。
空分技术中的主要设备包括蓄热器、分离塔和冷却器。
蓄热器通过吸附和释放热量来提高分离效率,分离塔通过物理或化学反应将混合气体分离成不同成分,冷却器则用于将气体冷却成液态。
空分流程详细讲解
在化工生产中,空分技术是一项非常重要的工艺,它能够将空气中的氧气、氮
气等气体进行分离,以满足工业生产和生活需求。
下面我们将详细介绍空分的工艺流程。
首先,空分的工艺流程可以分为压缩、预冷、精馏、蒸汽回收等步骤。
1. 压缩空气从大气中获取,首先需要将其进行压缩,以增加气体分子的密度,提高分离效率。
压缩后的空气会进入压缩机,经过一系列压缩工艺,压缩比达到要求后,进入下一个环节。
2. 预冷压缩后的空气含有大量水分和杂质,需要通过冷却器进行预冷处理。
在预冷过程中,空气中的水分和杂质会凝结成液体,然后通过分离装置将其分离出去,以保证后续工艺的顺利进行。
3. 精馏精馏是空气分离的核心步骤,通过精馏塔将空气中的氧气、氮气等气体按照其沸点的不同进行分离。
在精馏塔内,气体混合物被加热至沸点,然后在不同高度上凝结成液体,从而实现气体的分离。
4. 蒸汽回收在精馏过程中,会产生大量的废热,为了提高能源利用效率,通常会将废热通过蒸汽回收装置进行回收利用。
蒸汽回收装置可以将废热转化为蒸汽,用于加热其他部分的工艺设备,实现能量的循环利用。
通过以上流程,空分技术能够高效地将空气中的氧气、氮气等气体进行有效分离,为工业生产和生活提供了重要的物质基础。
在实际应用过程中,还需要根据不同的需求和工艺要求进行调整和优化,以实现最佳的分离效果和能源利用效率。
空分技术作为一种成熟的工艺,在化工领域中扮演着至关重要的角色,不仅广
泛应用于气体生产、化工生产等领域,还在医疗、食品加工等领域有着重要的应用价值。
随着工业化进程的不断推进,空分技术将继续发挥重要作用,为人类的生产生活提供更广阔的发展空间。
气体分离的原理概述气体分离是一种将混合气体中的组分分离出来的过程,它在许多领域都有重要的应用,如天然气处理、空分、化工生产等。
本文将介绍气体分离的原理以及常见的分离方法。
分离原理气体分离的原理基于物理和化学各自的特性,如气体分子的大小、形状、极性等。
常见的气体分离原理包括渗透、吸附、膜分离、化学反应等。
1. 渗透分离渗透分离是利用不同气体分子的渗透速率差异来实现分离的方法。
在一个渗透膜中,较小分子的渗透速率比较大,因此可以通过加压或降压的方式将较小分子从混合气体中分离出来。
2. 吸附分离吸附分离是利用吸附剂对气体分子的吸附选择性来实现分离的方法。
吸附剂可以是固体、液体或者半固体,通过调节吸附剂的性质和操作条件,使得目标气体能够被吸附,而其他气体则被排除。
3. 膜分离膜分离是指利用半透膜对气体分子的选择性渗透来实现分离的方法。
半透膜可以是有机膜、无机膜或者聚合物膜,通过控制温度、压力和成膜材料的选择,可以将目标气体从混合气体中分离出来。
4. 化学反应化学反应分离是指利用气体分子的化学反应性质来实现分离的方法。
通过选取适当的反应物和反应条件,使得目标气体能够在反应中转化成其他物质,从而实现分离。
分离方法气体分离可以通过多种方法进行,下面将详细介绍几种常见的分离方法。
1. 常压吸附分离常压吸附分离是指在常压下通过吸附剂将目标气体分离出来的方法。
常见的吸附剂有活性炭、沸石等,可以通过调节温度和吸附时间来实现对目标气体的选择性吸附。
2. 压力吸附分离压力吸附分离是指在一定压力下通过吸附剂将目标气体分离出来的方法。
通过调节压力和温度,可以控制吸附剂对不同气体分子的吸附选择性,从而实现分离。
3. 渗透分离渗透分离可以通过加压或者降压的方式实现,其原理是根据不同气体分子的渗透速率差异将气体分离出来。
常见的渗透分离方法有压力摇摆吸附、压力变化吸附等。
4. 膜分离膜分离是通过半透膜将混合气体分离成纯净气体和残余气体的方法。
空分设备结构及工作原理空分设备是一种用于分离混合物中不同成分的装置,主要用于工业生产过程中的物质分离和纯化,包括化学工业、制药工业、食品工业、石油化工等领域。
空分设备的工作原理基于物质的不同性质,通过差异化的传质方式,实现混合物的组分分离。
目前,常见的空分设备主要包括蒸馏塔、吸附塔、离心机、膜分离设备等。
一、蒸馏塔蒸馏塔是一种将混合物中的组分通过升华、换热和冷凝等过程分离出来的设备。
蒸馏塔通常由塔体、填料、冷凝器、分离器等组成。
其工作原理是将混合物加热至其中一温度,使其中其中一组分蒸发,并通过填料层的传质过程,从而达到组分分离的目的。
二、吸附塔吸附塔是一种利用吸附剂对混合物中特定组分进行附着并分离的设备。
吸附塔通常由塔体、吸附剂床层、进料口、干燥气口等组成。
其工作原理是将混合物通过塔体,使特定组分在吸附剂上进行吸附,而其他组分则通过塔体输出,从而实现混合物的组分分离。
三、离心机离心机是一种利用组分在离心力作用下产生的离心力差异实现分离的设备。
离心机通常由离心转子、离心管、电机等组成。
其工作原理是将混合物置于离心管中,通过高速旋转的离心转子产生差异化的离心力,使混合物中的重组分和轻组分分别沉降和浮向不同位置,从而实现组分分离。
四、膜分离设备膜分离设备是一种利用薄膜的选择性渗透作用实现组分分离的设备。
膜分离设备通常由膜组件、进料口、产物口等组成。
其工作原理是将混合物通过薄膜,利用薄膜孔隙的选择性渗透作用,使其中其中一组分渗透至另一侧,而其他组分则被滞留在原侧,从而实现组分分离。
总之,空分设备在工业生产中起着至关重要的作用,通过差异化的传质方式,实现混合物中各种组分的高效分离和纯化。
以上所述仅为空分设备的几种典型工作原理,实际应用中还有其他形式和方式的空分设备,其原理和结构会根据分离需求的具体情况而有所不同。
深冷空分制氧是一种通过分离空气中的氧气和氮气的方法,通常用于工业生产氧气和氮气。
该过程基于空气中的氧气和氮气在不同温度下具有不同沸点的原理。
以下是一种深冷空分制氧的主要过程:
1. 空气过滤:首先,将空气中的灰尘和机械杂质去除,以确保进入下一步的空气干净。
2. 压缩:将过滤后的空气压缩至一定压力,通常为0.7MPa。
压缩过程会产生热量,需要通过水冷却器进行换热,以防止空气温度过高。
3. 预冷:经过压缩后的空气进入预冷机组进行预冷,使其温度降至约-10℃至-20℃。
在这个过程中,部分水蒸气会凝结成液体,从而减少后续分离过程中的负荷。
4. 分离:预冷后的空气进入分馏塔,塔内设有多个冷却器,逐级降低空气温度。
在冷却过程中,氧气和氮气根据其沸点差异逐渐分离。
氮气沸点较低,容易汽化,而氧气沸点较高,容易冷凝。
5. 纯化:经过分馏塔分离后的氧气和氮气分别进入分子筛纯化器,去除其中的残留水蒸气、二氧化碳、乙炔等杂质。
分子筛纯化器采用吸附剂,如MS1201 或MS1202,实现对气体的净化。
6. 透平膨胀机:为了降低氧气的温度,可以使用透平膨胀机。
透平膨胀机是一种制冷装置,利用氧气和氮气之间的温差实现制冷。
制冷后的氧气温度降至约-196℃,氮气温度降至约-183℃。
7. 液氧和液氮储存:经过透平膨胀机后的液氧和液氮分别储存在储槽中,供工业生产和其他领域使用。
空分精馏塔工作原理空分精馏塔是一种常见的化工设备,其工作原理是利用物质的沸点差异进行分离。
在空分精馏塔中,混合气体经过加热后,不同成分的气体会在塔内升华至不同高度,从而实现分离的目的。
下面我们将详细介绍空分精馏塔的工作原理。
首先,空分精馏塔是一种通过加热混合气体,使其成分沸点差异得以分离的设备。
在塔内,混合气体会经过加热后被引入塔底,然后气体在塔内不断上升,同时不同成分的气体会在不同高度凝结成液体,最终实现分离。
其次,空分精馏塔的工作原理基于混合气体中不同成分的沸点差异。
在加热后,沸点较低的成分会首先凝结成液体,沸点较高的成分则会在塔内上升到更高的位置才开始凝结。
通过这种方式,不同成分的气体会在塔内实现分层,从而达到分离的效果。
另外,空分精馏塔在工作过程中还需要通过塔顶和塔底的分流装置来调节不同成分气体的流向,以保证分离效果。
通过合理设计和调节分流装置,可以使得不同成分的气体能够顺利地在塔内分离并分别输出。
此外,空分精馏塔还需要配备冷凝器和除液器等设备,以便将凝结的液体进行收集和处理。
冷凝器通过降温将气态的成分凝结成液体,而除液器则用于分离不同成分的液体,确保纯度和质量。
最后,空分精馏塔的工作原理是基于物质的沸点差异实现分离的。
通过加热混合气体,利用不同成分的沸点差异,使得气体在塔内分层凝结,最终实现不同成分的分离。
同时,配备合理的分流装置、冷凝器和除液器等设备,可以保证分离过程的顺利进行。
综上所述,空分精馏塔是一种利用物质的沸点差异进行分离的化工设备,其工作原理简单而有效。
通过加热混合气体,利用不同成分的沸点差异,实现气体的分层凝结,最终达到分离的效果。
在实际应用中,需要合理设计和配备相关设备,以确保分离过程的顺利进行。
空分的基本知识1.1.什么是空分空分就是空气分离的简称。
1.2空分的原料:空气空气的成分:主要成分是O2、N2和Ar;体积比:O2:N2:Ar=20.95% :78.09% :0.932%;此外还含有微量的氢及氖、氦、氪、氙等稀有气体;根据地区条件不同,还含有不定量的二氧化碳、水蒸气及乙炔等碳氢化合物。
1.3 空气分离的方法:吸附法、膜分离法、低温精馏法。
1吸附法让空气通过分子筛吸附塔,利用吸附塔中特殊的分子筛对空气中的氧、氮组分选择性吸附而使空气分离获得氧气。
2.膜分离法利用有机聚合膜的选择渗透性,从气体混合物中将氧、氮分离,获得富氧气体。
3.低温精馏法:我们公司采用的是低温精馏法,因为前二者不能同时产出大量的高质量的气体。
只有低温精馏法能够满足大批量高纯度的生产需要。
低温精馏法他是利用多组分构成的液体介质里,各组分沸点的不同,进行多次部分冷凝和多次部分蒸发,从而逐步达到分离的目的。
沸点:在一定压力下,液体温度达到沸腾时的温度。
压力越高,沸点越高;压力越低,沸点越低。
1)O2沸点:-183℃(90K)2)N2沸点:-196℃(77K)3)Ar沸点:-186℃(87K)4)液空的沸点:-191℃(82K)5)液空的冷凝点:-194℃(79K)空分主要分为下面几个系统;空气预冷系统目的;空气预冷系统是串接于空气压缩机系统和分子筛吸附系统之间,旨在降低进分子筛纯化器的空气温度,来减少空气的含水量,并通过水洗涤除去大部分水溶性有害物质,起的冷却,洗涤,净化作用以保证分子筛纯化器的安全工作。
主要设备由空冷塔,水冷塔,和四水泵组成;空冷塔的流程;压缩空气从空冷塔下部由下至上穿过空冷塔与至上而下的常温水,冷冻水逆流接触,进行热质交换冷却空气。
空冷塔原理;对于空冷塔,当进塔的热空气为不饱和状态,进塔水温低于进塔空气的露点时,经过塔内的气液逆流接触,空气为减湿降温过程,传热方向都是由空气传给水;而水的出塔温度将可能高于进塔空气露点时,塔底的传质是由水传给空气,而塔顶的传质是由空气传给水,故在全塔内传质方向是不同的。
空分行业知识点总结一、空分行业概述空分行业是指空分设备的制造、运营和维护领域。
空分设备是一种用于分离大气中的氮、氧和稀有气体的装置,广泛应用于石油化工、冶金、医疗、电子、食品等领域。
空分行业在现代工业中具有重要作用,其发展水平直接关系到国家经济的发展和国际竞争力。
二、空分设备分类1. 空分设备按工艺流程可分为常压空分设备和低温空分设备。
2. 常压空分设备主要包括压缩空气系统、冷却系统、分离系统、精馏系统等。
3. 低温空分设备主要包括膨胀机、空分列塔、凝结器、空分风机等。
三、空分设备原理1. 常压空分设备原理:利用分子筛或吸附剂将压缩空气中的杂质气体分离,然后通过压缩机将气体压缩,通过换热器进行降温,最终将气体分离为氮气、氧气和稀有气体。
2. 低温空分设备原理:通过膨胀机将压缩空气膨胀,降低温度,然后通过空分列塔进行分离,最终得到高纯度的氮气、氧气和稀有气体。
四、空分设备的制造1. 空分设备的制造包括设计、制造、安装和调试等环节,需要精密的工艺流程和设备。
2. 制造空分设备需要考虑设备的工作条件、材料选择、焊接工艺、气密性、安全性等因素,确保设备性能和稳定性。
五、空分设备的运营1. 空分设备的运营包括设备启停、检修、清洁、维护等工作,需要遵守操作规程和安全操作规范,确保设备安全稳定运行。
2. 运营过程中要定期对设备进行检测、维护和保养,及时处理设备问题,确保设备的长期可靠运行。
六、空分设备的市场应用1. 空分设备广泛应用于石化、冶金、电子、医药、食品等领域,满足不同行业对氮气、氧气和稀有气体的需求。
2. 随着工业技术的进步,空分设备的应用市场不断扩大,对设备性能和质量要求也越来越高。
七、空分行业的发展趋势1. 空分行业在绿色、高效、低碳发展的方向上不断前进,注重环保和节能减排。
2. 随着科技的发展,空分设备的工艺和设备技术将不断更新,提高设备性能和智能化水平。
3. 空分行业将逐步向大型化和集约化发展,提高设备产能和生产效率。
制氮和空分是两个不同的概念,但它们之间存在一定的联系。
空分是指将空气分离成氧气和氮气,以及氩气、二氧化碳等其他气体。
空分的方法包括深冷空分法、分子筛空分法(PSA)和膜空分法。
其中,深冷空分法是一种传统的空气分离方法,它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。
液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气和氧气。
制氮是指制备氮气,通常使用的方法包括深冷空分法、分子筛空分法(PSA)和膜空分法。
其中,PSA制氮法是以吸附剂(如优质碳分子筛)内部表面对气体分子的物理吸附为基础,利用吸附剂在一定压力下对不同气体的吸附量不同的特性来实现气体的分离。
膜分离制氮是以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。
总之,制氮和空分是两个不同的概念,但它们之间存在一定的联系。
制氮是制备氮气的方法,而空分是将空气分离成氧气、氮气和其他气体的过程。