2019年高考数学(浙江专版)精选模拟卷10含答案(详细解析版)
- 格式:doc
- 大小:5.10 MB
- 文档页数:16
2019年普通高等学校招生全国统一考试(浙江卷)一、选择题1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B等于() A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}答案 A解析由题意可得∁U A={-1,3},则(∁U A)∩B={-1}.2.渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.3.若实数x,y满足约束条件则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158 B.162 C.182 D.324答案 B解析由三视图可知,该几何体是一个直五棱柱,所以其体积V=×(4×3+2×3+6×6)×6=162.5.设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab≤4时,取a=8,b=,满足ab≤4,但a+b≥4,所以必要性不成立,所以“a+b≤4”是“ab≤4”的充分不必要条件.6.在同一直角坐标系中,函数y=,y=log a(a>0,且a≠1)的图象可能是() A. B.C. D.答案 D解析若0<a<1,则函数y=是增函数,y=log a是减函数且其图象过点,结合选项可知,选项D可能成立;若a>1,则y=是减函数,而y=log a是增函数且其图象过点,结合选项可知,没有符合的图象.7.设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B 的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β答案 B解析由题意,不妨设该三棱锥的侧棱长与底面边长相等,因为点P是棱VA上的点(不含端点),所以直线PB与平面ABC所成的角β小于直线VB与平面ABC所成的角,而直线VB 与平面ABC所成的角小于二面角P-AC-B的平面角γ,所以β<γ;因为AC⊂平面ABC,所以直线PB与直线AC所成的角α大于直线PB与平面ABC所成的角β,即α>β.9.设a,b∈R,函数f(x)=若函数y=f(x)-ax-b恰有3个零点,则()A.a<-1,b<0 B.a<-1,b>0C.a>-1,b<0 D.a>-1,b>0答案 C解析由题意可得,当x≥0时,f(x)-ax-b=x3-(a+1)x2-b,令f(x)-ax-b=0,则b =x3-(a+1)x2=x2[2x-3(a+1)].因为对任意的x∈R,f(x)-ax-b=0有3个不同的实数根,所以要使满足条件,则当x≥0时,b=x2[2x-3(a+1)]必须有2个零点,所以>0,解得a>-1.所以b<0.10.设a,b∈R,数列{a n}满足a1=a,a n+1=+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>10答案 A解析当b=时,因为a n+1=+,所以a2≥,又a n+1=+≥a n,故a9≥a2×()7≥×()7=4,a10>≥32>10.当b=时,a n+1-a n=2,故当a1=a=时,a10=,所以a10>10不成立.同理b=-2和b=-4时,均存在小于10的数x0,只需a1=a=x0,则a10=x0<10,故a10>10不成立.二、填空题11.复数z=(i为虚数单位),则|z|=________.答案解析z===-,所以|z|==.12.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2解析方法一设过点A(-2,-1)且与直线2x-y+3=0垂直的直线方程为l:x+2y+t=0,所以-2-2+t=0,所以t=4,所以l:x+2y+4=0,令x=0,得m=-2,则r==.方法二因为直线2x-y+3=0与以点(0,m)为圆心的圆相切,且切点为A(-2,-1),所以×2=-1,所以m=-2,r==.13.在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.14.在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD=________,cos∠ABD=________.答案解析在Rt△ABC中,易得AC=5,sin C==.在△BCD中,由正弦定理得BD=×sin∠BCD=×=,sin∠DBC=sin [π-(∠BCD+∠BDC)]=sin(∠BCD+∠BDC)=sin∠BCD·cos∠BDC+cos∠BCD·sin∠BDC=×+×=.又∠ABD+∠DBC=,所以cos∠ABD=sin∠DBC=.15.已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.答案解析依题意,设点P(m,n)(n>0),由题意知F(-2,0),|OF|=2,所以线段FP的中点M在圆x2+y2=4上,所以2+2=4,又点P(m,n)在椭圆+=1上,所以+=1,所以4m2-36m-63=0,所以m=-或m=(舍去),当m=-时,n=,所以k PF==.16.已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤,则实数a的最大值是________.答案解析f(t+2)-f(t)=[a(t+2)3-(t+2)]-(at3-t)=2a(3t2+6t+4)-2,因为存在t∈R,使得|f(t+2)-f(t)|≤,所以-≤2a(3t2+6t+4)-2≤有解.因为3t2+6t+4≥1,所以≤a≤有解,所以a≤max=,所以a的最大值为.17.已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是________,最大值是________.答案02解析以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,如图,则A(0,0),B(1,0),C(1,1),D(0,1),所以λ1+λ2+λ3+λ4+λ5+λ6=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1+λ2+λ3+λ4+λ5+λ6|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1+λ2+λ3+λ4+λ5+λ6|取得最大值=2.三、解答题18.设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=2+2的值域.解(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或.(2)y=2+2=sin2+sin2=+=1-=1-cos.因此,函数的值域是.19.如图,已知三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.方法一(1)证明如图,连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F,又A1E,A1F⊂平面A1EF,A1E∩A1F=A1,所以BC⊥平面A1EF.因此EF⊥BC.(2)解取BC的中点G,连接EG,GF,则EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.连接A1G交EF于O,由(1)得BC⊥平面EGF A1,则平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.由于O为A1G的中点,故EO=OG==,所以cos∠EOG==.因此,直线EF与平面A1BC所成角的余弦值是.方法二(1)证明连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC.如图,以E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E-xyz. 不妨设AC=4,则A1(0,0,2),B(,1,0),B1(,3,2),F,C(0,2,0).因此,=,=(-,1,0).由·=0得EF⊥BC.(2)解设直线EF与平面A1BC所成角为θ.由(1)可得=(-,1,0),=(0,2,-2).设平面A1BC的法向量为n=(x,y,z).由得取n=(1,,1),故sin θ=|cos〈,n〉|==.因此,直线EF与平面A1BC所成角的余弦值为.20.设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.(1)求数列{a n},{b n}的通项公式;(2)记c n=,n∈N*,证明:c1+c2+…+c n<2,n∈N*.(1)解设数列{a n}的公差为d,由题意得a1+2d=4,a1+3d=3a1+3d,解得a1=0,d=2.从而a n=2n-2,n∈N*.所以S n=n2-n,n∈N*.由S n+b n,S n+1+b n,S n+2+b n成等比数列得(S n+1+b n)2=(S n+b n)(S n+2+b n).解得b n=(-S n S n+2).所以b n=n2+n,n∈N*.(2)证明c n===,n∈N*.我们用数学归纳法证明.①当n=1时,c1=0<2,不等式成立;②假设n=k(k∈N*,k≥1)时不等式成立,即c1+c2+…+c k<2.那么,当n=k+1时,c1+c2+…+c k+c k+1<2+<2+<2+=2+2(-)=2.即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2对任意n∈N*成立.21.如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=y+1,代入y2=4x,得y2-y-4=0,故2ty B=-4,即y B=-,所以B.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0.即C,G.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).22.已知实数a≠0,设函数f(x)=a ln x+,x>0.(1)当a=-时,求函数f(x)的单调区间;(2)对任意x∈均有f(x)≤,求a的取值范围.注e=2.718 28…为自然对数的底数.解(1)当a=-时,f(x)=-ln x+,x>0.f′(x)=-+=,令f′(x)>0,得x>3,令f′(x)<0,得0<x<3,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤,得0<a≤.当0<a≤时,f(x)≤等价于--2ln x≥0.令t=,则t≥2.设g(t)=t2-2t-2ln x,t≥2,则g(t)=2--2ln x.(i)当x∈时,≤2,则g(t)≥g(2)=8-4-2ln x.记p(x)=4-2-ln x,x≥,则p′(x)=--==.故当x变化时,p′(x),p(x)的变化情况如下表:所以,p(x)≥p(1)=0.因此,g(t)≥g(2)=2p(x)≥0.(ii)当x∈时,g(t)≥g=.令q(x)=2ln x+(x+1),x∈,则q′(x)=+1>0,故q(x)在上单调递增,所以q(x)≤q.由(i)得,q=-p<-p(1)=0.所以,q(x)<0.因此,g(t)≥g=->0. 由(i)(ii)知对任意x∈,t∈[2,+∞)时,g(t)≥0,即对任意x∈,均有f(x)≤.综上所述,a的取值范围是.。
绝密 ★ 启用前2019年高考模拟试题(十)文科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}|2M x x =≥-,{}210x N x =->,则()M C N =R( )A .{}0x x >B .{}|2x x ≥-C .{}|20x x -≤<D .{}|20x x -≤≤2.若复数i1i a z +=-(i 为虚数单位,a ∈R )是纯虚数,则实数的值是( )A .B .C .D .3.等差数列前项和为,若,是方程的两根,则( )A .B .C .D .4.已知两个单位向量a 和b 夹角为60︒,则向量-a b 在向量a 方向上的投影为( ) A .B .C .D .5.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为2s ,则( )A .4x =,22s <B .4x =,22s >C .4x >,22s <D .4x >,22s >6.双曲线()222210,0x y a b a b -=>>的一条渐近线与直线平行,则它的离心率为( )a 1-112-12{}n a n n S 4a 10a 2810x x -+=13S =585456521-112-12210x y -+=此卷只装订不密封级 姓名 准考证号 考场号 座位号AB .CD .7.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为,则该几何体的体积为()A .644π-B .642π-C .643π-D .64π-8.已知甲、乙、丙三人中,一人是军人,一人是工人,一人是农民.若乙的年龄比农民的年龄大;丙的年龄和工人的年龄不同;工人的年龄比甲的年龄小,则下列判断正确的是( ) A .甲是军人,乙是工人,丙是农民 B .甲是农民,乙是军人,丙是工人 C .甲是农民,乙是工人,丙是军人 D .甲是工人,乙是农民,丙是军人9.执行如图所示的程序框图,输出的值为( )A .B .C .D .10.已知实数,满足30200x y x y x y +-≥-≤-≥⎧⎪⎨⎪⎩,若,则的最小值为( )A .B C .D .221n 6824x y ()221z x y =-+z 125211.已知定义在R 上的函数的导函数为()f x ',且()()1f x f x '+>,,则不等式()1e 110x f x --+≤的解集是( )A .B .C .D . 12.已知抛物线的焦点为,,过点F ,1F 的直线与抛物线在第一象限的交点为,且抛物线在点处的切线与直线垂直,则的最大值为( )AB .CD .2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.设x ,y满足约束条件70310350x y x y x y +-≤-⎧+≤--≥⎪⎨⎪⎩,则2z x y =-的最大值为______.14.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:=,=,=,⋅ ,则按照以上规律,若具有“穿墙术”,则______.15.如图,是半径为的圆周上一个定点,在圆周上等可能的任取一点,连接,则弦的概率是______.16.已知抛物线的焦点为,准线为,点在轴负半轴且,()f x ()10f =(],1-∞(],0-∞[)0,+∞[)1,+∞24x y =F ()1,0F c MMy =ab 32=n =M R N MN MN OMN22(0)y px p =>F l A x AF =2p是抛物线上的一点,垂直于点,且,分别交,于点D ,E ,则______.三、解答题:共70分。
2019 年普通高等学校招生全国统一考试(浙江卷)数学参考公式:若事件A,B 互斥,则P(A B) P( A) P(B)柱体的体积公式V Sh若事件A,B 相互独立,则P( A B) P( A) P(B)若事件A在一次试验中发生的概率是p , 则nA k次独立重复试验中事件恰好发生次的概率其中表示柱体的底面积,表示柱体的高Sh锥体的体积公式1V Sh3k k n kP (k) C p (1 p) (k 0,1, 2, , n)n n其中S表示锥体的底面积,h表示锥体的高1台体的体积公式V (S1 S1S2 S2 ) h3其中S1 ,S2 分别表示台体的上、下底面积,h表2 球的表面积公式球体积公式S 4 R4V R33 其中R表示球的半径示台体的高选择题部分(共40 分)一、选择题:本大题共10 小题,每小题 4 分,共40 分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U 1,0,1,2,3 ,集合A 0,1,2 ,B1, 0,1 ,则e U A B ()A. 1B. 0,1C. 1,2,3D. 1,0,1,3【答案】 A【解析】【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】 C A={ 1,3} ,则C U A B { 1}U【点睛】易于理解集补集的概念、交集概念有误.2.渐近线方程为x y 0的双曲线的离心率是()1A. 22B. 1C. 2D. 2【答案】 C【解析】【分析】本题根据双曲线的渐近线方程可求得 a b,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为x±y=0 的双曲线,可得 a b,所以c 2a则该双曲线的离心率为 e c 2a ,故选:C.【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.x 3y 4 03.若实数x, y 满足约束条件3x y 4 0,则z 3x 2y的最大值是()x y 0A. 1B. 1C. 10D. 12【答案】 C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数z=3x+2y 经过平面区域的点(2, 2)时,z=3 x+2y取最大值z ma x 3 2 2 2 10.2【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家. 他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体Sh,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 323【答案】 B【解析】【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2 6 4 63 3 6 162 2 2.【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.若a0,b 0,则“a b 4”是“a b 4 ”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】 A【解析】【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取a,b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当a>0, b>0时,a b 2 ab ,则当a b 4时,有2 ab a b 4 ,解得ab 4 ,充分性成立;当a=1, b=4时,满足ab 4 ,但此时a+b =5>4 ,必要性不成立,综上所述,“ a b 4”是“a b 4”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取a,b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数1 1y , y log x (a 0x aa 2且a 0) 的图象可能是()4A. B.C. D.【答案】 D【解析】【分析】本题通过讨论 a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0 a 1时,函数xy a 过定点(0,1) 且单调递减,则函数y1xa过定点(0,1) 且单调递增,函数1y log x 过定点a21( ,0)2且单调递减, D 选项符合;当 a 1时,函数xy a 过定点(0,1) 且单调递增,则函数y1xa过定点(0,1) 且单调递减,函数1y log x 过定点a21( ,0)且单调递增,各选项均不2符合.综上,选 D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论 a 的不同取值范围,认识函数的单调性.7.设0 a 1,则随机变量X 的分布列是:5则当 a 在0,1 内增大时()A. D X 增大B. D X 减小C. D X 先增大后减小D. D X 先减小后增大【答案】 D【解析】【分析】研究方差随 a 变化的增大或减小规律,常用方法就是将方差用参数 a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为 a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.详解】方法1:由分布列得1 aE(X ) ,则32 2 2 21 a 1 1 a 1 1 a 12 1 1D X a a ,则当a 在(0,1) 内增大时,( ) 0 13 3 3 3 3 3 9 2 6D(X)先减小后增大.22 2 22 a 1 (a1) 2a 2a 2 2 13 【方法2:则D( X ) E X E( X ) 0 a3 3 9 9 9 24 故选 D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC的底面是正三角形,侧棱长均相等,P 是棱VA上的点(不含端点),记直线PB 与直线AC 所成角为,直线PB 与平面ABC 所成角为,二面角P AC B 的平面角为,则()A. ,B. ,C. ,D. ,【答案】 B【解析】6【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O,则P在底面投影 D 在线段AO上,过D作DE 垂直AE ,易得PE / /VG ,过P 作P F // AC 交VG 于F,过D 作D H / /AC ,交BG 于H ,则P F E G D H B D BPF , PBD, PED ,则 c o s c o s,即,P B P B P B P B PD PDtan tanED BD,即y ,综上所述,答案为 B.方法2:由最小角定理,记V AB C 的平面角为(显然)由最大角定理,故选 B.方法3:(特殊位置)取V ABC 为正四面体,P 为VA中点,易得3 33 2 2 2cos sin ,sin , sin6 6 3 3,故选 B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.x, x 09.已知a,b R ,函数 f (x) 1 13 2x (a 1)x ax, x 03 2 ,若函数y f (x) ax b恰有三个零点,则()A. a 1,b 0B. a 1,b 0C. a 1,b 0D. a 1,b 07【答案】 C【解析】【分析】当x 0 时,y f()x a x b x a(x1 b ) 最多a 一x 个b零点;当x⋯0 时,1 1 1 13 2 3 2y (f)x a x b x( 1 a)x a x a x b( ,1x利) 用导数a研究函数x 的单调b 性,3 2 3 2根据单调性画函数草图,根据草图可得.b【详解】当x 0 时,y f (x) ax b x ax b (1 a)x b 0,得;y f (x) ax b最x1 a多一个零点;当x⋯0时,1 1 1 13 2 3 2y f (x) ax b x (a1)x ax ax b x (a 1)x b ,3 2 3 22 ( 1)y x a x,当a 1,0,即a, 1时,y ⋯0,y f (x) ax b在[0 ,) 上递增,y f (x) ax b最多一个零点.不合题意;当a 1 0,即a 1时,令y0 得x [ a 1,) ,函数递增,令y0 得x [0 ,a 1) ,函数递减;函数最多有 2 个零点;根据题意函数y f (x) ax b恰有 3 个零点函数y f ( x) ax b在( ,0) 上有一个零点,在[0 ,) 上有2 个零点,如图:b a 0且b 01 13 2(a 1) (a 1)(a 1) b 03 2,1解得b 0,1 a 0,130 b (a 1) , a 1.6故选:C.8【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及a, b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.10.设a,b R ,数列a n 中, 2a1 a,a n 1 a n b ,n N , 则()1 1b ,a 10 B. 当b ,a10 10A. 当102 4C. 当b 2, a10 10D. 当b 4, a10 10【答案】 A【解析】【分析】对于B,令 2 1x 0,得λ4 121a ,得到当 b,取 12142﹣λ﹣2=0,得时,a10<10;对于C,令x2﹣λ﹣4=0,得 1 17λ=2 或λ=﹣1,取a1=2,得到当b=﹣2时,a10<10;对于D,令x2,取1 17a ,得到当b =﹣4时,a10 <10;对于 A ,121 12a a ,22 21 1 32 2a (a) ,32 2 4a3 1 9 1 17n 14 2 2a (a a ) >1,当n≥ 4 时,4a4 2 16 2 16n a n12an>11 32 2a10,由此推导出a4>(32)7296,从而a10>>10.64【详解】对于B,令 2 1x 0,得λ4 12,9取111a,∴ a 2, ,a<10 ,1n2 2 2 ∴当 b 14时, a 10< 10,故 B 错误;对于C ,令 x2﹣λ﹣2=0,得λ= 2 或 λ=﹣1, 取 a 1=2,∴ a 2=2,⋯ , a n =2<10, ∴当 b =﹣2 时, a 10<10,故 C 错误; 对于D ,令 x2﹣λ﹣4=0,得1 172﹣λ﹣4=0,得1 172, 取117117a,∴ a 2,⋯ , 1221 17 a< 10, n2∴当 b =﹣4 时, a 10<10,故 D 错误; 对于A ,1 1 2aa, 22211 322a(a ) ,32244 2 23 191 17a(a a) >1,442 16 2 16a n+1﹣a n >0,{ a n }递增,anan1a n1 2 an> 11 32 2当 n ≥ 4 时,,a 5 a4>3 2 a4 3 > a 52∴,∴a 10a4> ( 3 2729 )6,∴ a >> 10.故 A 正确. 1064a10 a9>32故选:A .【点睛】 遇到此类问题, 不少考生会一筹莫展 .利用函数方程思想, 通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.10非选择题部分(共110分)二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共36 分11. 复数z11 i(i 为虚数单位),则| z | ________. 2【答案】2【解析】【分析】本题先计算z,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】| z|1 12 |1 i | 2 2.【点睛】本题考查了复数模的运算,属于简单题.12. 已知圆C 的圆心坐标是(0, m) ,半径长是r . 若直线2x y 3 0与圆相切于点A( 2, 1) ,则m _____,r ______.【答案】(1). m 2 (2). r 5【解析】【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0, m) 代入后求得m ,计算得解.【详解】可知1 1k AC : y 1 (x 2) ,把(0,)m代入得m 2,此时r | AC | 4 1 5 .AC2 2【点睛】解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13. 在二项式9( 2 x) 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】(1). 16 2 (2). 5【解析】【分析】11本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9( 2 x) 的通项为r 9 r rT 1 C9 ( 2) x (r 0,1,2 9) r可得常数项为0 9T1 C9 ( 2) 16 2 ,因系数为有理数,r = 1,3,5,7,9,有T , T ,T ,T ,T共5 个项2 4 6 8 10【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14. 在V ABC 中,ABC 90 ,AB 4 ,BC 3,点D 在线段AC 上,若BDC 45 ,则BD ____;cos ABD ________.【答案】(1). 12 25 (2). 7 210【解析】【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在BDC 、ABD 中应用正弦定理,由cos ABD cos( BDC BAC ) 建立方程,进而得解.【详解】在ABD 中,正弦定理有:AB BDsin ADB sin BAC,而3AB 4, ADB ,42 2AC AB BC 5 ,BC 3 AB 4sin BAC ,cos BACAC 5 AC 5,所以12 2BD .57 2cos ABD cos( BDC BAC ) cos cos BAC sin sin BAC4 4 1012【点睛】解答解三角形问题,要注意充分利用图形特征.15. 已知椭圆2 2x y9 51 的左焦点为 F ,点P 在椭圆上且在x轴的上方,若线段PF 的中点在以原点O为圆心,OF 为半径的圆上,则直线PF 的斜率是_______ .【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知|OF |=|OM |= c= 2,由中位线定理可得PF1 2| O M | 4 ,设P(x, y) 可得 2 2(x2) y 16 ,联立方程2 2x y9 51可解得3 21x x (舍),点P 在椭圆上且在x轴的上方,,2 215求得3 15P , ,所以2 2kPF21512方法2:焦半径公式应用13解析1:由题意可知|OF |=|OM |= c= 2,由中位线定理可得PF1 2| O M | 4 ,即 a ex 4 xp p 3 2求得3 15P , ,所以2 2152 15k .PF12【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16. 已知a R,函数 3f (x) ax x ,若存在t R ,使得2| f (t 2) f (t) | ,则实数a 的最大值是____.3a 【答案】max 4 3【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题. 从研究2f (t 2) f (t) 2a 3t 6t 4 2入手,令2m 3t 6t 4 [1, ) ,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得 2 2 2f (t 2) f (t) a{2 (t2) t(t 2) t ]} 2 2 a 3t6t 4 2 ,使得令 2m 3t 6t 4 [1, ) ,则原不等式转化为存在1m 1, |am 1| ,由折线函数,如图3只需1 1a 1 ,即3 32 4a ,即a 的最大值是3 343【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17. 已知正方形ABCD 的边长为1,当每个i (i 1, 2,3, 4,5,6) 取遍时,14| AB BC CD DA AC BD |的最小值是________;最大值是_______.1 2 3 4 5 6【答案】(1). 0 (2). 2 5【解析】分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化.【详解】正方形ABCD 的边长为1,可得AB AD AC ,BD AD AB ,AB ? AD 0,【1 AB2 BC 3CD 4 DA 5 AC 6 BD 13 5 6 AB 2456 AD 要使 1 AB 2 BC 3 CD 4 DA 5 AC 6 BD 的最小,只需要1 3 5 62 4 5 6 0,此时只需要取 1 1, 2 1,3 1,4 1,5 1,6 1此时 1 2 3 4 5 6AB BC CD DA AC BD 0min2 21 AB2 BC 3CD 4 DA 5 AC 6 BD 13 5 6 AB 2456 AD2 21 3 5 62 4 5 62 21 3 5 62 4 5 62 22 25 6 5 62 28 45 6 5 6 5 6 5 62 2 28 4 25 6 5 6 5 62 2 2 212 4 25 6 5 6 5 62 2 2 212 4 2 2 205 6 5 6等号成立当且仅当1, 3, 5 6 均非负或者均非正,并且 2 , 4, 5 6 均非负或者均非正。
2019年浙江省高考数学试卷解析(精品)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年浙江省高考数学试卷解析(精品)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年浙江省高考数学试卷解析(精品)(word版可编辑修改)的全部内容。
2019年浙江省高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知全集U={—1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A。
B. C。
2, D. 0,1,2.渐进线方程为x±y=0的双曲线的离心率是()A. B. 1 C。
D。
23.若实数x,y满足约束条件,则z=3x+2y的最大值是()A. B。
1 C. 10 D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图体=如图所示(单位:cm),则该柱体的体积(单位:cm3)是( )A. 158B。
162C。
182D. 3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件6.在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是( )A。
B.C。
D。
7.设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A。
增大 B. 减小C. 先增大后减小D. 先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则()A。
2019年普通高等学校招生全国统一考试·浙江卷数学参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h = 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð= A .{}1-B.C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是 A. B .1CD .23.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为 祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .32 5.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.在同一直角坐标系中,函数y =1xa ,y =log a (x +12),(a >0且a ≠0)的图像可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时 A .D (X )增大 B .D (X )减小 C .D (X )先增大后减小 D .D (X )先减小后增大8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不 含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β, 二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则 A .a <-1,b <0 B .a <-1,b >0C .a >-1,b >0D .a >-1,b <010.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则 A .当b =12,a 10>10 B .当b =14,a 10>10C .当b =-2,a 10>10D .当b =-4,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省十校高考模拟考试数学试题卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟. 试卷总分为150分。
请考生按规定用笔将所用试题的答案涂、写在答题纸上. 参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P(A+B)= P(A)+ P(B)V=Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 P(A •B)= P(A)•P(B)锥体的体积公式 如果事件A 在一次试验中发生的概率为p ,那么n V=13Sh次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高.P n (k)=(1)(0,1,2,,)k k n k n C p p k n --= 球的表面积公式 台体的体积公式S=4πR 2V=13(S 12) h球的体积公式其中S 1、S 2表示台体的上、下底面积,h 表示棱 V=43πR 3台的高.其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知i 为虚数单位,则32i +=ABCD .32.已知{|21}A x x =-<<,{|21}x B x =>,则()A B R ð为A .(2,1)-B .(,1)-∞C .(0,1)D .(2,0]-3.若828128(1)1x a x a x a x -=++++,则5a =A .56B .56C .35D .354.设函数f(x)=sin(x+)( >0),则f(x)的奇偶性A .与有关,且与有关B .与有关,但与无关C .与无关,且与无关D .与无关,但与有关5. 已知x R ∈,则|3||1|2x x ---<“”是1x “≠”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 在△ABC 中,角A,B,C 的对边分别为a,b,c ,已知∠B =30º,△ABC 的面积为32.且 sinA+sinC=2sinB ,则b 的值为A .4+B .4-C 1-D 1+7. 将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为A .50B .80C .120D .1408. 已知a,b 为实常数,{c i }(i ∈N *)是公比不为1的等比数列,直线ax+by+c i =0与抛物线y 2=2px(p>0)均相交,所成弦的中点为M i (x i ,y i ),则下列说法错误的是 A.数列{x i }可能是等比数列 B.数列{y i }是常数列C. 数列{x i }可能是等差数列D.数列{x i +y i }可能是等比数列9. 若定义在(0,1)上的函数f(x)满足:f(x)>0且对任意的x ∈(0,1),有222()1x f f x x⎛⎫= ⎪+⎝⎭,则 A. 对任意的正数M ,存在x ∈(0,1),使f(x)≥M B. 存在正数M ,对任意的x ∈(0,1),使f(x)≤M C. 对任意的x 1,x 2∈(0,1)且x 1<x 2,有f(x 1)< f(x 2)D. 对任意的x 1,x 2∈(0,1)且x 1<x 2,有f(x 1)> f(x 2)10. 在正方体ABCD A 1B 1C 1D 1中,点M 、N 分别是直线AB 上的动点,点P 是△A 1C 1D 内的动点(不包括边界), 直线D 1P 与MN 所成角为,若的最小值为3π,则点P 的轨迹是 A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分非选择题部分(共110分)(第10题图) B 1D 1C B二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分. 11.某几何体的三视图如图所示,则该几何体的体表面积为▲.12.比较2lg2,(lg2),lg(lg2)13.设随机变量X的分布列为则14.已知函数f(x)=x3+ax+b的图象在点(1,f(1))处的切线方程为,则a=b = ▲.15.若不等式组240,340,0,x yax yy+-⎧⎪+-⎨⎪⎩≤≥≥表示的平面区域是等腰三角形区域,则实数a的值为▲.16. 若非零向量a,b满足:a2=(5,则cos<a,b>的最小值为▲ .17. 已知实数x,y,z满足22221,5,xy zx y z+=⎧⎨++=⎩则xyz的最小值为▲ .三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。
2 3x−y−4 ≤ 0 ,则 z =3x +2y 的最大值是( )x + y ≥ 02019 年浙江省高考数学试卷一、选择题(本大题共 10 小题,共 40.0 分)1.已知全集 U ={-1,0,1,2,3},集合 A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( )A. {−1}B. {0,1}C. {−1,2,3}D. {−1,0,1,3}2. 渐进线方程为x ±y =0 的双曲线的离心率是( )2 A.2B. 1C.D. 2{x−3y + 4 ≥ 0A. −1B. 1C. 10D. 124. 祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=S 其h ,中S 是柱体的底面积h ,是柱体的高.若某柱体的三视图如图所示(单位:cm ), 则该柱体的体积(单位:cm 3)是()A. 158B. 162C. 182D. 3245.若 a >0,b >0,则“a +b ≤4”是“ab ≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件116. 在同一直角坐标系中,函数 y =a x ,y =1og a (x +2)(a >0 且 a ≠1)的图象可能是( )3.若实数 x ,y 满足约束条件n 249.设 a ,b ∈R ,函数 f (x )= 1 3 1 2 3x −2(a + 1)x + ax ,x ≥ 0.A.B.C. D.7. 设 0<a <1.随机变量 X 的分布列是Xa1P1313 13则当 a 在(0,1)内增大时,()A. D (X)增大B. D (X)减小C. D (X)先增大后减小D. D (X)先减小后增大8. 设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱 VA 上的点(不含端点).记直线 PB 与直线 AC 所成角为 α,直线 PB 与平面 ABC 所成角为 β,二面角 P - AC -B 的平面角为 γ,则()A. β < γ,α < γB. β < α,β < γC. β < α,γ < αD. α < β,γ < β{x ,x <0,个零点,则()A. a < −1,b < 0B. a < −1,b > 0C. a > −1,b < 0D. a > −1,b > 010. 设 a ,b ∈R ,数列{a n }满足 a 1=a ,a n +1=a 2+b ,n ∈N *,则()A. 当b = 1时,a 10 > 10 C. 当b = −2时,a 10 > 10B. 当b = 1时,a 10 > 10 D. 当b = −4时,a 10 > 10二、填空题(本大题共 7 小题,共 36.0 分)111. 复数z =1 + i (i 为虚数单位),则|z |= .若函数 y =f (x )-ax -b 恰有 33AB 212. 已知圆C 的圆心坐标是(0m ,),半径长是r .若直线2x -y +3=0 与圆C 相切于点A (-2-,1),则 m = ,r = .13. 在二项式( 2+x )9 展开式中,常数项是 ,系数为有理数的项的个数是 .14. 在△ABC 中,∠ABC =90°,AB =4,BC =3,点 D 在线段 AC 上,若∠BDC =45°,则BD = ,cos ∠ABD = .x 2 y 215. 已知椭圆9 + 5 =1 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方.若线段 PF 的中点在以原点 O 为圆心,|OF |为半径的圆上,则直线 PF 的斜率是.16. 已知 a ∈R ,函数 f (x )=ax 3-x .若存在 t ∈R ,使得|f (t +2)-f (t )|≤2,则实数 a 的最大值是.17. 已知正方形 ABCD 的边长为 1.当每个 λi (i =1,2,3,4,5,6)取遍±1 时,|λ1 ⃗+λ2⃗+λ3 ⃗ +λ4 ⃗ +λ5 ⃗ +λ6 ⃗ |的最小值是,最大值是 .BCCDDAACBD三、解答题(本大题共 5 小题,共 71.0 分)18. 设函数 f (x )=sin x ,x ∈R .(Ⅰ)已知 θ∈[0,2π),函数 f (x +θ)是偶函数,求 θ 的值;π (Ⅱ)求函数 y =[f (x + ) π ( ]212 ] +[fx +4) 的值域.19. 如图,已知三棱柱 ABC -A 1B 1C 1,平面 A 1ACC 1⊥平面 ABC ,∠ABC =90°,∠BAC =30°, A 1A =A 1C =AC ,E ,F 分别是 AC ,A 1B 1 的中点.(Ⅰ)证明:EF ⊥BC ;(Ⅱ)求直线 EF 与平面 A 1BC 所成角的余弦值.220. 设等差数列{a n }的前 n 项和为 S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个 n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列.(Ⅰ)求数列{a n },{b n }的通项公式; a n(Ⅱ)记 c =,n ∈N *,证明:c +c +…+c <2 n ,n ∈N *.n2b n12n21. 如图,已知点 F (1,0)为抛物线 y 2=2px (p >0)的焦点.过点 F 的直线交抛物线于 A ,B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 的右侧.记△AFG ,△CQG 的面积分别为 S 1,S 2. (Ⅰ)求 p 的值及抛物线的准线方程; S 1(Ⅱ)求S 的最小值及此时点 G 点坐标.22. 已知实数 a ≠0,设函数 f (x )=a ln x + 1 + x ,x >0.3(Ⅰ)当 a =-4时,求函数 f (x )的单调区间;1 x(Ⅱ)对任意 x ∈[e 2,+∞)均有 f (x )≤2a ,求 a 的取值范围. 注意:e =2.71828……为自然对数的底数.答案和解析1.【答案】A【解析】解:∵∁U A={-1,3},∴(∁U A)∩B={-1,3}∩{-1,0,l}={-1}故选:A.由全集U 以及A 求A 的补集,然后根据交集定义得结果.本题主要考查集合的基本运算,比较基础.2.【答案】C【解析】解:根据渐进线方程为x±y=0 的双曲线,可得a=b,所以c= 则该双曲线的离心率为e= = ,故选:C.由渐近线方程,转化求解双曲线的离心率即可.本题主要考查双曲线的简单性质的应用,属于基础题.3.【答案】C【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由实数x,y 满足约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+2y 为y=- x+ z,由图可知,当直线y=- x+ z 过A(2,2)时,直线在y 轴上的截距最大,z 有最大值:10.故选:C.4.【答案】B【解析】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即=27,高为6,则该柱体的体积是V=27×6=162.故选:B.由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.充分条件和必要条件的定义结合均值不等式、特值法可得结果.【解答】解:∵a>0,b>0,∴4≥a+b≥2,∴2≥,∴ab≤4,即a+b≤4⇒ab≤4,若a=4,b= ,则ab=1≤4,但a+b=4+ >4,即ab≤4 推不出a+b≤4,∴a+b≤4 是ab≤4 的充分不必要条件故选A.6.【答案】D【解析】解:由函数y= ,y=1og a(x+ ),当a>1 时,可得y= 是递减函数,图象恒过(0,1)点,函数y=1og a(x+ ),是递增函数,图象恒过(,0)点;当1>a>0 时,可得y= 是递增函数,图象恒过(0,1)点,函数y=1og a(x+ ),是递减函数,图象恒过(,0)点;∴满足要求的图象为D,故选D.对a 进行讨论,结合指数,对数函数的性质即可判断.本题考查了指数函数,对数函数的图象和性质,属于基础题.7.【答案】D【解析】解:E(X)=0× +a× +1× = ,D(X)=()2× +(a- )2× +(1- )2×= [(a+1)2+(2a-1)2+(a-2)2]= (a2-a+1)= (a- )2+∵0<a<1,∴D(X)先减小后增大故选:D.方差公式结合二次函数的单调性可得结果本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.【答案】B【解析】解:方法一、如图G 为AC 的中点,V 在底面的射影为O,则P 在底面上的射影D 在线段AO 上,作DE⊥AC 于E,易得PE∥VG,过P 作PF∥AC 于F,过D 作DH∥AC,交BG 于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosα= = = <=cosβ,可得β<α;tanγ=>=tanβ,可得β<γ,方法二、由最小值定理可得β<α,记V-AC-B 的平面角为γ'(显然γ'=γ),由最大角定理可得β<γ'=γ;方法三、(特殊图形法)设三棱锥V-ABC 为棱长为2 的正四面体,P 为VA 的中点,易得cosα= = ,可得sinα=,sinβ= = ,sinγ= = ,故选:B.本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.【答案】C【解析】解:当x<0 时,y=f(x)-ax-b=x-ax-b=(1-a)x-b=0,得x= ;y=f(x)-ax-b 最多一个零点;当x≥0 时,y=f(x)-ax-b= x3- (a+1)x2+ax-ax-b= x3- (a+1)x2-b,y′=x2-(a+1)x,当a+1≤0,即a≤-1 时,y′≥0,y=f(x)-ax-b在[0,+∞)上递增,y=f(x)-ax-b 最多一个零点.不合题意;当a+1>0,即a<-1 时,令y′>0 得x∈[a+1,+∞),函数递增,令y′<0 得x∈[0,a+1),函数递减;函数最多有2 个零点;根据题意函数y=f(x)-ax-b 恰有3 个零点⇔函数y=f(x)-ax-b 在(-∞,0)上有一个零点,在[0,+∞)上有2 个零点,如右图:∴<0 且,解得b<0,1-a>0,b>- (a+1)3.故选:C.当x<0 时,y=f(x)-ax-b=x-ax-b=(1-a)x-b 最多一个零点;当x≥0 时,y=f(x)-ax-b= x3- (a+1)x2+ax-ax-b= x3- (a+1)x2-b,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.本题考查了函数与方程的综合运用,属难题.10.【答案】A【解析】解:对于B,令=0,得λ=,取,∴,∴当b= 时,a10<10,故B 错误;对于C,令x2-λ-2=0,得λ=2 或λ=-1,取a1=2,∴a2=2,…,a n=2<10,∴当b=-2 时,a10<10,故C 错误;对于D,令x2-λ-4=0,得,取,∴,…,<10,∴当b=-4 时,a10<10,故D 错误;对于A,,,≥,a n+1-a n>0,{a n}递增,当n≥4 时, =a n+ >1+ = ,∴,∴>()6,∴a10>>10.故A 正确.故选:A.对于B,令=0,得λ=,取,得到当b= 时,a10<10;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,得到当b=-2 时,a10<10;对于D,令x2-λ-4=0,得,取,得到当b=-4 时,a10<10;对于A,,,≥,当n≥4 时, =a n+ >1+ = ,由此推导出>()6,从而a10>>10.本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.211.【答案】2【解析】解:∵z= = .∴|z|= .故答案为:.利用复数代数形式的除法运算化简,然后利用模的计算公式求模.本题考查了复数代数形式的除法运算,考查了复数模的求法,是基础题.12.【答案】-2【解析】解:如图,由圆心与切点的连线与切线垂直,得,解得m=-2.∴圆心为(0,-2),则半径r=.故答案为:-2,.由题意画出图形,利用圆心与切点的连线与切线垂直列式求得m,再由两点间的距离公式求半径.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.52 12 2 51013. 【答案】16 5【解析】解:二项式 的展开式的通项为=. 由 r=0,得常数项是;当 r=1,3,5,7,9 时,系数为有理数, ∴系数为有理数的项的个数是 5个. 故答案为:,5. 写出二项展开式的通项,由 x 的指数为 0 求得常数项;再由 2 的指数为整数求得系数为有理数的项的个数.本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.14. 【答案】 7 2【解析】解:在直角三角形 ABC 中,AB=4,BC=3,AC=5,sinC= ,在△BCD 中,可得 =,可得 BD=; ∠CBD=135°-C ,sin ∠CBD=sin (135°-C )= (cosC+sinC )=×( + )=,即有 cos ∠ABD=cos (90°-∠CBD )=sin ∠CBD=,故答案为: , ,解直角三角形 ABC ,可得 sinC ,cosC ,在三角形 BCD 中,运用正弦定理可得BD ;再由三角函数的诱导公式和两角和差公式,计算可得所求值.本题考查三角形的正弦定理和解直角三角形,考查三角函数的恒等变换,化简整理的运算能力,属于中档题.15. 【答案】 【解析】解:椭圆 =1 的 a=3,b= ,c=2,e= ,设椭圆的右焦点为 F',连接 PF', 线段 PF 的中点 A 在以原点 O 为圆心,2 为半径的圆,15连接AO,可得|PF'|=2|AO|=4,设P 的坐标为(m,n),可得3- m=4,可得m=- ,n= ,由F(-2,0),可得直线PF 的斜率为= .故答案为:.求得椭圆的a,b,c,e,设椭圆的右焦点为F',连接PF',运用三角形的中位线定理和椭圆的焦半径半径,求得P 的坐标,再由两点的斜率公式,可得所求值.本题考查椭圆的定义和方程、性质,注意运用三角形的中位线定理,考查方程思想和运算能力,属于中档题.416.【答案】3【解析】解:存在t∈R,使得|f(t+2)-f(t)|≤,即有|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,可得- ≤2a(3t2+6t+4)-2≤ ,即≤a(3t2+6t+4)≤,由3t2+6t+4=3(t+1)2+1≥1,可得0<a≤,可得a 的最大值为.故答案为:.由题意可得|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,去绝对值化简,结合二次函数的最值,以及不等式的性质,不等式有解思想,可得a 的范围,进而得到所求最大值.本题考查不等式成立问题解法,注意运用去绝对值和分离参数法,考查化简变形能力,属于基础题.517.【答案】0 2【解析】解:正方形ABCD 的边长为1,可得+ = ,=- ,•=0,2 2 |λ1 +λ2 +λ3 +λ4 +λ5 +λ6| =|λ1+λ2-λ3 -λ4 +λ5+λ5 +λ6-λ6|=|(λ1-λ3+λ5-λ6) +(λ2-λ4+λ5+λ6)|=,由于 λi (i=1,2,3,4,5,6)取遍±1,可得 λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0,可取 λ5=λ6=1,λ1=λ3=1,λ2=-1,λ4=1, 可得所求最小值为 0;由 λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6 的最大值为 4,可取 λ2=1,λ4=-1,λ5=λ6=1,λ1=1, λ3=-1,可得所求最大值为 2 . 故答案为:0,2 . 由题意可得+ =, = - , •=0,化简|λ1 +λ2 +λ3+λ4+λ5+λ6|=,由于 λi (i=1,2,3,4,5,6)取遍±1,由完全平方数的最值,可得所求最值.本题考查向量的加减运算和向量的模的最值求法,注意变形和分类讨论,考 查化简运算能力,属于基础题.18. 【答案】解:(1)由 f (x )=sin x ,得f (x +θ)=sin (x +θ),∵f (x +θ)为偶函数,∴θ=π+ kπ(k ∈Z ),∵θ∈[0,2π),∴θ = πθ = 3π2或 2 ,π π (2)y =[f (x + ) ( ]2 12 ] +[f x +4)=sin 2( π )+sin 2( π12x +4) ππ=1−cos (2x + 6)+1−cos (2x + 2)221(cos 2xcos π−sin 2xsin π−sin 2x )=1-2 6 6=3sin 2x− 3cos 2x + 14= 3sin (2x−π) + 1,26x +6 ∵x ∈R ,∴sin (2x−π) ∈ [−1,1], ∴y = 3sin (2x−π) + 1 ∈ [1− 3,1 + 3],262 2π π ∴函数 y =[f (x +)] +[f (x + ]2[1− 3,1 + 3]. 12【解析】4) 的值域为: 2 2(1) 函数 f (x+θ)是偶函数,则 = (k ∈Z ),根据 的范围可得结果; (2) 化简函数得 y=,然后根据 x 的范围求值域即可.本题考查了三角函数的奇偶性和三角函数的图象与性质,关键是熟练掌握三角恒等变换,属基础题.19. 【答案】方法一:证明:(Ⅰ)连结 A 1E , ∵A 1A =A 1C ,E 是 AC 的中点, ∴A 1E ⊥AC ,又平面 A 1ACC 1⊥平面ABC ,A 1E ⊂平面 A 1ACC 1, 平面 A 1ACC 1∩平面ABC =AC ,∴A 1E ⊥平面 ABC ,∴A 1E ⊥BC , ∵A 1F ∥AB ,∠ABC =90°,∴BC ⊥A 1F , ∴BC ⊥平面 A 1EF ,∴EF ⊥BC .解:(Ⅱ)取 BC 中点 G ,连结 EG 、GF ,则 EGFA 1 是平行四边形, 由于 A 1E ⊥平面 ABC ,故 A 1E ⊥EG , ∴平行四边形 EGFA 1 是矩形, 由(Ⅰ)得 BC ⊥平面 EGFA 1, 则平面 A 1BC ⊥平面 EGFA 1,∴EF 在平面 A 1BC 上的射影在直线 A 1G 上,连结 A 1G ,交 EF 于 O ,则∠EOG 是直线 EF 与平面 A 1BC 所成角(或其补角), 不妨设 AC =4,则在 Rt △A 1EG 中,A 1E =2 3,EG = 3,∵O 是 A G 的中点,故 EO =OG =A 1G = 151E O 2 + OG 2−E G 2 3 2 2 , ∴cos ∠EOG =2 × E O × O G=5,3∴直线 EF 与平面 A 1BC 所成角的余弦值为5. 方法二:证明:(Ⅰ)连结 A 1E ,∵A 1A =A 1C ,E 是 AC 的中点,23 ⃗ = 3 ⃗ BC BC A 1C n BC 则 ⃗ n⋅ ⃗ = y− z = 0 A 1C n∴A 1E ⊥AC ,又平面 A 1ACC 1⊥平面 ABC ,A 1E ⊂平面 A 1ACC 1, 平面 A 1ACC 1∩平面 ABC =AC , ∴A 1E ⊥平面 ABC ,如图,以 E 为原点,EC ,EA 1 所在直线分别为 y ,z 轴,建立空间直角坐标系,设 AC =4,则 A (0,0,2 3),B ( 3,1,0),B ( 3,3,2 3 F 32 3),C (0,2, 1 0),1 2,2, 3, ,2 ), =(- 3,1,0), E F 2BC⃗ E F ⋅ ⃗ =0,得 EF ⊥BC .解:(Ⅱ)设直线 EF 与平面 A 1BC 所成角为 θ,由(Ⅰ)得 ⃗ =(- 3,1,0), ⃗ =(0,2,-2 3),设平面 A 1BC 的法向量⃗=(x ,y ,z ),{⃗ ⋅ ⃗ = − 3x + y = 0| ⃗ ⋅ ⃗| 4E F n ∴sinθ=| ⃗ | ⋅ |⃗|=5,E Fn3∴直线 EF 与平面 A 1BC 所成角的余弦值为5. 【解析】法一:(Ⅰ)连结A 1E ,则A 1E ⊥AC ,从而A 1E ⊥平面ABC ,A 1E ⊥BC ,推导出BC ⊥A 1F , 从而 BC ⊥平面 A 1EF 由此能证明 EF ⊥BC .(Ⅱ)取 BC 中点 G ,连结 EG 、GF ,则 EGFA 1 是平行四边形,推导出 A 1E ⊥EG , 从而平行四边形 EGFA 1 是矩形,推导出 BC ⊥平面 EGFA 1,连结 A 1G ,交 EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成角(或其补角),由此能求出直线EF 与平面 A 1BC 所成角的余弦值. 法二:(Ⅰ)连结 A 1E ,推导出 A 1E ⊥平面 ABC ,以 E 为原点,EC ,EA 1 所在直线分别 为y ,z 轴,建立空间直角坐标系,利用向量法能求出直线 EF 与平面A 1BC 所成角的余弦值.),(由 n,取 x =1,得⃗=(1, 3,1),2n−22n (n + 1)n−1n (n + 1)2k + 1 + k2b 本题考查空间线面垂直的证明,三棱锥体积的计算.要证线面垂直,需证线线垂直,而线线垂直可以通过平面中的勾股定理、等腰三角形的性质等来证明,也可以通过另外的线面垂直来证明.求三棱锥的体积经常需要进行等积转换,即变换三棱柱的底面.20. 【答案】解:(Ⅰ)设数列{a n }的公差为 d ,由题意得{a 1 + 2d = 4 ,a 1 + 3d = 3a 1+ 3d 解得 a 1=0,d =2, ∴a n =2n -2,n ∈N *. ∴S n =n 2-n ,n ∈N *,∵数列{b n }满足:对每个 n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. ∴(S n +1+b n )2=(S n +b n )(S n +2+b n ),解得b n = 1(S 2 −S n S n + 2),d n + 1解得 b n =n 2+n ,n ∈N *. 证明:(Ⅱ)c n =a n==,n ∈N *,n用数学归纳法证明:①当 n =1 时,c 1=0<2,不等式成立; ②假设 n =k ,(k ∈N *)时不等式成立,即 c 1+c 2+…+c k <2 则当 n =k +1 时,k , c +c +…+c +c<2 k +k< 2 12kk +1(k + 1)(k + 2)<2 k +=2 + 2( k + 1− k )=2 k + 1,即 n =k +1 时,不等式也成立. 由①②得 c 1+c 2+…+c n <2 【解析】n ,n ∈N *.(Ⅰ)利用等差数列通项公式和前 n 项和公式列出方程组,求出 a 1=0,d=2,从而 a n =2n-2,n ∈N *.S n =n 2-n ,n ∈N *,利用(S n+1+b n )2=(S n +b n )(S n+2+b n ),能求出 b n . (Ⅱ)==,n ∈N *,用数学归纳法证明,得到c 1+c 2+…+c n <2 ,n ∈N *.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.k 1 k + 1k +2 m ⋅ m + 43 tx = ,tt2Ct −1p21. 【答案】解:(Ⅰ)由抛物线的性质可得:2=1,∴p =2,∴抛物线的准线方程为 x =-1;(Ⅱ)设 A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心 G (x G ,y G ), 令 y A =2t ,t ≠0,则x A = t 2,由于直线 AB 过 F ,故直线 AB 的方程为代入 y 2=4x ,得:y2−2(t 2−1)y−4 = 0, t 2−1y + 12t 212∴2ty B =-4,即 y B =-t ,∴B ( 2,-t ),11又 x G =3(x A +x B +x C ),y G =3(y A +y B +y C ),重心在 x 轴上,∴2t−2+ y C =0,∴C 1−t2 2 1−t2t 4−2t 2 + 2 G 0((t ) , (t)), ( 3t 2 , ), ∴直线 AC 的方程为 y -2t =2t (x -t 2),得 Q (t 2-1,0), ∵Q 在焦点 F 的右侧,∴t 2>2,1 2t 4−2t2 + 1S 12|FG | ⋅ |y A | | 3t 2 | ⋅ |2t |2t 4−t 2 t 2−2∴S 2=1|QG | ⋅ |y |=|t 2−1− 2t 4−2t 2 + 2 3t 22 | ⋅ |t −2t | = t 4−1 =2- 4 , 令 m =t 2-2,则 m >0,S 1 m 1 1 3S =2-m 2 + 4m + 3=2- 3 ≥2- =1+ 2 ,2∴当 m =S 1m + m + 431+ G 2 0【解析】时,S 取得最小值为 2 ,此时 ( , ).(Ⅰ)由抛物线的性质可得: =1,由此能求出抛物线的准线方程;(Ⅱ)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ),令y A =2t ,t≠0,则 ,从而直线 AB 的方程为 x=,代入 y 2=4x ,得:,求出 B ( ,- ),由重心在x 轴上,得到=0,从而 C (()2,2()),G (,0),进崦直线 AC 的方程为 y-2t=2t (x-t 2),得 Q (t 2-1,0),由此结合已知条件能求出结果.本题考查实数值、抛物线标准方程的求法,考查三角形的面积的比值的最小值及相应点的坐标的求法,考查抛物线、直线方程、重心性质、弦长公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.3 2( 1 + x −2)(2 1 + x + 1) 4x1 + x−2 x lnx−(x + 1)2 xlnx + 2x 2 7 f + a2- 7 =x x + 1( x + 1)( x + 1 + 2x ),(x−1)[1 + x ( 2x + 2−1)]22.【答案】解:(1)当 a =-3时,f (x )=-3lnx + 1 + x ,x >0,443 1 ′(x )=- 4x 2 1 + x = , ∴函数 f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).12(2)由 f (x )≤2a ,得 0<a ≤ ,2当 0<a ≤xf x ≤ x 2 1 + x -2ln x ≥0, 时, ( ) 令 t =1,则 t ≥ 2 2, ,等价于a - a设 g (t )=t 2则 g (t )= x -2t x (t - 1 + x -2ln x ,t ≥ 2 2,11 + x 1 + ) -2ln x , x1(i )当 x ∈[7,+∞)时, x≤ 2 2, 则 g (x )≥g (2 2)=8 x−4 2 1 + x−2lnx ,记 p (x )=4 x -2 2 1 + x -ln x ,x ≥ 1,2则 p ′(x )=列表讨论:∴p (x )≥p (1)=0,∴g (t )≥g (2 2) = 2p (x )=2p (x )≥0.111(ii )当x ∈[e 2,7)时,g (t )≥g ( 1 + x )= ,令 q (x )=2 x ln x +(x +1),x ∈[11]则 q ′(x )=+1>0,e 2,7 ,1 11故 q (x )在[e 2,7]上单调递增,∴q (x )≤q (7), i q 11-2 7( ) ,由( )得 (7)=- p (7)< 7 p 1 =01 q (x )∴q (x )<0,∴g (t )≥g ( 1 + x )=-2 x >0,1 + x 1x − x + 1 x 21- = 2 x x + 1− 2x− x + 1x x + 11由(i )(ii )知对任意 x ∈[e 2,+∞),t ∈[2 2,+∞),g (t )≥0,1 x即对任意 x ∈[e 2,+∞),均有 f (x )≤2a ,2综上所述,所求的 a 的取值范围是(0, 4 ]. 【解析】(1)当 a=- 时,f′(x )=-= ,利用导数性质能求出函数 f (x )的单调区间. (2)由 f (x )≤ ,得 0<a≤,当 0<a≤时,f (x )≤,等价于--2lnx≥0,令 t= ,则 t,设 g (t )=t 2-2t-2lnx ,t,则 g (t )=(t-)2--2lnx ,由此利用分类讨论思想和导导数性质能求出 a 的取值范围.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.。
绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð= A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x±y=0的双曲线的离心率是A.2B.1CD.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa ,y=log a(x+12)(a>0,且a≠1)的图象可能是7.设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >010.设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A .当b =12时,a 10>10B .当b =14时,a 10>10C .当b =–2时,a 10>10D .当b =–4时,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
A .{2, 4} B . {0, 2} C. 2. (4分)设i 是虚数单位,{0, 2, 4} D . {x|x=2n , n € N}若.-■■■.■] , x , y € R ,则复数x+yi 的共轭复数A .2 - i B.— 2 - i C. 2+i D .- 2+i 3. A .4.(4分)双曲线x 2- y 2=1的焦点到其渐近线的距离为( 2D .华 2b € R ,贝U “阳| >b| b| ”是 “A b”的(1 B.匚 C. (4分)已知a , A .充分不必要条件 B.必要不充分条件 浙江省高考全真模拟数学试卷(一)一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选 项中,只有一项是符合题目要求的 1. (4 分)已知集合 A={x| - x 2+4x >0} , 丁 一 . : . -,C={x| x=2n, n €81N},贝U( A U B )n C=( 既不充分也不必要条件C. 充要条件D. 项的乘积是()A- 2 B.- 3 C2 D.7. (4分)如图,矩形ADFE矩形CDFG正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP丄BP,则边CG长度的最小值为()A . 4 B.〔「C. 2 D . 「8. (4 分)设函数 f(x) =1-77^4,g (X )=ln (ax 2 - 2x+1),若对任意的 x i € R , 都存在实数X 2,使得f (x i ) =g (X 2)成立,则实数a 的取值范围为( )A . (0, 1]B . [0, 1] C. (0, 2] D . (-X, 1] 9.(4分)某班有'的学生数学成绩优秀,如果从班中随机地找出5名学生,那4么其中数学成绩优秀的学生数 幼服从二项分布一「,则E (- a 的值为() 4 A . - B.C.匚 D . 4 4 4410. (4 分)已知非零向量 |, b 满足| i| =2|,若函数 f (x ) =..x 3+ | J x 2+"x+1在R 上存在极值,则「I 和〔夹角的取值范围是( ) A .B 「」C ;丁・—1D .—.-、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11. (6分)某几何体的三视图如图所示,贝U 该几何体的体积为12. (6分)在〉「: 「的展开式中,各项系数之和为 64,则n= ________ ;展开A_______ ,表面积为 ______<__I —►1 1侧视图正视團式中的常数项为________ •13. __________________________________________________ (6分)某人有4把钥匙,其中2把能打开门•现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是___________________________________ •如果试过的钥匙不扔掉,这个概率又是________ .14. (6分)设函数f (x) J〜,,[4(7(5), x>l①若a=1,则f (x)的最小值为 ________ ;②若f (x)恰有2个零点,则实数a的取值范围是_________ .x+2y-4<015. (4分)当实数x,y满足' 时,ax+y w4恒成立,则实数a的取值范围是_______ .16. (4分)设数列{a n}满足,且对任意的n € N*,满足. 「…,.I ...-…,则a2017= ____________ .17. (4分)已知函数f (x) =ax2 +2x+1,若对任意x€ R, f[ f (x) ] >0恒成立,则实数a的取值范围是________ .三、解答题:本大题共5小题,共74分■解答应写出文字说明、证明过程或演算过程18•已知函数f (x) = _ …一二1,x€ R.(I)求函数f (x)的最小正周期和单调递减区间;(II)在^ ABC中,A,B,C的对边分别为a, b,c,已知c=二,f(C) =1, sinB=2sinA, 求a, b的值.19.如图,在四面体ABCD中,已知/ ABD=Z CBD=60, AB=BC=2 CE!BD于E(I)求证:BD丄AC;(U)若平面ABD丄平面CBD且BD=,求二面角C- AD —B的余弦值.2(I)当a=2,求函数f (x)的图象在点(1, f (1))处的切线方程;(U)当a>0时,求函数f (x)的单调区间.21. 已知曲线C: y2=4x, M : (x- 1) 2+y2=4 (x> 1),直线I与曲线C相交于A, B两点,0为坐标原点.(I)若」 -二,求证:直线I恒过定点,并求出定点坐标;(n)若直线I与曲线M相切,求" -'if.的取值范围.22. 数列{a n}满足a1=1,a2='.+.二,…,a n=\+.-+・ +「(n€ N)(1)求a2,a3,34,a5 的值;(2)求a n与a n-1之间的关系式(n€ N*,n》2);(3)求证:(1+ 一 ) (1+ 一) ••- (1+ 一 )< 3 (n€ N*)a l a2 a n2018年浙江省高考全真模拟数学试卷(一)参考答案与试题解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选 项中,只有一项是符合题目要求的 1. (4 分)已知集合 A={x| - x 2+4x >0} ,, C={x| x=2n, n €81N},贝U( A U B )n C=()A . {2,4}B . {0,2} C. {0,2,4} D . {x|x=2n , n € N} 【解答】 解:A={x| - X +4x > 0} ={x| 0< x < 4},一丄 盲 1"={x|3-4v 3x v 33}={x| - 4V x v 3}, ol则 A U B={x| - 4v x <4}, C={x| x=2n, n € N}, 可得(A U B )n C={0, 2, 4}, 故选C .2. (4分)设i 是虚数单位,若i —, x , y € R ,则复数x+yi 的共轭复数z _i 是( )A . 2 - i B.- 2 - i C. 2+i D .- 2+i得 x+yij .=2+i ,•••复数x+yi 的共轭复数是2 -i . 故选:A .3. (4分)双曲线x 2-y 2=1的焦点到其渐近线的距离为( )A . 1 B. 「C. 2 D.—2【解答】解:由■. [- i -.,5!5! 5i (1-21)【解答】解:根据题意,双曲线的方程为x2- y2=1,其焦点坐标为(± 血,0),其渐近线方程为y=±x,即x±y=0, 则其焦点到渐近线的距离d= :=1;V1+1故选:A.4. (4分)已知a, b€ R,贝U “阳| >b|b| ”是“A b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:设f (x)=x| x| ='」A '',[-忆x<0由二次函数的单调性可得函数f (x)为增函数,则若a>b,则f (a)>f (b),即a| a| >b| b|,反之也成立,即“|a| >b|b|”是“>b”的充要条件,故选:C.5. (4分)函数y=2x:- e l x l在[-2, 2]的图象大致为()••• f'(x)=4x- e x=0有解,故函数y=2«-M在[0, 2]不是单调的,故排除C, 故选:D1.+ 0.6. (4分)若数列{a n }满足®}=2, ®+i } _空(n € N *),则该数列的前2017 -J 项的乘积是( )A .-2 B--3C2 D .【解答】解:•••数列 「石〒--:: 1+ Qi -1 •选=.=-3,同理可得:a 3=;,2 --0i +4=a n ,a 1Q 233a 4=1 .•该数列的前2017项的乘积=1504x a 1=2. 故选:C.7. (4分)如图,矩形ADFE 矩形CDFG 正方形ABCD 两两垂直,且AB=2,若 线段DE 上存在点P 使得GP 丄BP,则边CG 长度的最小值为 ( )A . 4 B. : =C. 2 D . 乙【解答】解:以DA, DC, DF 为坐标轴建立空间坐标系,如图所示: 设 CG=a P (x , 0, z ),则曽二,即 z 欝.2 a 2 又 B (2, 2, 0), G (0, 2, a ),• PB = (2-x , 2,-乎),PG = (- x , 2, a (1 -专)), • W (x -2) x+4+=0,a 4」,a 5=2,….J 1_al显然X M0且X M 2,2 1 '…a= 一,••• x€( 0, 2),二2X-X2€( 0, 1],•••当2X-X2=1时,a2取得最小值12,••• a的最小值为2 _;.故选D.8. (4分)设函数f,g(x)=ln(ax2-2x+1),若对任意的X I€ R,都存在实数X2,使得f (X I) =g (X2)成立,则实数a的取值范围为( ) A. (0, 1] B. [0, 1] C. (0, 2] D. (-X, 1]【解答】解:设g ( X) =ln (ax2- 2X+1 )的值域为A,••• f (X) =1 - 「| 在R上的值域为(-X,0],•(-X, 0]? A,又h (0) =1,•实数a需要满足a< 0 或£• h ( X) =a«- 2X+1至少要取遍(0, 1]中的每一个数,解得a< 1.•实数a的范围是(-X,1],故选:D.9. (4分)某班有-的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数幼服从二项分布b':r.u丄],则E(- a的值为( )A .B. C.匚 D . 4 4 4 4【解答】解:T 幼服从二项分布D ,4 ••• E ( e =5x 1』,4 4••• E (- e =-E ( e =-「. 4故选D .T T __ 1 Q "1 r\10. (4分)已知非零向量1,:满足「|=2|:・|,若函数f (x ) = *+打1&+1,x+1 I . ■ - 1;即.1 I UZ- .: .1 匚-:.-..,1'; •••「—…亠-—一 4 | b | 41 b | 2•••与「夹角的取值范围为—..W故选B .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11. (6分)某几何体的三视图如图所示,则该几何体的体积为 ______ ,表面积为 7+二_.在R 上存在极值,则1和•夹角的取值范围是(_B. : C - 解::「:厂• : :‘ I •;在R 上存在极值;=0有两个不同实数根;A . 一【解答】 ••• f (x) •••「( x )【解答】解:由三视图还原原几何体如图:该几何体为组合体,左右两边都是棱长为 1的正方体截去一个角,则该几何体的体积为.;■■ ; 表面积为;i- . :i- ||.4 . . ■ ::i- '■- 十 二.故答案为:「; 二.■J 12. (6分)在工]:的展开式中,各项系数之和为 64,则n= 6 ;展开式A中的常数项为 15 .【解答】解:令x=1,则在 工-:的展开式中,各项系数之和为2n =64,=*1解得n=6,6-3 r则其通项公式为C 6r x,令 6 -3r=0,解得 r=2, 则展开式中的常数项为C 62=15故答案为:6,1513. (6分)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开 门,侧视團 1 1正视團不能开门的就扔掉,问第二次才能打开门的概率是—.[—•如果试过的钥匙不扔掉,这个概率又是 1 •—纟—【解答】解:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为 4 3 3如果试过的钥匙不扔掉,这个概率为 上X — J ,4 4 4故答案为:1; • 3 4 14. (6 分)设函数 f (x )=::、 4(x-a) (i-2a), ① 若a=1,则f (x )的最小值为 -1 ; ② 若f (x )恰有2个零点,则实数a 的取值范围是—'a < 1或2当 X V 1 时,f (x ) =2x- 1 为增函数,f (x )>- 1,当 x > 1 时,f (x ) =4 (x - 1) (x - 2) =4 (x 2 - 3x+2) =4 (x -色)2- 1, 2当1VXV :;时,函数单调递减,当x > 时,函数单调递增, 2 2故当 x=时,f (x ) min =f () =- 1,厶 £ ② 设 h (x ) =2 - a ,g (x ) =4 (x- a ) (x - 2a )若在x v 1时,h (x ) =与 x 轴有一个交点,所以 a >0,并且当 x=1 时,h (1) =2 - a >0,所以 0v a v 2,而函数g (x ) =4 (x - a ) (x - 2a )有一个交点,所以2a > 1,且a v 1, 所以1 < a v 1,2若函数h (x ) =2x - a 在x v 1时,与x 轴没有交点,则函数g (x ) =4 (x - a ) (x - 2a )有两个交点,当a < 0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1) =2- a < 0时,即a >2时,g (x )的两个交点满足 *=a , x2=2a ,都是 满足题【解答】 解:①当a=1时, (x )=心 44(x-l) (K -2),意的,综上所述a的取值范围是一三a v 1,或a> 2.2x+2y _4<015. (4分)当实数x, y满足' s-y-l<0时,ax+y w4恒成立,则实数a的取值范围是(-X, ].1—【解答】解:由约束条件作可行域如图联立,解得C (1,色).x+2y-4=0 2联立,解得 B (2,1).b+2y-4=0在x-y- 1=0 中取y=0得 A (1,0).由ax+y< 4 得y w- ax+4要使ax+y w 4恒成立,则平面区域在直线y=- ax+4的下方,若a=0,则不等式等价为y w 4,此时满足条件,若-a>0,即a v 0,平面区域满足条件,若-a v0,即a>0时,要使平面区域在直线y=-ax+4的下方,则只要B在直线的下方即可,即2a+1w4,得0v a w g2综上a w2•••实数a的取值范围是(-X,'].2故答案为:(-X,].16. (4分)设数列{a n}满足'亠,且对任意的n € N*,满足,一•「.』,201T9孤乂—0>5XF,则她恠—飞——.【解答】解:对任意的n€ N*,满足a n+2 - a n< 2n, a n+4- a n>5X 2n,n+2--a n+4 —a n+2 W 2 ,--5 X 2“ W a n+4 —a n+2+a n+2 —a W 2“ 2+2“=5X 2“,--a n+4 —a n=5x 2 ,a20i7= (a20i7 —a20i3)+ (a20i3 —a2009)+••+ (a5 —a i) +a i=5X( 22013+22009+・・+2)丄2_5X2X (1^04百丄2=2如T,T :: ,n20L7故答案为:-3i7. (4分)已知函数f (x) =ax2 +2x+i,若对任意x€ R, f[f (x) ] >0恒成立, 则实数a的取值范围是a》丄1•.2 —【解答】解:当a=0时,函数 f (x) =2x+i,f[f (x) ] =4x+3,不满足对任意x€ R, f[f (x) ] >0恒成立,当a>0 时,f (x)》2一;=i—丄4a af[f (x)]》f (i-丄)=a (i-丄)2+2 (i -丄)+i= a-丄+i,a a a a解a-1 +i》0 得:a w • :' I,或a》_「,a 2 2故a》亠,2当a v 0 时,f (x)w - =1 -丄4a a不满足对任意x€ R, f[f (x) ] >0恒成立,综上可得:a>^'2故答案为:a>—2三、解答题:本大题共5小题,共74分■解答应写出文字说明、证明过程或演算过程18•已知函数f (x)二一—讣…「-x- 1 , x€ R.(I)求函数f (x)的最小正周期和单调递减区间;(II)在^ ABC中,A, B, C的对边分别为a, b, c,已知c=「, f(C) =1, sinB=2sinA 求a, b的值.【解答】解:由..■,,・::,:-■- ,…(2分)(1)周期为T=n,…(3分)因为;,"」:•::■'■::- '■ ! ■..,…(4分)所以——Ik.' -6 3•••函数的单减区间为—1■ 弓bk 兀k€Z ;…(6分)(2)因为< ----:,所以」丄;7 分)所以::: , a2+b2-ab=3,…(9 分)又因为sinB=2sinA 所以b=2a, ••- (10分)解得:a=1 , b=2 ,••• a , b 的值1 , 2.…(12 分)19.如图,在四面体ABCD中 ,已知/ ABD=Z CBD=60 , AB=BC=2 CE!BD于E(I) 求证:BD丄AC;(U)若平面ABD丄平面CBD且BD总,求二面角C- AD- B的余弦值.2【解答】(I)证明:连接AE,••• AB=BC / ABD=Z CBD, BE是公共边,•••△ABE^A CBE•••/ AEBN CEBv CEL BD , A AE丄BD,又AE?平面ACE CE?平面ACE AE G CE=EA BD丄平面ACE,又AC?平面ACEA BD丄AC.A AD= .i「一HI-.',(2)解:过E作EF L AD于F,连接CF,v平面ABD丄平面BCD, CE?平面BCD 平面ABD A平面BCD二BD CE! BD, A CEL 平面ABD ,又AD?平面ABD ,A CEL AD ,又AD L EF,A AD丄平面CEFA Z CFE为二面角C- AD- B的平面角,v AB=BC=2 Z ABD=Z CBD=60 , AE L BD , CEL BD ,A BE=1, AE二CE=「, DE=:,CF 10面角C- AD- B的余弦值为..20•已知函数.:,.(I)当a=2,求函数f (x)的图象在点(1, f (1))处的切线方程;(U)当a>0时,求函数f (x)的单调区间.【解答】解:(I)根据题意,当a=2时,:心:厂:::,-■.,£f (1) =°;•••函教f (X)的图象在点(1, f (1))处的切线方程为:.-—2(n )由题知,函数 f ( x )的定义域为(o , + %), “、a-1 x -ax+ (a~l) (x-1) (x+l-a):.■:-■: -i I - - ,X X X令 f (x) =0,解得X1=1, X2=a- 1 ,①当a>2时,所以a- 1 > 1,在区间(0, 1)和(a- 1, +x)上f (x)>0;在区间(1, a-1) 上f (x)v0,故函数f (x)的单调递增区间是(0, 1 )和(a- 1, +x),单调递减区间是(1, a- 1).②当a=2时,f (x)> =0恒成立,故函数f (x)的单调递增区间是(0, +x).③当1v a v2 时,a- 1v 1,在区间(0, a- 1),和(1, +^) 上f (x)>0;在(a- 1, 1 )上f (x)v 0,故函数f (x)的单调递增区间是(0, a- 1), (1, +x),单调递减区间是(a-1, 1)④当a=1 时,f (x) =x- 1, x> 1 时f (x)> 0, x v 1 时f (x)v 0, 函数f (x)的单调递增区间是(1, +x),单调递减区间是(0, 1)⑤当0v a v 1时,a- 1 v 0,函数f (x)的单调递增区间是(1, +^ 单调递减区间是(0, 1), 综上,①a>2时函数f (x)的单调递增区间是(0, 1)和(a- 1, +^),单调递减区间是(1, a- 1);②a=2时,函数f (x)的单调递增区间是(0, +x);③当0v a v2时,函数f (x)的单调递增区间是(0, a- 1), (1, +^),单调递减区间是(a- 1, 1);④当0v a< 1时,函数f (x)的单调递增区间是(1, +^),单调递减区间是(0,1)21. 已知曲线C: y2=4x, M : (x- 1) 2+/=4 (x> 1),直线I与曲线C相交于A, B两点,O为坐标原点.(I)若门二£二二,求证:直线I恒过定点,并求出定点坐标;(n)若直线I与曲线M相切,求”;的取值范围.【解答】解:(I)由已知,可设I: x=my+ n, A (X1, y。
绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4分)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 2.(4分)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.23.(4分)若实数x,y满足约束条件则z=3x+2y的最大值是()A.﹣1B.1C.10D.124.(4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.(4分)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.7.(4分)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.(4分)设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P ﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β9.(4分)设a,b∈R,函数f(x)=若函数y=f(x)﹣ax﹣b恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>0 10.(4分)设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=﹣2时,a10>10D.当b=﹣4时,a10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019年高考浙江卷数学真题(含答案)2019年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分,全卷共4页,选择题部分在1至2页,非选择题部分在3至4页,满分150分,考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则P(A+B)=P(A)+P(B)若事件A,B相互独立,则P(AB)=P(A)P(B)若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率为C(n,k)p^k(1-p)^(n-k)柱体的体积公式V=Sh,其中S表示柱体的底面积,h表示柱体的高锥体的体积公式V=Sh/3,其中S表示锥体的底面积,h表示锥体的高球的表面积公式S=4πR^2台体的体积公式V=(S1+S2+√(S1S2))h/3,其中S1,S2分别表示台体的上、下底面积,h表示台体的高球的体积公式V=4πR^3/3,其中R表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(A∪B)的补集是A。
{1,2,3}B。
{-1,2,3}C。
{-1}D。
{0,2,3}2.渐近线方程为x±y=0的双曲线的离心率是A。
2B。
1C。
2/√2D。
√23.若实数x,y满足约束条件3x-y-4≤0,x+y≥1,则z=3x+2y的最大值是A。
-1B。
1C。
10D。
124.XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm^3)是A。
2019年浙江省高考数学模拟试卷(5月份)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x<﹣2或x>1,x∈R},B={x|x<0或x>2,x∈R},则(∁R A)∩B是()A.(﹣2,0)B.(﹣2,0]C.[﹣2,0)D.R2.设复数z=,则z的虚部是()A.i B.C.﹣D.﹣i3.对于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A.若m⊂α,n∥β,m,n是异面直线,则α,β相交B.若m⊥α,m⊥β,n∥α,则n∥βC.若m⊂α,n∥α,m,n共面于β,则m∥nD.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线4.关于周期函数,下列说法错误的是()A.函数不是周期函数.B.函数不是周期函数.C.函数f(x)=sin|x|不是周期函数.D.函数f(x)=|sinx|+|cosx|的最小正周期为π.5.的展开式的常数项是()A.5 B.﹣10 C.﹣32 D.﹣426.若变量x,y满足约束条件,且z=ax+3y的最小值为7,则a的值为()A.1 B.2 C.﹣2 D.不确定7.已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200 B.﹣100 C.0 D.﹣508.已知△ABC的外接圆半径为2,D为该圆上一点,且+=,则△ABC的面积的最大值为()A.3 B.4 C.3D.49.在直三棱柱A1B1C1﹣ABC中,,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为()A.[,1) B.[,1]C.(,1)D.[,1)10.已知点P在双曲线上,点A满足(t∈R),且,,则的最大值为()A.B. C.D.二、填空题:本大题共7小题,多空题每小题6分,单空题每小题6分,共36分.11.已知函数,则f(f(﹣2))=,若f(x)≥2,则x的取值范围为.12.某几何体的三视图(单位:cm)如图所示,则此几何体的所有棱长之和为cm,体积为cm3.13.已知随机变量ξ的概率分布列为:则Eξ=,Dξ=.14.已知圆C:x2+y2﹣2x﹣4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则m=;|MP|=..15.函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f (x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=e x﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是.16.若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t﹣1,t+1]上总存在两实数x1,x2,使得|f(x1)﹣f(x2)|≥8成立,则实数a的最小值为.17.定义域为{x|x∈N*,1≤x≤12}的函数f(x)满足|f(x+1)﹣f (x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为.三、解答题(共5小题,满分74分)18.在△ABC中,a,b,c分别是角A,B,C的对边,b=sinB,且满足tanA+tanC=.(Ⅰ)求角C和边c的大小;(Ⅱ)求△ABC面积的最大值.19.在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图(2)).(1)求证:A1E⊥平面BEP;(2)求二面角B﹣A1P﹣E的余弦值.20.设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,⊥F1F2,=2,△DF1F2的面积为.点D在椭圆上,DF(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.22.已知在数列{a n}中,.,n∈N*(1)求证:1<a n+1<a n<2;(2)求证:;(3)求证:n<s n<n+2.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x<﹣2或x>1,x∈R},B={x|x<0或x>2,x∈R},则(∁R A)∩B是()A.(﹣2,0)B.(﹣2,0]C.[﹣2,0)D.R【考点】1H:交、并、补集的混合运算.【分析】求出C R A,由此能求出(∁R A)∩B.【解答】解:∵集合A={x|x<﹣2或x>1,x∈R},∴C R A={x|﹣2≤x≤1},∵B={x|x<0或x>2,x∈R},∴(∁R A)∩B={x|﹣2≤x<0}=[﹣2,0).故选:C.2.设复数z=,则z的虚部是()A.i B.C.﹣D.﹣i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数z=====﹣1+i,则z的虚部是.故选:B.3.对于两条不同的直线m,n和两个不同的平面α,β,以下结论正确的是()A.若m⊂α,n∥β,m,n是异面直线,则α,β相交B.若m⊥α,m⊥β,n∥α,则n∥βC.若m⊂α,n∥α,m,n共面于β,则m∥nD.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线【考点】LP:空间中直线与平面之间的位置关系.【分析】根据空间直线和平面平行或垂直的判定定理和性质定理分别进行判断即可.【解答】解:A.α∥β时,m⊂α,n∥β,m,n是异面直线,可以成立,故A错误,B.若m⊥α,m⊥β,则α∥β,因为n∥α,则n∥β或n⊂β,故B 错误,C.利用线面平行的性质定理,可得C正确,D.若m⊥α,n⊥β,α,β不平行,则m,n为异面直线或相交直线,故D不正确,故选:C.4.关于周期函数,下列说法错误的是()A.函数不是周期函数.B.函数不是周期函数.C.函数f(x)=sin|x|不是周期函数.D.函数f(x)=|sinx|+|cosx|的最小正周期为π.【考点】H1:三角函数的周期性及其求法.【分析】根据三角函数的性质,依次判断即可.【解答】解:对于A:函数,令,则f(u)=sinu是周期函数.∴A对.对于B:函数,令,则f(t)=sint,是周期函数,∴B对.对于C:函数f(x)=sin|x|是函数y=sinx把有部分图象关于y轴对称所得,不是周期函数,∴C对.对于D:函数f(x)=|sinx|+|cosx|的最小正周期为.∴D不对.故选D.5.的展开式的常数项是()A.5 B.﹣10 C.﹣32 D.﹣42【考点】DB:二项式系数的性质.【分析】由于的通项为,可得的展开式的常数项.【解答】解:由于的通项为,故的展开式的常数项是+(﹣2)5=﹣42,故选D.6.若变量x,y满足约束条件,且z=ax+3y的最小值为7,则a的值为()A.1 B.2 C.﹣2 D.不确定【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,对a分类讨论可得最优解,联立方程组求得最优解的坐标,代入目标函数即可求得a值.【解答】解:由约束条件作出可行域如图,联立方程组求得A(2,1),B(4,5),C(1,2),化目标函数z=ax+3y为y=.当a>0时,由图可知,当直线y=过A或C时,直线在y轴上的截距最小,z有最小值.若过A,则2a+3=7,解得a=2;若过C,则a+6=7,解得a=1不合题意.当a<0时,由图可知,当直线y=过A或B时,直线在y轴上的截距最小,z有最小值.若过A,则2a+3=7,解得a=2,不合题意;若过B,则4a+15=7,解得a=﹣2,不合题意.∴a的值为2.故选:B.7.已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200 B.﹣100 C.0 D.﹣50【考点】85:等差数列的前n项和;3F:函数单调性的性质.【分析】由函数y=f(x﹣2)的图象关于x=1轴对称,平移可得y=f (x)的图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,可得y=f(x)的图象关于x=﹣1对称,由数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.8.已知△ABC的外接圆半径为2,D为该圆上一点,且+=,则△ABC的面积的最大值为()A.3 B.4 C.3D.4【考点】9V:向量在几何中的应用;9H:平面向量的基本定理及其意义.【分析】利用向量关系,判断四边形的形状,然后求解三角形的面积的最大值即可.【解答】解:由知,ABDC 为平行四边形,又A,B,C,D 四点共圆,∴ABDC 为矩形,即BC 为圆的直径,当AB=AC 时,△ABC 的面积取得最大值.故选:B.9.在直三棱柱A1B1C1﹣ABC中,,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为()A.[,1) B.[,1]C.(,1)D.[,1)【考点】LH:多面体和旋转体表面上的最短距离问题.【分析】根据直三棱柱中三条棱两两垂直,本题考虑利用空间坐标系解决.建立如图所示的空间直角坐标系,设出F、D的坐标,利用GD⊥EF求得关系式,写出DF的表达式,然后利用二次函数求最值即可.【解答】解:建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),G(,0,1),F(x,0,0),D(0,y,0)由于GD⊥EF,所以x+2y﹣1=0DF==当y=时,线段DF长度的最小值是当y=1时,线段DF长度的最大值是1而不包括端点,故y=1不能取;故选:A.10.已知点P在双曲线上,点A满足(t∈R),且,,则的最大值为()A.B. C.D.【考点】KC:双曲线的简单性质.【分析】由已知可得,且||=|t|||.有,将点()代入双曲线中得,由||•||=t|||2=64.得|t|()=6,即得64=,|y P|,||=|y P|.【解答】解:∵,∴,∴,且||=|t|| |.∴(x A,y A)=t(x P,y P),∴,将点()代入双曲线中得:.∴…①,∵,∴||•||=t|| |2=64.∴|t|()=64…②由①②得64=,∴|y P|,||=|y P|,故选:B二、填空题:本大题共7小题,多空题每小题6分,单空题每小题6分,共36分.11.已知函数,则f(f(﹣2))=0,若f(x)≥2,则x的取值范围为x≥3或x=0.【考点】3T:函数的值.【分析】由分段函数的表达式,利用代入法即可求第一问,讨论x的取值范围,解不等式即可求第二问.【解答】解:由分段函数的表达式得f(﹣2)==4﹣2=2,f(2)=0,故f(f(﹣2))=0,若x≤﹣1,由f(x)≥2得()x﹣2≥2得()x≥4,则2﹣x≥4,得﹣x≥2,则x≤﹣2,此时x≤﹣2.若x>﹣1,由f(x)≥2得(x﹣2)(|x|﹣1)≥2,即x|x|﹣x﹣2|x|≥0,若x≥0得x2﹣3x≥0,则x≥3或x≤0,此时x≥3或x=0,若x<0,得﹣x2+x≥0,得x2﹣x≤0,得0≤x≤1,此时无解,综上x≥3或x=0,故答案为:0,x≥3或x=012.某几何体的三视图(单位:cm)如图所示,则此几何体的所有棱长之和为27++cm,体积为20cm3.【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个三棱柱挖去一个三棱锥所得的组合体,画出其直观图,进而根据棱柱和棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个三棱柱挖去一个三棱锥所得的组合体,如下图所示:故此几何体的所有棱长之和为3+4+5+5+5+5++=27++cm,该几何体的体积V==cm3.故答案为:27++,20.13.已知随机变量ξ的概率分布列为:则Eξ=1,Dξ=.【考点】CG:离散型随机变量及其分布列.【分析】利用随机变量ξ的概率分布列的性质能求出Eξ和Dξ.【解答】解:由随机变量ξ的概率分布列,知:Eξ==1,Dξ=(0﹣1)2×+(1﹣1)2×+(2﹣1)2×=.故答案为:1,.14.已知圆C:x2+y2﹣2x﹣4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则m=﹣1;|MP|=3..【考点】JE:直线和圆的方程的应用.【分析】由题意直线l:x+my+1=0过圆心C(1,2),从而得到m=﹣1.利用勾股定理求出|MP|.【解答】解:∵圆C:x2+y2﹣2x﹣4y+1=0上存在两点关于直线l:x+my+1=0对称,∴直线l:x+my+1=0过圆心C(1,2),∴1+2m+1=0.解得m=﹣1.圆C:x2+y2﹣2x﹣4y+1=0,可化为(x﹣1)2+(y﹣2)2=4,圆心(1,2),半径r=2,∵经过点M(m,m)作圆C的切线,切点为P,∴|MP|==3.故答案为:﹣1;3.15.函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f (x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=e x﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是[3e3,+∞).【考点】6H:利用导数研究曲线上某点切线方程.【分析】由题意可得|e x﹣alnx+c﹣g(x)|对x∈(0,+∞)恒为常数,且不为0.令x=1求得常数.再由题意可得f(x)=e x﹣alnx+c在(2,3)上无极值点,运用导数和构造函数,转化为方程无实根,即可得到a的范围.【解答】解:由题意可得|e x﹣alnx+c﹣g(x)|对x∈(0,+∞)恒为常数,且不为0.令x=1,可得|e﹣0+c﹣g(1)|=|e+c﹣e|=|c|>0.由g(x)在区间(2,3)上的零点唯一,可得:f(x)=e x﹣alnx+c在(2,3)上无极值点,即有f′(x)=e x﹣=,则xe x﹣a=0无实数解,由y=xe x,可得y′=(1+x)e x>0,在(2,3)成立,即有函数y递增,可得y∈(2e2,3e3),则a≥3e3,故答案为:[3e3,+∞).16.若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t﹣1,t+1]上总存在两实数x1,x2,使得|f(x1)﹣f(x2)|≥8成立,则实数a的最小值为8.【考点】3R:函数恒成立问题.【分析】结合二次函数的图象可知,当且仅当区间[t﹣1,t+1]的中点是对称轴时,只要满足[t﹣1,t+1]上总存在两实数x1,x2,使得|f (x1)﹣f(x2)|≥8成立,则对其它任何情况必成立.【解答】解:因为a>0,所以二次函数f(x)=ax2+20x+14的图象开口向上.在闭区间[t﹣1,t+1]上总存在两实数x1,x2,使得|f(x1)﹣f(x2)|≥8成立,只需t=时f(t+1)﹣f(t)≥8,即a(t+1)2+20(t+1)+14﹣(at2+20t+14)≥8,即2at+a+20≥8,将t=代入得a≥8.所以a的最小值为8.故答案为817.定义域为{x|x∈N*,1≤x≤12}的函数f(x)满足|f(x+1)﹣f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为176.【考点】D8:排列、组合的实际应用;3T:函数的值.【分析】根据题意,由|f(x+1)﹣f(x)|=1分析可得必有在f(x+1)﹣f(x)=1和f(x+1)﹣f(x)=﹣1中,必须且只能有1个成立,由等比数列的性质求得f(4)=±2,进而分2种情况讨论,①、若f(4)=﹣2,分析可得在1≤x≤3中,f(x+1)﹣f(x)=﹣1都成立,在4≤x≤11中,有1个f(x+1)﹣f(x)=﹣1,7个f(x+1)﹣f(x)=1成立,②、若f(4)=2,在1≤x≤3中,有1个f(x+1)﹣f(x)=﹣1成立,2个f(x+1)﹣f(x)=1成立,在4≤x≤11中,有3个f (x+1)﹣f(x)=﹣1,5个f(x+1)﹣f(x)=1成立;由乘法原理计算可得每种情况的函数数目,由分类计数原理计算可得答案.【解答】解:根据题意,若|f(x+1)﹣f(x)|=1,则f(x+1)﹣f(x)=1和f(x+1)﹣f(x)=﹣1中,必须且只能有1个成立,若f(1)=1,f(12)=4,且f(1),f(4),f(12)成等比数列,则f(4)=±2,分2种情况讨论:①、若f(4)=﹣2,在1≤x≤3中,f(x+1)﹣f(x)=﹣1都成立,在4≤x≤11中,有1个f(x+1)﹣f(x)=﹣1,7个f(x+1)﹣f(x)=1成立,则有C81=8种情况,即有8个不同函数;②、若f(4)=2,在1≤x≤3中,有1个f(x+1)﹣f(x)=﹣1成立,2个f(x+1)﹣f(x)=1成立,有C31=3种情况,在4≤x≤11中,有3个f(x+1)﹣f(x)=﹣1,5个f(x+1)﹣f(x)=1成立,有C83=56种情况,则有3×56=168种情况,即有168个不同函数;则一共有8+168=176个满足条件的不同函数;故答案为:176.三、解答题(共5小题,满分74分)18.在△ABC中,a,b,c分别是角A,B,C的对边,b=sinB,且满足tanA+tanC=.(Ⅰ)求角C和边c的大小;(Ⅱ)求△ABC面积的最大值.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)根据同角的三角函数的关系以及诱导公式和两角和的正弦公式即可求出,再根据正弦定理即可求出c的值,(Ⅱ)根据余弦定理和基本不等式即可求出最大值.【解答】解:(Ⅰ)tanA+tanC=可得+====,∴cosC=,∵0<C<π,∴C=,∵b=sinB,由正弦定理可得==,∴c=;(Ⅱ)由余弦定理可得c2=a2+b2﹣2abcosC,∴=a2+b2﹣ab≥2ab﹣ab=ab,当且仅当a=b时取等号.∴S△ABC=absinC=ab≤×=,故△ABC面积的最大值为..19.在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图(2)).(1)求证:A1E⊥平面BEP;(2)求二面角B﹣A1P﹣E的余弦值.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(1)在图(1)中,取BE的中点D,连结DF,由已知可得△ADF为正三角形.进一步得到EF⊥AD.在图(2)中,可得A1E⊥EF,BE⊥EF,即∠A1EB为二面角A1﹣EF﹣B的一个平面角,由题设条件知此二面角为直二面角,可得A1E⊥平面BEP;(2)分别以EB、EF、EA1所在直线为x、y、z轴建立空间直角坐标系,然后分别求出面EA1P与面BA1P的一个法向量,求出两法向量所成角的余弦值得答案.【解答】(1)证明:在图(1)中,取BE的中点D,连结DF,∵AE:EB=CF:FA=1:2,∴AF=AD=2,而∠A=60°,∴△ADF为正三角形.又AE=DE=1,∴EF⊥AD.在图(2)中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的一个平面角,由题设条件知此二面角为直二面角,∴A1E⊥平面BEP;(2)解:分别以EB、EF、EA1所在直线为x、y、z轴建立空间直角坐标系,则E(0,0,0),B(2,0,0),P(1,,0),A(0,0,1),,.设面EA1P的法向量为,则,取y=﹣1,得=(,﹣1,0);设面BA1P的法向量为,则,取y=1,得=(,1,2).∴cos<>==,∴二面角B﹣A1P﹣E的大小的余弦值为.20.设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.【考点】6B:利用导数研究函数的单调性;6C:函数在某点取得极值的条件.【分析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=﹣k(﹣)=(x>0),当k≤0时,kx≤0,∴e x﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x﹣kx,x∈(0,+∞).∵g′(x)=e x﹣k=e x﹣e lnk,当0<k≤1时,当x∈(0,2)时,g′(x)=e x﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)21.如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,⊥F1F2,=2,△DF1F2的面积为.点D在椭圆上,DF(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【考点】KH:直线与圆锥曲线的综合问题.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易|==,|DF2|=,从而可得2a=2,于是可求得求得|DF椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,|==c,由=2,得|DF从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,|+|DF2|=2,故a=,b2=a2﹣c2=1,所以2a=|DF因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C(0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.22.已知在数列{a n}中,.,n∈N*(1)求证:1<a n+1<a n<2;(2)求证:;(3)求证:n<s n<n+2.【考点】8K:数列与不等式的综合;8H:数列递推式.【分析】(1)先用数学归纳法证明1<a n<2.由..可证得1<a n+1<a n<2成立.(2),当n≥3时,由,得,,即可证得(3)由(1)1<a n<2得s n>n由(2)得,【解答】证明:(1)先用数学归纳法证明1<a n<2.①.n=1时,②.假设n=k时成立,即1<a k<2.那么n=k+1时,成立.由①②知1<a n<2,n∈N*恒成立..所以1<a n+1<a n<2成立.(2),当n≥3时,而1<a n<2.所以.由,得,所以(3)由(1)1<a n<2得s n>n由(2)得,。
2019年浙江省高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A. B. C. 2, D. 0,1,2.渐进线方程为x±y=0的双曲线的离心率是()A. B. 1 C. D. 23.若实数x,y满足约束条件,则z=3x+2y的最大值是()A. B. 1 C. 10 D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A. 158B. 162C. 182D. 3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A. B.C. D.7.则当a在(0,1)内增大时,()A. 增大B. 减小C. 先增大后减小D. 先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则()A. ,B. ,C. ,D. ,9.设a,b∈R,函数f(x)=,<,,.若函数y=f(x)-ax-b恰有3个零点,则()A. ,B. ,C. ,D. ,10.设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A. 当时,B. 当时,C. 当时,D. 当时,二、填空题(本大题共7小题,共36.0分)11.复数z=(i为虚数单位),则|z|=______.12.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=______,r=______.13.在二项式(+x)9展开式中,常数项是______,系数为有理数的项的个数是______.14.在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=______,cos∠ABD=______.15.已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是______.16.已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤,则实数a的最大值是______.17.已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是______,最大值是______.三、解答题(本大题共5小题,共71.0分)18.设函数f(x)=sin x,x∈R.(Ⅰ)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(Ⅱ)求函数y=[f(x+)]2+[f(x+)]2的值域.19.如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.20.设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=,n∈N*,证明:c1+c2+…+c n<2,n∈N*.21.如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(Ⅰ)求p的值及抛物线的准线方程;(Ⅱ)求的最小值及此时点G点坐标.22.已知实数a≠0,设函数f(x)=a ln x+,x>0.(Ⅰ)当a=-时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[,+∞)均有f(x)≤,求a的取值范围.注意:e=2.71828……为自然对数的底数.答案和解析1.【答案】A【解析】解:∵∁U A={-1,3},∴(∁U A)∩B={-1,3}∩{-1,0,l}={-1}故选:A.由全集U以及A求A的补集,然后根据交集定义得结果.本题主要考查集合的基本运算,比较基础.2.【答案】C【解析】解:根据渐进线方程为x±y=0的双曲线,可得a=b,所以c=则该双曲线的离心率为e==,故选:C.由渐近线方程,转化求解双曲线的离心率即可.本题主要考查双曲线的简单性质的应用,属于基础题.3.【答案】C【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由实数x,y满足约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+2y为y=-x+z,由图可知,当直线y=-x+z过A(2,2)时,直线在y轴上的截距最大,z有最大值:10.故选:C.4.【答案】B【解析】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即=27,高为6,则该柱体的体积是V=27×6=162.故选:B.由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.充分条件和必要条件的定义结合均值不等式、特值法可得结果.【解答】解:∵a>0,b>0,∴4≥a+b≥2,∴2≥,∴ab≤4,即a+b≤4⇒ab≤4,若a=4,b=,则ab=1≤4,但a+b=4+>4,即ab≤4推不出a+b≤4,∴a+b≤4是ab≤4的充分不必要条件故选A.6.【答案】D【解析】解:由函数y=,y=1og a(x+),当a>1时,可得y=是递减函数,图象恒过(0,1)点,函数y=1og a(x+),是递增函数,图象恒过(,0)点;当1>a>0时,可得y=是递增函数,图象恒过(0,1)点,函数y=1og a(x+),是递减函数,图象恒过(,0)点;∴满足要求的图象为D,故选D.对a进行讨论,结合指数,对数函数的性质即可判断.本题考查了指数函数,对数函数的图象和性质,属于基础题.7.【答案】D【解析】解:E(X)=0×+a×+1×=,D(X)=()2×+(a-)2×+(1-)2×=[(a+1)2+(2a-1)2+(a-2)2]=(a2-a+1)=(a-)2+∵0<a<1,∴D(X)先减小后增大故选:D.方差公式结合二次函数的单调性可得结果本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.【答案】B【解析】解:方法一、如图G为AC的中点,V在底面的射影为O,则P在底面上的射影D在线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosα===<=cosβ,可得β<α;tanγ=>=tanβ,可得β<γ,方法二、由最小值定理可得β<α,记V-AC-B的平面角为γ'(显然γ'=γ),由最大角定理可得β<γ'=γ;方法三、(特殊图形法)设三棱锥V-ABC为棱长为2的正四面体,P为VA的中点,易得cosα==,可得sinα=,sinβ==,sinγ==,故选:B.本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.【答案】C【解析】解:当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b=0,得x=;y=f(x)-ax-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,y′=x2-(a+1)x,当a+1≤0,即a≤-1时,y′≥0,y=f(x)-ax-b在[0,+∞)上递增,y=f(x)-ax-b最多一个零点.不合题意;当a+1>0,即a<-1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)-ax-b恰有3个零点⇔函数y=f(x)-ax-b在(-∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴<0且,解得b<0,1-a>0,b>-(a+1)3.故选:C.当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.本题考查了函数与方程的综合运用,属难题.10.【答案】A【解析】解:对于B,令=0,得λ=,取,∴,∴当b=时,a10<10,故B错误;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,∴a2=2,…,a n=2<10,∴当b=-2时,a10<10,故C错误;对于D,令x2-λ-4=0,得,取,∴,…,<10,∴当b=-4时,a10<10,故D错误;对于A,,,≥,a n+1-a n>0,{a n}递增,当n≥4时,=a n+>1+=,∴,∴>()6,∴a10>>10.故A正确.故选:A.对于B,令=0,得λ=,取,得到当b=时,a10<10;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,得到当b=-2时,a10<10;对于D,令x2-λ-4=0,得,取,得到当b=-4时,a10<10;对于A,,,≥,当n≥4时,=a n+>1+=,由此推导出>()6,从而a10>>10.本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.11.【答案】【解析】解:∵z==.∴|z|=.故答案为:.利用复数代数形式的除法运算化简,然后利用模的计算公式求模.本题考查了复数代数形式的除法运算,考查了复数模的求法,是基础题.12.【答案】-2【解析】解:如图,由圆心与切点的连线与切线垂直,得,解得m=-2.∴圆心为(0,-2),则半径r=.故答案为:-2,.由题意画出图形,利用圆心与切点的连线与切线垂直列式求得m,再由两点间的距离公式求半径.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.13.【答案】16 5【解析】解:二项式的展开式的通项为=.由r=0,得常数项是;当r=1,3,5,7,9时,系数为有理数,∴系数为有理数的项的个数是5个.故答案为:,5.写出二项展开式的通项,由x的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.14.【答案】【解析】解:在直角三角形ABC中,AB=4,BC=3,AC=5,sinC=,在△BCD中,可得=,可得BD=;∠CBD=135°-C,sin∠CBD=sin(135°-C)=(cosC+sinC)=×(+)=,即有cos∠ABD=cos(90°-∠CBD)=sin∠CBD=,故答案为:,,解直角三角形ABC,可得sinC,cosC,在三角形BCD中,运用正弦定理可得BD;再由三角函数的诱导公式和两角和差公式,计算可得所求值.本题考查三角形的正弦定理和解直角三角形,考查三角函数的恒等变换,化简整理的运算能力,属于中档题.15.【答案】【解析】解:椭圆=1的a=3,b=,c=2,e=,设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得|PF'|=2|AO|=4,设P的坐标为(m,n),可得3-m=4,可得m=-,n=,由F(-2,0),可得直线PF的斜率为=.故答案为:.求得椭圆的a,b,c,e,设椭圆的右焦点为F',连接PF',运用三角形的中位线定理和椭圆的焦半径半径,求得P的坐标,再由两点的斜率公式,可得所求值.本题考查椭圆的定义和方程、性质,注意运用三角形的中位线定理,考查方程思想和运算能力,属于中档题.16.【答案】【解析】解:存在t∈R,使得|f(t+2)-f(t)|≤,即有|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,可得-≤2a(3t2+6t+4)-2≤,即≤a(3t2+6t+4)≤,由3t2+6t+4=3(t+1)2+1≥1,可得0<a≤,可得a的最大值为.故答案为:.由题意可得|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,去绝对值化简,结合二次函数的最值,以及不等式的性质,不等式有解思想,可得a的范围,进而得到所求最大值.本题考查不等式成立问题解法,注意运用去绝对值和分离参数法,考查化简变形能力,属于基础题.17.【答案】0 2【解析】解:正方形ABCD的边长为1,可得+=,=-,•=0,|λ1+λ2+λ3+λ4+λ5+λ6|=|λ1+λ2-λ3-λ4+λ5+λ5+λ6-λ6|=|(λ1-λ3+λ5-λ6)+(λ2-λ4+λ5+λ6)|=,由于λi(i=1,2,3,4,5,6)取遍±1,可得λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0,可取λ5=λ6=1,λ1=λ3=1,λ2=-1,λ4=1,可得所求最小值为0;由λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6的最大值为4,可取λ2=1,λ4=-1,λ5=λ6=1,λ1=1,λ3=-1,可得所求最大值为2.故答案为:0,2.由题意可得+=,=-,•=0,化简|λ1+λ2+λ3+λ4+λ5+λ6|=,由于λi(i=1,2,3,4,5,6)取遍±1,由完全平方数的最值,可得所求最值.本题考查向量的加减运算和向量的模的最值求法,注意变形和分类讨论,考查化简运算能力,属于基础题.18.【答案】解:(1)由f(x)=sin x,得f(x+)=sin(x+),∵f(x+)为偶函数,∴ =(k∈Z),∵θ∈[0,2π),∴或,(2)y=[f(x+)]2+[f(x+)]2=sin2(x+)+sin2(x+)==1-==,∵x∈R,∴∈,,∴∈,,∴函数y=[f(x+)]2+[f(x+)]2的值域为:,.【解析】(1)函数f(x+θ)是偶函数,则=(k∈Z),根据的范围可得结果;(2)化简函数得y=,然后根据x的范围求值域即可.本题考查了三角函数的奇偶性和三角函数的图象与性质,关键是熟练掌握三角恒等变换,属基础题.19.【答案】方法一:证明:(Ⅰ)连结A1E,∵A1A=A1C,E是AC的中点,∴A1E⊥AC,又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,∴A1E⊥平面ABC,∴A1E⊥BC,∵A1F∥AB,∠ABC=90°,∴BC⊥A1F,∴BC⊥平面A1EF,∴EF⊥BC.解:(Ⅱ)取BC中点G,连结EG、GF,则EGFA1是平行四边形,由于A1E⊥平面ABC,故A1E⊥EG,∴平行四边形EGFA1是矩形,由(Ⅰ)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,∴EF在平面A1BC上的射影在直线A1G上,连结A1G,交EF于O,则∠EOG是直线EF与平面A1BC所成角(或其补角),不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=,∵O是A1G的中点,故EO=OG==,∴cos∠EOG==,∴直线EF与平面A1BC所成角的余弦值为.方法二:证明:(Ⅰ)连结A1E,∵A1A=A1C,E是AC的中点,∴A1E⊥AC,又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,∴A1E⊥平面ABC,如图,以E为原点,EC,EA1所在直线分别为y,z轴,建立空间直角坐标系,设AC=4,则A1(0,0,2),B(,,),B1(,,),F(,,),C(0,2,0),=(,,),=(-,,),由=0,得EF⊥BC.解:(Ⅱ)设直线EF与平面A1BC所成角为θ,由(Ⅰ)得=(-,,),=(0,2,-2),设平面A1BC的法向量=(x,y,z),则,取x=1,得=(1,,),∴sinθ==,∴直线EF与平面A1BC所成角的余弦值为.【解析】法一:(Ⅰ)连结A1E,则A1E⊥AC,从而A1E⊥平面ABC,A1E⊥BC,推导出BC⊥A1F,从而BC⊥平面A1EF由此能证明EF⊥BC.(Ⅱ)取BC中点G,连结EG、GF,则EGFA1是平行四边形,推导出A1E⊥EG,从而平行四边形EGFA1是矩形,推导出BC⊥平面EGFA1,连结A1G,交EF于O,则∠EOG是直线EF与平面A1BC所成角(或其补角),由此能求出直线EF与平面A1BC所成角的余弦值.法二:(Ⅰ)连结A1E,推导出A1E⊥平面ABC,以E为原点,EC,EA1所在直线分别为y,z轴,建立空间直角坐标系,利用向量法能求出直线EF与平面A1BC所成角的余弦值.本题考查空间线面垂直的证明,三棱锥体积的计算.要证线面垂直,需证线线垂直,而线线垂直可以通过平面中的勾股定理、等腰三角形的性质等来证明,也可以通过另外的线面垂直来证明.求三棱锥的体积经常需要进行等积转换,即变换三棱柱的底面.20.【答案】解:(Ⅰ)设数列{a n}的公差为d,由题意得,解得a1=0,d=2,∴a n=2n-2,n∈N*.∴S n=n2-n,n∈N*,∵数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.∴(S n+1+b n)2=(S n+b n)(S n+2+b n),解得,解得b n=n2+n,n∈N*.证明:(Ⅱ)==,n∈N*,用数学归纳法证明:①当n=1时,c1=0<2,不等式成立;②假设n=k,(k∈N*)时不等式成立,即c1+c2+…+c k<2,则当n=k+1时,c1+c2+…+c k+c k+1<2+<2<2+=2=2,即n=k+1时,不等式也成立.由①②得c1+c2+…+c n<2,n∈N*.【解析】(Ⅰ)利用等差数列通项公式和前n项和公式列出方程组,求出a1=0,d=2,从而a n=2n-2,n∈N*.S n=n2-n,n∈N*,利用(S n+1+b n)2=(S n+b n)(S n+2+b n),能求出b n.(Ⅱ)==,n∈N*,用数学归纳法证明,得到c1+c2+…+c n<2,n∈N*.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.21.【答案】解:(Ⅰ)由抛物线的性质可得:=1,∴p=2,∴抛物线的准线方程为x=-1;(Ⅱ)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G),令y A=2t,t≠0,则,由于直线AB过F,故直线AB的方程为x=,代入y2=4x,得:,∴2ty B=-4,即y B=-,∴B(,-),又x G=(x A+x B+x C),y G=(y A+y B+y C),重心在x轴上,∴=0,∴C(()2,2()),G(,0),∴直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0),∵Q在焦点F的右侧,∴t2>2,∴====2-,令m=t2-2,则m>0,=2-=2-≥2-=1+,∴当m=时,取得最小值为1+,此时G(2,0).【解析】(Ⅰ)由抛物线的性质可得:=1,由此能求出抛物线的准线方程;(Ⅱ)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G),令y A=2t,t≠0,则,从而直线AB的方程为x=,代入y2=4x,得:,求出B(,-),由重心在x轴上,得到=0,从而C(()2,2()),G(,0),进崦直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0),由此结合已知条件能求出结果.本题考查实数值、抛物线标准方程的求法,考查三角形的面积的比值的最小值及相应点的坐标的求法,考查抛物线、直线方程、重心性质、弦长公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.22.【答案】解:(1)当a=-时,f(x)=-,x>0,f′(x)=-=,∴函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(x)≤,得0<a≤,当0<a≤时,f(x)≤,等价于--2ln x≥0,令t=,则t,设g(t)=t2-2t-2ln x,t,则g(t)=(t-)2--2ln x,(i)当x∈[,+∞)时,,则g(x)≥g(2)=,记p(x)=4-2-ln x,x,则p′(x)=-==,∴g(t)≥g(2=2p(x)≥0.(ii)当x∈[,)时,g(t)≥g()=,令q(x)=2ln x+(x+1),x∈[,],则q′(x)=+1>0,故q(x)在[,]上单调递增,∴q(x)≤q(),由(i)得q()=-p()<-p(1)=0,∴q(x)<0,∴g(t)≥g()=->0,由(i)(ii)知对任意x∈[,+∞),t∈[2,+∞),g(t)≥0,即对任意x∈[,+∞),均有f(x)≤,综上所述,所求的a的取值范围是(0,].【解析】(1)当a=-时,f′(x)=-=,利用导数性质能求出函数f(x)的单调区间.(2)由f(x)≤,得0<a≤,当0<a≤时,f(x)≤,等价于--2lnx≥0,令t=,则t,设g(t)=t2-2t-2lnx,t,则g(t)=(t-)2--2lnx,由此利用分类讨论思想和导导数性质能求出a的取值范围.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.。
2019年高考数学(浙江专版)精选模拟卷精华卷10一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【北京市顺义区2019届高三第二次统练】已知全集,集合,则( ) A.B.C.D.【答案】A【解析】因为,所以,所以故选:A2.【江西省南昌市外国语学校2019届高三高考适应】已知点在双曲线的一条渐近线上,则()A.3 B.2 C.D.【答案】A【解析】由题意得双曲线渐近线方程为,所以,即,选A.3.【河北省唐山市2019届高三第二次模拟】已知复数满足,则的共轭..复数为()A.B.C.D.【答案】A【解析】=1-i,故故选:A4. 【山西省吕梁市2019年高考模拟2019.4】孔明锁,也叫鲁班锁,起源于中国古代建筑中首创的榫卵结构,它是用6根木条制作的一件可拼可拆的、广泛流传于中国民间的智力玩具.如图,网格纸上小正方形的边长为1,粗线画出的是其中3根木条的三视图,记这3根木条的体积分别为,则()A.B.C.D.【答案】C【解析】解:由题意可知几何体是正四棱柱去掉部分棱柱的几何体,由题意可知V1=32﹣8=24;V2=32﹣10=22;V3=32﹣6=26,这3根木条的体积分别为V1,V2,V3,满足V2<V1<V3.故选:C.5.【湖南省常德市2019届高三上学期检测】函数的部分图象大致为()A. B.C.D.【答案】A【解析】,定义域为,,故函数为奇函数,图像关于原点对称,排除两个选项.,排除D选项,故选A.6.【河南省天一大联考2019届高三阶段性测试(五)】已知:平面与平面内的无数条直线平行;:平面与平面平行.则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若平面与平面内的无数条直线平行,则与可能相交、平行;若与平行,则平面与平面内的无数条直线平行.所以是的必要不充分条件.故选B.7.【安徽省六安市毛坦厂中学2019届高三3月月考】某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为分,学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为分,则的值为()A.B.C.D.【答案】A【解析】设学生答对题的个数为,则得分(分),,,所以,同理设学生答对题的个数为,可知,,所以,所以.故选A.8.【上海交通大学附属中学2019届高三3月月考】如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为()A.B.C.D.不能确定【答案】C【解析】如图所示:∵PA⊥平面ABC,∴PD与平面ABC所成的角=∠PDA,过点A作AE⊥BC,垂足为E,连接PE,∵PA⊥平面ABC,∴PA⊥BC,∴BC⊥平面PAE,∴BC⊥PE,在Rt△AED,Rt△PAD,Rt△PED中:cos,cos,cos,∴cos cos cos< cos,又均为锐角,∴,故选C.9.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.10.【河北省衡水市第十三中学2019届高三质检(四)】已知定义域为的函数满足,当时,,设在上的最大值为,且的前项和为,若对任意的正整数均成立,则实数的取值范围为()A. B. C. D.【答案】B【解析】由题意,可得当时,;时,,∴当时,的最大值为;又由,∴当时,的最大值为;当时,的最大值为,…,所以当时,的最大值为,由等比数列的前n 项和公式,得.若对任意的正整数成立,则,故选B.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《九章算术》“竹九节”问题:现有一根九节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则上面第1节的容量为 . 【答案】升 【解析】解:设竹子自上而下各节的容积分别为:,,…,,且为等差数列, 根据题意得:+++=3,++=4,即4+6d =3①,3+21d =4②, ②×4﹣①×3得:66d =7,解得d ,把d代入①得:,故上面第1节的容量为升.12.设变量x , y 满足约束条件,则2z x y =+的最大值是__________; 22z x y =+的最小值是__________.【答案】 8 12【解析】画出表示的可行域,如图所示,平移直线2z x y =+,由图可得在点()2,3处, 2z x y =+取得最大值,, 22z x y =+的最小值是原点到直线1x y +=距离的平方,即在点11,22⎛⎫⎪⎝⎭处, 22z x y =+取最小值,,故答案为(1) 8 (2)12. 13.在△中,内角的对边分别为.已知,,,则______,______.【答案】【解析】 由于,则,解得,由于,利用正弦定理,则,整理得,解得,由,解得,,则,故答案为,.14.【甘肃省靖远县2019届高三第四次联考】的展开式中的系数为__________.【答案】120【解析】,因为的展开式中含的项为的展开式中含的项为,所以的系数为.故答案为:12015.【北京市西城区2019届高三4月统一测试(一模)】设函数当时,____;如果对于任意的都有,那么实数b的取值范围是____.【答案】【解析】若a≥-1,则有,解得:a=,不符;若a<-1,则有-2a-4=-1,解得:<-1,符合题意,所以,;画出函数的图象,由图可知f(x)的值域为(﹣2,+∞),对于任意的x∈R都有f(x)≥b,则有,所以,故答案为:,(﹣∞,﹣2].16.【安徽省宣城市2019届高三第二次调研】大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的10个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_________种不同的填报专业志愿的方法(用数字作答).【答案】672【解析】解:甲、乙都不选时,有种;甲、乙两个专业选1个时,有种,根据分类计数原理,可得共有336+336=672种不同的填报专业志愿的方法.故答案为:672.17.【北京市顺义区2019届高三第二次统练】、分别为椭圆:的左、右焦点,是上的任意一点. 则的最大值为___________,若,则的最小值为____________. 【答案】9 4【解析】由可得:,由椭圆定义可知又,即当时,取最大值,最大值为:又(当且仅当在线段上时取等号)三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.如图,点是单位圆上的两点,点是圆与轴的正半轴的交点,将锐角的终边按逆时针方向旋转到.(1)若点的坐标为,求的值;(2)用表示,并求的取值范围.【答案】(1);(2).【解析】(1)由已知,,∴,∴;(2)由单位圆可知:,由余弦定理得:,∵,∴,∴,∴,∴.19.如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=4,求平面PBC与平面PDC所成角的余弦值.【答案】(1)见解析(2)【解析】(1)证明:因为底面ABCD是菱形,所以BD⊥AC.又PA⊥平面ABCD,所以BD⊥PA.又PA∩AC=A,所以BD⊥平面PAC.(2)以BD与AC的交点O为坐标原点,OB,OC所在直线为x轴,y轴,过点O且垂直于平面ABCD的直线为z 轴,建立如图所示的空间直角坐标系.由已知可得,AO=OC=,OD=OB=1,所以P(0,-,4),B(1,0,0),C(0,,0),D(-1,0,0),(0,2,-4),=(-1,,0),=(-1,-,0).设平面PBC的一个法向量为n1=(x1,y1,z1),平面PDC的一个法向量为n2=(x2,y2,z2),由可得令x1=,可得n1=.同理,由可得n2=,所以cos〈n1,n2〉==-,所以平面PBC与平面PDC所成角的余弦值为.20.【山东省日照市2019届高三1月校际联考】已知抛物线上在第一象限内的点H(1,t)到焦点F的距离为2.(1)若,过点M,H的直线与该抛物线相交于另一点N,求的值;(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且(其中O为坐标原点).①求证:直线AB必过定点,并求出该定点Q的坐标;②过点Q作AB的垂线与该抛物线交于G、D两点,求四边形AGBD面积的最小值.【答案】(1) (2) ①见证明;②最小值88【解析】解:(1)∵点,∴,解得,故抛物线E的方程为:,所以当时,∴直线的方程为,联立可得,,.(2)①证明:设直线,,联立抛物线方程可得,,由得:,解得或(舍去),即,所以直线过定点;②由①得同理得,.则四边形面积.令,则是关于的增函数,故当时,.当且仅当时取到最小值88.21.【上海市金山区2019届高三二模】若数列、满足(N*),则称为数列的“偏差数列”.(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;(2)若无穷数列是各项均为正整数的等比数列,且,为数列的“偏差数列”,求的值;(3)设,为数列的“偏差数列”,,且,若对任意恒成立,求实数M的最小值.【答案】(1)见解析;(2)或;(3)【解析】解:(1) 如,则为常数列,但不是等差数列,(2) 设数列的公比为,则由题意,、均为正整数,因为,所以,解得或,故或 (N*),①当时,,,,② 当时,,,综上,的值为或;(3) 由≤且≤得, =故有:,,,累加得:==,又,所以当n为奇数时,单调递增,,,当n为偶数时,单调递减,,,从而≤,所以M≥,即M的最小值为.22.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》】已知函数.(Ⅰ)当时,函数在区间上的最小值为-5,求的值;(Ⅱ)设,且有两个极值点,. (i)求实数的取值范围;(ii)证明:.【答案】(Ⅰ)8;(Ⅱ)(i);(ii)详见解析.【解析】解:(Ⅰ),∵,,∴,所以在区间上为单调递增.所以,又因为,所以的值为8.(Ⅱ)(i)∵,且的定义域为,∴.由有两个极值点,,等价于方程有两个不同实根,.由得:.令,则,由.当时,,则在上单调递增;当时,,则在上单调递减.所以,当时,取得最大值,∵,∴当时,,当时,,所以,解得,所以实数的取值范围为. (ii)证明:不妨设,且①,②,①+②得:③②-①得:④③÷④得:,即,要证:,只需证.即证:.令,设,.∴在上单调递增,∴,即,∴.。