第3讲 对称密钥密码体制
- 格式:ppt
- 大小:1.07 MB
- 文档页数:92
对称密码体制和⾮对称密码体制⼀、对称加密 (Symmetric Key Encryption)对称加密是最快速、最简单的⼀种加密⽅式,加密(encryption)与解密(decryption)⽤的是同样的密钥(secret key)。
对称加密有很多种算法,由于它效率很⾼,所以被⼴泛使⽤在很多加密协议的核⼼当中。
⾃1977年美国颁布DES(Data Encryption Standard)密码算法作为美国数据加密标准以来,对称密码体制迅速发展,得到了世界各国的关注和普遍应⽤。
对称密码体制从⼯作⽅式上可以分为分组加密和序列密码两⼤类。
对称加密算法的优点:算法公开、计算量⼩、加密速度快、加密效率⾼。
对称加密算法的缺点:交易双⽅都使⽤同样钥匙,安全性得不到保证。
此外,每对⽤户每次使⽤对称加密算法时,都需要使⽤其他⼈不知道的惟⼀钥匙,这会使得发收信双⽅所拥有的钥匙数量呈⼏何级数增长,密钥管理成为⽤户的负担。
对称加密算法在分布式⽹络系统上使⽤较为困难,主要是因为密钥管理困难,使⽤成本较⾼。
⽽与公开密钥加密算法⽐起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使⽤范围有所缩⼩。
对称加密通常使⽤的是相对较⼩的密钥,⼀般⼩于256 bit。
因为密钥越⼤,加密越强,但加密与解密的过程越慢。
如果你只⽤1 bit来做这个密钥,那⿊客们可以先试着⽤0来解密,不⾏的话就再⽤1解;但如果你的密钥有1 MB⼤,⿊客们可能永远也⽆法破解,但加密和解密的过程要花费很长的时间。
密钥的⼤⼩既要照顾到安全性,也要照顾到效率,是⼀个trade-off。
分组密码:也叫块加密(block cyphers),⼀次加密明⽂中的⼀个块。
是将明⽂按⼀定的位长分组,明⽂组经过加密运算得到密⽂组,密⽂组经过解密运算(加密运算的逆运算),还原成明⽂组,有 ECB、CBC、CFB、OFB 四种⼯作模式。
序列密码:也叫流加密(stream cyphers),⼀次加密明⽂中的⼀个位。
对称密钥密码体制对称密钥密码体制是指加密和解密过程中使用相同的密钥。
这种体制也叫做单密钥密码体制,因为加密和解密使用的密钥相同,能在保持安全的前提下对数据进行快速处理。
对称密钥密码体制通常分为分组密码和流密码两种。
分组密码是将明文分成固定长度的块,再和密钥一起通过一系列算法进行加密。
这种方法处理速度非常快,因为加密和解密算法是对数据块进行分组处理的,同时相同密钥的使用也降低了密钥管理的复杂性。
然而,分组密码存在的一个问题是,对数据块的分组可能会导致重复的数据,这些数据可以被攻击者用来破解密钥。
流密码是将明文和密钥通过一个伪随机数生成器计算出一个流式密钥,然后将流式密钥和明文一起进行异或运算来加密数据。
这种方法加密和解密速度也非常快,而且每个数据块都有独立的流式密钥,增强了数据的安全性。
然而,流密码也存在一些问题,例如在密钥被泄露时,加密数据就变得不安全了。
对称密钥密码体制的优点包括:1. 处理速度快:加密和解密使用的密钥相同,从而能快速处理数据。
2. 加密方式简单:对称密钥密码体制通常采用分组密码或流密码,在数据加密和解密过程中使用块或流式加密,处理速度快,同时也方便计算机的硬件或软件实现。
3. 密钥管理相对简单:使用相同的密钥进行加密和解密,可以使加密和解密的过程更加简单,从而降低了密钥管理的复杂度。
4. 对称密钥密码体制广泛应用于大多数数据通信应用中,如数据存储、数据传输等。
对称密钥密码体制的缺点包括:1. 密钥管理不安全:对称密钥密码体制存在一个主要问题,即密钥的安全性。
如果密钥被泄露或者失窃,那么加密数据就暴露了,导致数据不安全。
2. 非法用户可以访问数据:一旦非法用户获取了密钥,他们便可以访问数据而不会受到限制,这可能会导致重大的安全问题。
3. 可能存在重放攻击:由于每个数据块都使用相同的密钥进行加密,数据可能被攻击者截获并用于重放攻击,从而使数据的安全性大大降低。
4. 算法的安全性不能得到保证:对称密钥密码体制的安全性取决于加密算法本身的安全性。
对称密钥体制算法一、引言对称密钥体制算法是现代密码学中最常用的一种加密算法,它采用同一把密钥用于加密和解密过程,具有加密速度快、计算复杂度低等优点。
本文将介绍对称密钥体制算法的基本原理、常见算法和应用场景。
二、基本原理对称密钥体制算法使用同一把密钥进行加密和解密,其基本原理是通过对明文进行一系列数学运算和变换,将其转化为密文,而解密过程则是对密文进行逆运算和变换,恢复为明文。
对称密钥体制算法的核心在于密钥的保密性,只有知道密钥的人才能进行有效的解密操作。
三、常见算法1. DES(Data Encryption Standard):DES是一种对称密钥体制算法,它使用56位密钥进行加密和解密操作。
DES算法具有较高的加密强度和较快的加密速度,被广泛应用于计算机网络、电子商务等领域。
2. AES(Advanced Encryption Standard):AES是目前最常用的对称密钥体制算法,它采用128位、192位或256位密钥进行加密和解密操作。
AES算法具有更高的安全性和更快的加密速度,被广泛应用于云计算、物联网等领域。
3. RC4(Rivest Cipher 4):RC4是一种流密码算法,它使用变长密钥进行加密和解密操作。
RC4算法具有较高的加密速度和较简单的实现方式,被广泛应用于无线通信、嵌入式系统等领域。
四、应用场景对称密钥体制算法在信息安全领域有广泛的应用场景,以下为几个常见的应用场景:1. 数据加密传输:对称密钥体制算法可以用于对敏感数据进行加密传输,保护数据的机密性和完整性。
例如,通过对网络通信数据进行加密,可以有效防止黑客窃取数据。
2. 存储加密:对称密钥体制算法可以用于对存储在计算机硬盘、移动设备等媒体上的数据进行加密,保护数据的安全性。
例如,通过对个人电脑上的文件进行加密,可以防止他人未经授权的访问。
3. 身份认证:对称密钥体制算法可以用于身份认证过程中的数据加密。
例如,在网上银行登录过程中,采用对称密钥体制算法对用户输入的密码进行加密,保护用户密码的安全性。
对称密码体制与公钥密码体制是现代密码学中两种基本的密码体制,它们在保护信息安全,防止信息被未经授权者获取和篡改方面发挥着重要的作用。
下面将从定义、特点、优缺点、应用领域等方面来详细描述对称密码体制与公钥密码体制。
一、对称密码体制1. 定义:对称密码体制是指加密和解密使用同一个密钥的密码系统,也就是通信双方需要共享同一个密钥来进行加解密操作。
2. 特点:对称密码体制具有以下特点:1) 加密速度快:因为加密和解密使用同一个密钥,所以运算速度快。
2) 安全性依赖于密钥的安全性:只要密钥泄露,整个系统的安全就会受到威胁。
3) 密钥管理困难:通信双方需要事先共享密钥,密钥的分发和管理是一个很复杂的问题。
3. 优缺点:对称密码体制的优缺点如下:1) 优点:加密速度快,适合对大数据进行加密;算法简单,易于实现和设计。
2) 缺点:密钥管理困难,安全性依赖于密钥的安全性。
4. 应用领域:对称密码体制主要应用于一些对加密速度要求较高,密钥管理相对容易的场景中,比如网络通信、数据库加密等领域。
二、公钥密码体制1. 定义:公钥密码体制是指加密和解密使用不同密钥的密码系统,也就是通信双方分别有公钥和私钥,公钥用于加密,私钥用于解密。
2. 特点:公钥密码体制具有以下特点:1) 加密和解密使用不同的密钥,安全性更高。
2) 密钥管理相对容易:每个用户都拥有自己的一对密钥,不需要事先共享密钥。
3) 加密速度较慢:因为加密和解密使用不同的密钥,计算复杂度较高。
3. 优缺点:公钥密码体制的优缺点如下:1) 优点:安全性更高,密钥管理相对容易。
2) 缺点:加密速度较慢,算法复杂,设计和实现难度大。
4. 应用领域:公钥密码体制主要应用于对安全性要求较高,加密速度要求相对较低的场景中,比如数字签名、安全传输等领域。
三、对称密码体制与公钥密码体制的比较根据对称密码体制与公钥密码体制的特点、优缺点和应用领域,下面对它们进行比较:1. 安全性:公钥密码体制的安全性更高,因为加密和解密使用不同的密钥,不容易受到攻击;而对称密码体制的安全性依赖于密钥的安全性,一旦密钥泄露,整个系统的安全将受到威胁。