织构类型及其测定方法
- 格式:ppt
- 大小:15.31 MB
- 文档页数:64
第二节织构类型2.1.形变织构:经金属塑性加工的材料,如经拉拔﹑挤压的线材或经轧制的金属板材,在塑性变形过程中常沿原子最密集的晶面发生滑移。
滑移过程中,晶体连同其滑移面将发生转动,从而引起多晶体中晶粒方位出现一定程度的有序化。
这种由于冷变形而在变形金属中直接产生的晶粒择优取向称为形变织构。
形变织构常有纤维织构、板织构等几种类型。
1)纤维织构金属材料中的晶粒以某一结晶学方向平行于(或接近平行于)线轴方向的择优取向。
具有纤维织构的材料围绕线轴有旋转对称性,即晶粒围绕纤维轴的所有取向的几率是相等的。
例如冷拉铝线,其中多数晶粒的[111]方向平行于线轴方向,其余则对线轴有不同程度的偏离,呈漫散分布。
这种线材的织构称[111]纤维织构。
纤维织构是最简单的择优取向,因其只牵涉一个线轴方向,需要解决的结晶学问题仅为确定纤维轴的指数<uvw>。
纤维织构的类型和完整度(即取向分布的漫散程度)主要和材料的组成、晶体结构类型和变形工艺有关。
除冷拉和挤压工艺外,有时由热浸﹑电沉积或蒸发形成的材料的涂覆层以及材料经氧化和腐蚀后表层所生成的产物都可能产生纤维织构。
在实际材料中经常存在不止一种的纤维织构,如铜线中<111>和<100>织构同时出现。
2)板织构在轧制过程中,随着板材的厚度逐步减小,长度不断延伸,多数晶粒不仅倾向于以某一晶向<uvw>平行于材料的某一特定外观方向,同时还以某一晶面(hkl)平行于材料的特定外观平面(板材表面),这种类型的择优取向称为板织构,一般以(hkl)[hkl]表示,晶粒取向的漫散程度也按两个特征来描述。
图8-1 轧制后部分晶粒取向示意图如图为经轧制后的纯铁板材的部分晶粒取向示意图﹐其(100)面平行于轧面,[011]方向平行于轧向﹐说明该板材具有一种(100)[011]织构。
2.2 再结晶织构具有形变织构的冷加工金属,经过退火、发生再结晶以后,通常仍具有择优取向,称为退火织构或再结晶织构。
五、织构测定多晶材料在制备、加工过程中,如果各晶粒的某一特定晶面或某一特定方向沿同一取向排列,这种现象叫做择尤取向,又叫做织构。
当材料中存在择尤取向时,材料的性能就会出现各向异性,影响到材料的使用,大多数情况下,会使材料使用性能下降,如轧制板材中的择尤取向,使横向强度和韧性有所下降,用于冲压产品时会出现“制耳”。
但有的情况下,择尤取向却提高材料的使用性能。
如轧制的硅钢片如果轧制方向沿[100]择尤取间时,则会提高硅钢片的使用性能。
因此,测量、控制多晶材料的择尤取向,是改进制备工艺、提高材料使用性能的重要环节。
织构可以在液态凝固、气相凝聚过程中形成,也可在加工、再结晶过程中形成。
材料中是否存在织构与晶粒的形状无关,长晶粒材料不一定有织构,等轴晶材料也可能存在织构。
§1. 丝织构冷拔金属丝、热挤压棒材等在一维轴向应力作用下发生变形,晶粒择尤沿应力方向排列,形成一维轴向对称织构,这种织构叫做丝织构,又叫做纤维织构。
这种织构的方向叫做织构轴。
理想情况下,丝织构材料中各晶粒的取向,相当于一个晶粒绕织构轴旋转不同角度时的取向,因此,晶粒取向具有上述特点的材料就属丝织构类型,如气态凝聚、电解沉积、从液态结晶的金属中的织构就属丝织构。
1.丝织构衍射图的特点前面已经介绍过,晶粒无规取向排列时的倒易点分布在不同半径的倒易球面上,X 射线衍射图呈圆环状,图5-1a。
当样品中存在织构时,倒易点不再是均匀地分布在倒易球面上,而是集中在几个圆环上(一般情况下是两个圆环),图5-1b。
由于各晶粒的择尤方向并不是严格平行于织构方向,使倒易点的分布从理想情况下的环变成环带,与反射球相交得到四个圆弧段,因此,在衍射图上得到四个弧状斑点,其他部分的衍射强度很弱,可以不予考虑,图5-1c。
这4个强衍射斑点的出现,相当于(hkl)面绕织构轴[uvw]转动,有4个位置满足布拉格方程。
同一圆环上强衍射斑点的数目取决于[uvw]和(hkl)的指标,例如<110>织构的Fe,在{110}衍射环上有6个强衍射斑,在{211}衍射环上则有8个强衍射斑,在{200}衍射环上有4个强衍射斑点。
织构的测定第七章多晶体织构的测定【教学内容】1.织构及其表⽰⽅法。
2.丝织构指数的测定。
3.正极图与反极图的获得与分析。
【重点掌握内容】1.极射⾚⾯投影法。
2.丝织构指数的测定。
3.正极图与反极图的测定与分析。
【了解内容】织构的种类和表⽰⽅法。
【教学难点】极射⾚⾯投影法。
【教学⽬标】1.了解利⽤X射线衍射分析⽅法测定多晶体织构的意义、原理和⽅法。
2.培养学⽣善于利⽤织构测定⽅法解决实际问题的能⼒。
【教学⽅法】以课堂教学为主,并通过⼀定的习题练习,使学⽣了解X射线衍射分析⽅法在多晶体形变的各种织构的测定⽅法。
多晶体材料在制备、合成及加⼯等⼯艺过程形成择优取向,即各晶粒的取向朝⼀个或⼏个特定⽅向偏聚的现像,这种组织状态称为织构。
如材料经拉拔、轧制、挤压、旋压等压⼒加⼯后,由于塑性变形中晶粒⽅位转动、变形⽽形成形变织构;退⽕后⼜产⽣不同冷加⼯状态的退⽕织构(或再结晶织构):铸造材料具有某些晶向垂直于模壁的组织特点,电镀、真空蒸镀、溅射等⽅法制备的薄膜材料也表现出特殊的择优取向。
不仅⾦属、在陶瓷、天然岩⽯、天然和⼈造纤维材料中都存在织构,所以说择优取向在多晶材料中⼏乎是⽆所不在的。
织构使多晶体材料的物理、⼒学、化学性能发⽣各向异性,这种性质有时是有害的,如冷轧钢板的择优取向使⽤它制成的冲压件出现“制⽿”和厚度不均匀以致折皱的疵病;⽽有时⼜是有益的,如冷轧硅钢⽚经适当退⽕得到的“⾼斯织构”有利于减⼩磁损,织构还可以作为⼀些材料的强化⽅法加以利⽤。
因⽽测定织构并给它⼀定的指标是材料研究的⼀个重要⽅⾯,多处来X射线衍射是揭⽰材料织构特征的主要⽅法。
近年来背散射电⼦衍射(EBSD)法在结构测定上亦得到⼴泛应⽤。
本章介绍织构的分类以及其表达和测定⽅法。
因要涉及晶体空间⽅位关系的表⽰,需先介绍⼀种特殊的投影⽅法——极射⾚⾯投影法。
第⼀节极射⾚⾯投影法极射⾚⾯投影法:为了在平⾯上表达三维晶体中晶⾯、晶向的⽅位以及它们之间的⾓度关系,⽬前最常⽤⽅法是极射⾚⾯投影。
织构概述第一节钢板的常见织构类型1.1织构的表达方法织构是多晶体取向分布状态明显偏离随机分布的取向分布结构,通常用晶体的某晶面晶向在参考坐标系中的排布方式来表达晶体的取向。
在立方晶体轧制样品坐标系中,常用(HKL)[UVW]来表达某一晶粒的取向。
这种晶粒的取向特征为(HKL)晶面平行于轧面,[UVW]晶向平行于轧向。
另外也可以用[RST]=[HKL]×[UVW]表示平行于轧板横向的晶向。
1.2织构的分析方法关于织构的分析方法渊源已久,早在1924年Wever就提出了极图法,1948年以后,Deker和Schulz发展了用衍射仪测定极图的方法,使极图法趋于完善。
1952年Harris为测定轧制铀棒的织构提出了反极图法,后经Mueller等发展而完善。
1965年,Roe和Bunge分别采用级数展开方法,从几张极图中推导出晶体的三维取向分布函数(ODF),使材料织构的细致、定量分析成为可能。
ODF分析法把晶体取向与试样外观的关系用三维取向空间表达出来,这一取向空间就是欧拉空间(Eulerianspace),欧拉空间的坐标用欧拉角表示,它与归一化后的晶体取向(hkl)[uvw]有着一一对应的换算关系。
ODF法己成为目前定量分析深冲钢板织构的最有力的工具。
钢板的构往往聚集在取向空间的某些取向线上,图1所示为钢板中常见的织构取向线在邦厄(Bunge)系统欧拉空间中的位置。
图1钢板中的织构取向线a取向线和γ取向线是深冲钢板中存在的两种主要织构取向线。
其中a取向线在ODF图中的位置为φ1=00,φ=0-900,φ2=450主要织构类型为{001}〈110,{112}110,{111}110。
γ取向线在ODF图中的位置为φ1=0-900,中=54.70,φ2=450,主要织构类型为{111}110和{111}112,对于IF钢还往往出现{554}225织构(φ1=0-900,φ=610,φ2=450,与{111}112非常接近)。