大空间建筑气流组织(二)
- 格式:ppt
- 大小:5.87 MB
- 文档页数:35
分层空调1 分层空调技术介绍分层空调指使高大空间下部工作区域的空气参数满足设计要求的空气调节方式。
分层空调方式是以送风口中心线作为分层面,将建筑空间在垂直方向分为2 个区域,分层面以下空间为空调区域,分层面以上空间为非空调区域。
如图1 所示。
图1 分层空调示意图分层空调的空调区的冷负荷由2 大部分组成,即空调区本身得热形成的冷负荷和非空调区向空调区热转移形成的冷负荷。
热转移负荷包括对流和辐射2 部分。
当空调区送冷风时,非空调区的空气温度和内表面温度均高于空调区,由于送风射流卷吸作用,使非空调区部分热量转移到空调区直接成为空调负荷即对流热转移负荷。
而非空调区辐射到空调区的热量,被空调区各个面接收后,其中只有以对流方式再放出的部分才转为空调负荷即辐射热转移负荷,夏季由于太阳辐射热作用到各外围护结构中,屋盖的内表面温度最高,而地板的内表面温度往往是最低的,非空调区各个面( 包括透过窗进入空调区的) 对地板的辐射热占辐射热转移热量Q f的70% ~80%。
采用分层空调与全室空调相比,可显着地节省冷负荷、初投资和运行能耗。
按国内的实验和工程实际运用,一般可节省冷量在30% 左右。
因此,对于高大空间建筑中,房间高度≥10 m,容积>10 000m3的建筑,采用分层空调这种方式是非常适宜的。
近些年来,随着我国大型展览、会议场所和航空、铁路、陆路交通枢纽建设的大力发展,出现许多高大空间建筑,这些建筑中需要空调的区域仅为下部工作区域,可利用合理的分层空调技术实现高大空间节能。
现状存在的问题是分层空调技术应用不普以及有些做法值得商榷。
如,分层空调在满足空调区使用要求的各项参数下,分层高度h1越低越节能,有些建筑借用冬季地板辐射采暖的设备满足高大空间空调制冷,辐射地面温度比全空气系统对流换热时的温度低,空气是辐射的近似透明体,这样采用辐射供冷处理高大空间空调没有分层高度,同时会加大空调制冷的能耗。
在高大空间中,利用合理的气流组织仅对大空间下部(或上部)的空间即工作区进行通风空调,而对上部(或下部)的大部分空间不进行空调,非空调区和空调区以大空间腰部喷口送风形成的射流层作为分界线。
四、气流组织的设计计算气流组织设计的任务是合理地组织室内空气的流动与分布、确定送风口的型式、数量和尺寸,使工作区的风速和温差满足工艺要求及人体舒适感的要求。
气流组织的效果可以用空气分布特性指标ADPI (Air Diffusion Performance Index )来评价,它定义为工作区内各点满足温度、湿度和风速要求的点占总点数的百分比。
可以通过实测来确定。
以下介绍几种气流组织的设计方法。
气流组织设计一般需要的已知条件如下:房间总送风量0L (m 3/S );房间长度L (m );房间宽度W (m );房间净高H (m);送风温度0t (℃);房间工作区温度n t (℃);送风温差0t ∆(℃)。
气流组织设计计算中常用的符号说明如下:ρ——空气密度,取1.2 (kg/m 3);p C ——空气定压比热容,取1.01 kJ /(kg ·℃);0L ——房间总送风量(m 3/S);L ——房间长度(m);W ——房间宽度(m);H ——房间净高(m);x ——要求的气流贴附长度(m),x 等于沿送风方向的房间长度减去1 m ;0t ——送风温度(℃);n t ——房间工作区温度(℃);0/d F n ——射流自由度,其中n F 为每个风口所管辖的房间的横截面面积(m 2);0d ——风口直径,当为矩形风口时,按面积折算成圆的直径(m)。
(一)侧送风的计算除了高大空间中的侧送风气流可以看做自由射流外,大部分房间的侧送风气流都是受限射流。
侧送方式的气流流型宜设计为贴附射流,在整个房间截面内形成一个大的回旋气流,也就是使射流有足够的射程能够送到对面墙(对双侧送风方式,要求能送到房间的一半),整个工作区为回流区,避免射流中途进人的工作区。
侧送贴附射流流型如图6-10所示 (图中断面I-I 处,射流断面和流量都达到了最大,回流断面最小,此处的回流平均速度最大即工作区的最大平均速h υ)。
这样设计流型可使射流有足够的射程,在进人工作前其风速和温差可以充分衰减,工作区达到较均匀的温度和速度;使整个工作区为回流区,可以减小区域温差。
送回风口的型式及气流组织形式Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】第二节送、回风口的型式及气流组织形式一、送风口的型式由前述可知,空调房间气流流型主要取决于送风射流。
而送风口型式将直接影响气流的混合程度、出口方向及气流断面形状,对送风射流具有重要作用。
根据空调精度、气流形式、送风口安装位置以及建筑装修的艺术配合等方面的要求,可以选用不同形式的送风口。
送风口的种类繁多,按送出气流形式可分为四种类型。
1.辐射形送风口:送出气流呈辐射状向四周扩散。
如盘式散流器、片式散流器等;2.轴向送风口:气流沿送风口轴线方向送出。
这类风口有格栅送风口、百叶送风口,喷口、条缝送风口等;3.线形送风口:气流从狭长的线状风口送出。
如长宽比很大的条缝形送风口;4.面形送风口:气流从大面积的平面上均匀送出。
如孔板送风口。
还有按送风口的安装位置分为顶棚送风口、侧墙送风口、窗下送风口及地面送风口等。
还常常将格栅送风口、百叶送风口、条缝送风口等安装在侧墙上或风管侧壁上的送风口统称为侧送风口。
下面介绍几种常见的送风口。
(一)侧送风口此类风口常向房间横向送出气流,表5—2是常用的侧送风口形式。
在百叶送风口内一般根据需要设置1—3层可转动的叶片。
外层水平叶片用以改变射流的出口倾角。
垂直叶片能调节气流的扩散角,叶片平行时扩散角只有19℃,而叶片张开时(最边缘叶片与送风口平面夹角为45℃),扩散角可增大至60℃(图5—11)。
送风口内层对开式叶片则是为了调节送风量而设置的。
格栅送风口除可装横竖薄片组成格栅外,还可以用薄板冲制成带有各种装饰图案的空花格栅,气流通过有效面积可达53-73%。
(二)散流器散流器是一类安装在顶棚上的送风口,可以与顶棚下表面平齐,也可以在顶棚下表面以下。
散流器有圆形、方形或矩形的。
盘式散流器的送风气流呈辐射状。
片式散流器设有多层散流片,片的间距有固定的也有可调的。
第一章气流组织设计7.4.1 空调区的气流组织设计,应根据空调区的温湿度参数、允许风速、噪声标准、空气质量、温度梯度以及空气分布特性指标(ADPI)等要求,结合内部装修、工艺或家具布置等确定;复杂空间空调区的气流组织设计,宜采用计算流体动力学(CFD)数值模拟计算。
7.4.2空调区的送风方式及送风口选型,应符合下列规定:1 宜采用百叶、条缝型等风口贴附侧送;当侧送气流有阻碍或单位面积送风量较大,且人员活动区的风速要求严格时,不应采用侧送;2 设有吊顶时,应根据空调区的高度及对气流的要求,采用散流器或孔板送风。
当单位面积送风量较大,且人员活动区内的风速或区域温差要求较小时,应采用孔板送风;3 高大空间宜采用喷口送风、旋流风口送风或下部送风;4 变风量末端装置,应保证在风量改变时,气流组织满足空调区环境的基本要求;5 送风口表面温度应高于室内露点温度;低于室内露点温度时,应采用低温风口。
7.4.3采用贴附侧送风时,应符合下列规定:1 送风口上缘与顶棚的距离较大时,送风口应设置向上倾斜10°~20°的导流片;2 送风口内宜设置防止射流偏斜的导流片;3 射流流程中应无阻挡物。
7.4.4采用孔板送风时,应符合下列规定:1 孔板上部稳压层的高度应按计算确定,且净高不应小于0.2m;2 向稳压层内送风的速度宜采用3 m/s~5m/s。
除送风射流较长的以外,稳压层内可不设送风分布支管。
稳压层的送风口处,宜设防止送风气流直接吹向孔板的导流片或挡板;3 孔板布置应与局部热源分布相适应。
7.4.5采用喷口送风时,应符合下列规定:1 人员活动区宜位于回流区;2 喷口安装高度,应根据空调区的高度和回流区分布等确定;3 兼作热风供暖时,宜具有改变射流出口角度的功能。
7.4.6采用散流器送风时,应满足下列要求:1 风口布置应有利于送风气流对周围空气的诱导,风口中心与侧墙的距离不宜小于1.0m;2 采用平送方式时,贴附射流区无阻挡物;3 兼作热风供暖,且风口安装高度较高时,宜具有改变射流出口角度的功能。
剧院空调系统气流组织形式简介中国建研院|建研科技股份有限公司 孙 宇*摘 要 重点介绍了剧院建筑中观众厅、舞台、乐池等功能房间中的气流组织形式。
关键词 剧院;观众厅;舞台;气流组织Brief Introduction of Air Distribution of Air Conditioning System for the TheaterSun YuAbstract Mainly introduces the air distribution in the auditorium, stage, orchestra pit and other functional rooms in the theater building.Keywords The theater; Auditorium; Stage; Air distribution0 引言剧院是丰富人们精神文化生活的重要场所,剧院建筑空调系统相对其他的建筑有其独特的特点,剧场空调负荷与其他类型的民用建筑、公共建筑有其不同的特点,影剧院一般都是非全天非连续使用的,集中在部分时间使用,观众厅是人员密集场所,空调湿负荷较大。
观众厅由于往往在内区设置,因声学需要,会使用大量吸声材料,使围护结构隔热性能非常好,减少了建筑围护结构传热的冷热负荷。
由于演出及观看需求的不一样,气流组织形式也应随之变化。
本文根据某剧院项目针对观众厅、舞台等区域的空调末端、气流组织形式等进行简要介绍。
1 项目概况项目所在地块地上建筑面积6400 m 2,地下建筑面积2679 m 2,建筑地下1层,地上3层,设计总高度31.85 m 。
空气调节室内设计参数见表1[1]:表1 空气调节室内设计参数2 观众厅气流组织形式因为观众在演出过程中不能走动,避免冷风感尤其重要,要避免向观众颈后吹风。
送热风时热空气不要在观众厅上部停滞而造成分层现场,使气流不能送到下部,导致观众厅垂直温差过大,从而影响热舒适。
大空间建筑暖通空调设计与节能问题探讨发布时间:2022-11-08T06:54:42.902Z 来源:《工程建设标准化》2022年13期作者:佟林[导读] 随着中国进入21世纪,经济发展速度大大加快,人民生活水平不断提高。
佟林身份证号码; 2302021994020**** 2;黑龙江省,哈尔滨市 150000摘要:随着中国进入21世纪,经济发展速度大大加快,人民生活水平不断提高。
人们对住房的需求已经从最初的住房短缺转变为稳定的住房供求关系。
现在人们需要舒适宽敞的空间,对其他设施的需求也要求达到高标准。
这些需求与建筑类型的变化直接相关,因此越来越多的大型建筑正在兴建。
但从大型建筑的名称来看,新建筑各方面的特性都非常高,但消耗量如此之大,以至于在冬季制冷制热会消耗大量资源,消耗程度更是惊人。
当前国家政策是建设节约型社会,大空间建筑暖通空调节能设计是时代发展的必然趋势。
关键词:大空间建筑;暖通空调;节能设计节能是大型空间建筑空调设计中应该注意的一个基本问题,所以设计师应该高度重视,主要是因为大型空间建筑的空间和面积都很大。
为了体现节能设计的节能舒适性,需要紧密结合大空间建筑的复杂结构来加强设计。
下面讨论大空间建筑空调工程的设计实例[1]。
1大空间建筑的特点大空间建筑因其特殊的建筑结构而不同于普通建筑。
目前,我国大型空间建筑在空间尺度上主要表现为以下三个特点,在居住区表现为第二个特点,在使用上最终表现为以下三个特点:①就空间尺度而言,大型建筑空间大、高度高、外墙和地面面积广。
因为高度的原因,有些建筑的高差可能超过100m,很容易造成温差。
同时,外墙面积大导致外界面自然对流,对室内空间的影响大于气流。
②对于居住区来说,大空间建筑通常指高度和面积两个方面。
通常,大型剧院和体育馆大约有几十米高,面积有一万平方米,通常容纳一万人。
虽然人口非常密集,但是由于空间大,大空间建筑的人均面积相比常规建筑还是比较大的[2]。
体育场馆等大空间暖通空调设计难点及对策剖析纲要:本文主要联合事例就大空间建筑暖通空调设计的难点及对策作了一些剖析和商讨。
重点词:大空间建筑;暖通空调;设计一般而言大空间建筑主要包含音乐厅、剧院、电影院以及体育场馆等建筑。
相较于传统综合楼建筑、高层建筑和民用住所建筑,因为建筑空间、构造以及空气动力学方面的巨大差异,大空间暖通空调设计的考虑要素更多,设计难度更大,本文将联合事例就大空间建筑暖通空调设计的难点及对策作一些剖析和商讨。
一、大空间建筑暖通空调的主要特色大空间建筑暖通空调特色表现见下表1。
表 1 大空间建筑暖通空调特色大空间建筑空间特征环境控制对象环境控制方式备注控制区对象体育馆(健顶高 5~15m,底部为比竞赛场运动员 2~7Met换气无观众席身)赛专场,人员密度小夏天换气 +辐射采暖冬天大型体育馆顶高 50~70,跨度大,观众席观众 1~2Met通风换气大规模竞赛场,基层、中层有观众席、竞赛场夏天全空气冷气观众席集中在人员密度小,大屋顶结(多功冬天全空气空调周围,中间场所构轻浮,地面部分热容能要求)人员密度小量大音乐厅/剧顶高 10~20m,基层、中所有空观众全空气空调剧院有舞台空院/ 电影院层、上层设观众席,人间夏天全空气空调 +辐调,舞台温湿度员密度大( 1~2 人/m2),剧院包冬天射采暖参数与观从厅围护构造厚(隔声)括舞台不必定同样二、大空间建筑暖通空调设计难点及对策高大空间建筑防火难度大,对采暖、通风和空调系统的要求更高。
比如,大空间建筑常常需要在主体建筑或裙房内部署一些象燃油或燃汽锅炉房、自备发电机房、空调机房和汽车库等一些危险性较大的空间。
这方面应在设计中有所表现。
大空间建筑常常高度较大,这将加重采暖系统的垂向失调,同时因为系统水静压力较大,直接影响到室外管网的水力工况,其系统的形式及与室外管网的连结与多层建筑有较大差异。
高大空间建筑设计常常需要有独自的热源,以知足空调、采暖、制冷、热水供给等方面的需求。
空气调节技术承德石油高等专科学校气流组织形式气流组织设计:合理地布置送风口和回风口室内空气没有循环不均匀现象;空调区温度、湿度、空气流速、洁净度满足使用要求;送风气流不易形成短路。
123形式:按照机理不同可分为上(顶)部混合式置换通风式单向流式地板送风式工位与环境结合式一、上(顶)部混合式先混合空调区按送回风口的位置可分为三种形式1.上送下回按送回风口的位置可分为三种形式1.上送下回主要特点:易形成均匀的温度场和速度场,但施工不便。
应用:(1)有恒温要求和洁净度要求的工艺性空调;(2)冬季以送热风为主,空调房间较高的舒适性空调系统。
2.上送上回方式上送上回的气流分布a)单侧送风b)双侧由内向外送风c)双侧由外向内送风d)送风与回风不在同一侧e)顶棚送风与回风两用散流器2.上送上回方式特点:应用:施工方便,气流均匀性不如上送下回式。
舒适性空调最常用的方式。
夏季降温为主,房高较低的舒适性空调;冬夏均使用,房间下部无法布置回风口的场合;精度要求不高的恒温工艺空调。
1233.中送风方式中送风下回风的气流分布a)中送风、下回风b)中送风、下回风加顶排风3.中送风方式特点:有一定节能效果,竖向存在温度“分层”现象。
应用:高大空间的空调系统,如高大厂房。
二、置换通风系统原理:新鲜空气以低风速、高送风温度(≥18℃)的状态送入活动区下部,在送风及室内热源形成的上升气流的共同作用下,将污浊空气提升至顶部排出。
置换通风的流态特点:在相同设计温度下,活动区里所需的供冷量较少;活动区内的空气质量好;12活动区:保证热舒适性和空气品质;非活动区:允许温度和污染物不达标。
存在热力分层现象3应用:教室、会议室、剧院、超市、体育馆等公建以及厂房等高大空间场合。
三、地板送风地板送风系统原理:利用结构或架空地板,将调节好的空气直接送到人员活动区或附件的地板送风口,吸收空调区的余热余湿后,从顶棚回风口排出。
特点:能有效改善热舒适性、增加通风效率、减少能耗等,但需考虑地面的清洁性并提高处理装置的过滤要求。