离散事件系统建模与仿真第二版课后习题答案
- 格式:ppt
- 大小:423.50 KB
- 文档页数:23
系统建模与仿真习题二及答案1. 考虑如图所示的典型反馈控制系统框图(1)假设各个子传递函数模型为66.031.05.02)(232++-+=s s s s s G ,s s s G c 610)(+=,21)(+=s s H 分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法求该系统的传递函数模型。
(2) 假设系统的受控对象模型为s e s s s G 23)1(12)(-+=,控制器模型为 ss s G c 32)(+=,并假设系统是单位负反馈,分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法能求出该系统的传递函数模型?如果不能,请近似该模型。
解:(1)clc;clear;G=tf([2 0 0.5],[1 -0.1 3 0.66]);Gc=tf([10 6],[1 0]);H=tf(1,[1 2]);G1=feedback(G*Gc,H)G2=G*Gc/(1+G*Gc*H)Gmin=minreal(G2)结果:Transfer function:20 s^4 + 52 s^3 + 29 s^2 + 13 s + 6s^5 + 1.9 s^4 + 22.8 s^3 + 18.66 s^2 + 6.32 s + 3Transfer function:20 s^8 + 50 s^7 + 83.8 s^6 + 179.3 s^5 + 126 s^4 + 57.54 s^3 + 26.58 s^2 + 3.96 ss^9 + 1.8 s^8 + 25.61 s^7 + 22.74 s^6 + 74.11 s^5 + 73.4 s^4 + 30.98 s^3+ 13.17 s^2 + 1.98 s Transfer function:20 s^4 + 52 s^3 + 29 s^2 + 13 s + 6s^5 + 1.9 s^4 + 22.8 s^3 + 18.66 s^2 + 6.32 s + 3(2)由于s c e s s s s G s G 232)1(3624)(*)(-++= 方法1:将s e 2-转换为近似多项式。
《离散事件系统建模与仿真》课程学习报告课程名称离散事件系统建模与仿真学生姓名学生班级测控学生学号 2012指导老师时间离散事件系统建模与仿真摘要离散事件系统仿真是现代仿真技术的主要研究热点之一。
离散事件系统是一类在工程技术、经济、军事等领域常见的系统,它们的状态在一些不均匀的离散时刻发生变换且状态变换的内部机制比较复杂,往往无法用常规的数学方法来描述。
离散事件系统仿真是当前研究这一类系统的最有用处的方法之一。
要对系统进行仿真研究,首先需要建立系统的仿真模型。
笔者比较详细地探讨了离散事件系统仿真建模的核心——仿真流程管理、离散事件系统的三种仿真建模策略,即:事件调度法、活动扫描法、进程交互法。
关键词:离散事件系统,仿真建模,仿真策略,系统仿真,事件调度法1 基本概念1.1 系统仿真与系统系统仿真是以相似原理、系统技术、信息技术及其应用领域有关专业技术为基础,以计算机和各种专用物理效应设备为工具,利用系统模型对真实的或假想的系统进行动态研究的一门多学科的综合性技术口]。
相似论是系统仿真的主要理论依据。
系统仿真研究的对象是系统。
系统是指具有某些特定功能、按照某些规律结合起来、互相作用、互相依存的所有事物的集合或总和。
任何系统都存在三方面需要研究的内容,即实体、属性和活动。
实体是存在于系统中的每一项确定的物体。
属性是实体所具有的每一项有效的特性。
活动是导致系统状态发生变化的一个过程。
活动是在一段时间内发生的情况,活动反映了系统的变化规律。
存在系统内部的实体、属性和活动组成的整体称为系统的状态。
处于平衡状态的系统统称为静态系统,状态随时间不断变化着的系统为动态系统。
根据系统状态的变化是否连续可将系统分为连续系统和离散系统及连续离散混合系统。
连续系统的状态变量是连续变化的。
离散系统包括离散时间系统和离散事件系统,离散时间系统的状态变量是间断的,但是它和连续系统具有相似的性能,它们的系统模型都能用方程的形式加以描述。
第一章习题1-1什么是仿真?它所遵循的基本原则是什么?答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。
它所遵循的基本原则是相似原理。
1-2在系统分析与设计中仿真法与解析法有何区别?各有什么特点?答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,计算。
它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。
由于受到理论的不完善性以及对事物认识的不全面性等因素的影响,其应用往往有很大局限性.仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法.1-3数字仿真包括那几个要素?其关系如何?答: 通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与计算机。
由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题;将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验.1—4为什么说模拟仿真较数字仿真精度低?其优点如何?.答:由于受到电路元件精度的制约和容易受到外界的干扰,模拟仿真较数字仿真精度低但模拟仿真具有如下优点:(1)描述连续的物理系统的动态过程比较自然和逼真。
(2)仿真速度极快,失真小,结果可信度高。
(3)能快速求解微分方程.模拟计算机运行时各运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关.(4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进行非实时仿真.(5)易于和实物相连。
1-5什么是CAD技术?控制系统CAD可解决那些问题?答:CAD技术,即计算机辅助设计(Computer Aided Design),是将计算机高速而精确的计算能力,大容量存储和处理数据的能力与设计者的综合分析,逻辑判断以及创造性思维结合起来,用以加快设计进程,缩短设计周期,提高设计质量的技术.控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论。
参考教材:离散事件系统建模仿真及GPSSWorld 教程,译作者:谢毅缪亚萍,出版社:清华大学出版社,年代:2011部分习题答案:(具体题目信息省略)第二章:2.16(双理发师手工仿真)理发师1利用率:49/58理发师2利用率:28/58时钟系统状态时间表统计计数器StQ (t )StS1(t )StS2(t )C B1B2W 0000A (1,5)00005010D (1,23),A (2,11)00011012D (1,23),D (2,31),A (3,19)060019112D (1,23),D (2,31),A (4,38)0148023032D (2,31),D (3,38),A (4,38)11812431030D (3,38),A (4,38)2262043800A (4,38)333204040D (4,54),A (5,50)33320450045D (4,54),D (5,66),A (6,58)34520454005D (5,66),A (6,58)4492445865D (6,74),D (5,66),A (7,…)449284平均等待时间:4/6(min)第三章:3.3(货物出库)GENERATE10,5 TERMINATE10 GENERATE15 TERMINATE20 GENERATE30,10 TERMINATE50START20003.4(零件加工)GENERATE20,5ADD1QUEUE Q_ASEIZE ADEPART Q_AADVANCE16,5RELEASE AQUEUE Q_BSEIZE BDEPART Q_BADVANCE15,10RELEASE BQUEUE Q_CSEIZE CDEPART Q_CADVANCE10,2RELEASE C TRANSFER0.05,ADD2,ADD1ADD2TERMINATEGENERATE60TERMINATE1START40(仿真4个小时)若为生产200个合格零件,则ADD2改为:ADD2TERMINATE1START200(仿真4个小时)3.6(加工中心)S_A STORAGE2S_B STORAGE1S_C STORAGE3S_D STORAGE5GENERATE20,10QUEUE Q_AENTER S_ADEPART Q_AADVANCE30,15LEAVE S_ATRANSFER0.6,ADDC,ADDBADDC ENTER S_CADVANCE70,20LEAVE S_CTRANSFER,ADDDADDB ENTER S_BADVANCE20,10LEAVE S_BTRANSFER0.2,ADDD,ADDC ADDD ENTER S_DADVANCE90,30LEAVE S_DTERMINATEGENERATE60TERMINATE1START1003.7(汽车清洗店,顾客有偏好)注:可用BOTH或是ALL模式,但是相对比较复杂,可用SELECT,实现更简单。
系统建模与仿真习题一及答案1. 有源网络如图所示(1) 列些输出0u 与输入1u 之间的微分方程。
(2) Ω=101R 、Ω=52R 、Ω=23R 、Ω=34R 、F C 2=,在零初始条件下,将(1)中的微分方程表示为传递函数、状态空间形式、零极点增益形式。
(3)求(2)中方程在输入1u 为单位阶跃响应下的输出曲线。
解:(1) 由运算放大器的基本特点以及电压定理)4()3()(1)2()()1(2132021421320111R i R i u dt i i Cu R i i u R i u R i u c c -=+=+++==⎰(3)式代入(2)式得:42121320)()(1R i i dt i i C R i u ++++=⎰ (5)消去中间变量21,i i 有13142430114131230111120)(1u R R R R R R u u R R dt u R R R R u R u C u R R u ++++++=⎰ 两边求导整理后得(2)代入数据可以得到微分方程为:11007.02.610u u u u--=+ 程序如下:clc;clear;num=[-6.2 -0.7]; den=[10 1]; Gtf=tf(num,den) Gss=ss(Gtf) Gzpk=zpk(Gtf)结果:Transfer function: -6.2 s - 0.7 ------------ 10 s + 1状态空间形式: a =x1 x1 -0.1 b =u1 x1 0.125 c =x1 y1 -0.064 d =u1 y1 -0.62Continuous-time model.Zero/pole/gain: -0.62 (s+0.1129) ---------------- (s+0.1)(3)由(2)知系统的传递函数为-6.2 s - 0.7 ------------ 10 s + 1系统的输入信号为单位阶跃函数,则其Laplace 变换为1/s ,这样系统的输出信号的Laplace 变换为Y(s)=-6.2 s - 0.7 ------------ 10 s^2 + s编写程序,将其表示为(R,P,Q )形式 clc;clear; s=tf('s')Gtf=(-6.2*s-0.7)/(10*s^2+s) [num,den]=tfdata(Gtf,'v') [R,P,Q]=residue(num,den) R =0.0800 -0.7000 P =-0.1000 0 Q = []于是得到:7.008.0)(1.0-=-t e t y 绘制曲线程序: clc;clear; t=0:0.1:100;y=0.08*exp(-0.1*t)-0.7; plot(t,y)2.已知系统的框图如下:其中:G1=1/(s+1),G2=s/(s^2+2),G3=1/s^2,G4=(4*s+2)/(s+1)^2,G5=(s^2+2)/(s^3+14)。
西工大2022年4月机考《系统建模与仿真》作业参考答案试卷总分:100 得分:100本科目3次作答机会,每次试题内容相同,只是题目和选项顺序是随机调整的,大家可放心下载使用一、单选题(共20 道试题,共40 分)1.数学模型根据模型的状态变量可以分为()。
A.连续变化模型和离散变化模型B.连续时间模型和离散时间模型C.确定性模型和随机性模型D.同构模型和同态模型正确答案:A2.在仿真模型一样,所要仿真的时间长度也一样的情况下,采用()可获得最高的效率。
A.固定步长时间推进机制B.下次事件时间推进机制C.混合时间推进机制D.随机步长时间推进机制正确答案:B3.忽略具体事物的特殊性,着眼于整体和一般规律,这种研究方法是()。
A.抽象B.归纳C.演绎D.推导正确答案:A4.()是把过程调用和响应调用执行码结合在一起的过程A.汇编B.联编C.调试D.执行正确答案:B5.在系统与模型之间,如果在行为一级等价,则称之为()。
A.同构模型B.同态模型C.数学模型D.本构模型正确答案:B6.一种产品进入市场之后,一般会经过销售速度先不断增加然后又逐渐下降的过程,这称为产品的()。
A.生命周期B.保质期C.生产周期D.销售周期正确答案:A7.由于大多数微分方程是求不出其解析解的,因此研究其()和数值解法是十分重要的手段。
A.离散性B.连续性C.非稳定性D.稳定性正确答案:D8.根据事件调度法建立的仿真模型称为()仿真模型。
A.面向事件的B.面向对象的C.面向用户的D.面向系统的正确答案:A9.能够预定事件发生时间的策略方法是()。
A.事件调度法B.活动扫描法C.进程交互法D.结果预测法正确答案:A10.系统在有确定输入时,得到的输出却不确定,这种事物发展变化没有确定因果关系的模型是()。
A.连续变化模型B.离散变化模型C.随机性模型D.因果模型正确答案:C11.系统数学模型的建立需要按照模型论对输入、输出状态变量及其间的函数关系进行抽象,这种抽象理论称为()。
离散系统建模与仿真理论基础_南开大学中国大学mooc课后章节答案期末考试题库2023年1.SIMSCRIPT的第一个版本基于以下哪个算法?答案:事件调度算法2.有些统计工具软件总是会拟合出某个概率分布,而不论其是否合理。
答案:正确3.对于两个系统比较的相关抽样法,如果一个系统在模型结构的某一方面完全不同于另一个系统,则同步性将不再适用,或者说不能实现同步。
答案:正确4.比较两个系统性能时,统计显著性与仿真实验和输出数据有关。
答案:正确5.在无限源模型中,到达率(单位时间内到达顾客的平均数量)不受已进入排队系统顾客数量的影响。
答案:正确6.考虑到排队系统的多样性,有学者针对并行服务台系统提出了一套被广为采用的符号体系,这一体系缩略版为A/B/c/N/K,其中A代表什么含义()?答案:到达间隔时间分布7.选择仿真软件时,需要考虑的输出特性不包括()答案:动作质量8.发生在外部环境,对系统造成影响的活动和事件是指什么()?答案:外生(活动或事件)9.发生在系统内部的活动和事件是指什么()?答案:内生(活动或事件)10.下列关于随机数流的说法不正确的是()。
答案:对于线性同余生成器而言,随机数流就是一组数据11.下列哪项不属于仿真历史的一个时期?答案:成熟期12.随机数生成后,若完全相同的随即数列重复出现,说明该方法发生了()。
答案:退化13.在随机数检验中,即使一个数集通过了全部检验,也不能保证随机数生成器的随机性,因为还有很多方法可能得出不同的结论。
答案:正确14.在独立性检验中,如果不能拒绝原假设,意味着通过检验未发现存在依存关系的证据。
答案:正确15.在排队系统中,如果服务台数量减少,那么排队等待时间、服务台利用率,以及顾客到达后不能立即获得服务的概率都会()?答案:增加16.连续型经验累积分布函数的反函数是:X=x(i-1)-ai(R-ci-1),其中ci-1<R≤ci。
答案:错误17.舍选法就是不断生成服从某种统计分布的随机变量R直到满足条件为止。
第五章 蒙特卡罗方法与随机数Monte-Carlo 方法是离散事件系统仿真的工具,随机抽样是实现蒙特卡罗方法仿真实验的基本手段。
随机抽样需产生随机数。
本节讨论Monte-Carlo 方法的原理及基本步骤,产生随机数的基本方法及其检验。
第一节 蒙特卡罗(Monte-Carlo )方法Monte-Carlo 方法也称随机抽样(random sampling)法,或统计实验(statistical testing )方法。
蒙特卡罗方法属于试验数学的一个分支,源于早期用几率近似概率的数学思想,即当实验次数充分N 多时,某一事物发生的概率为 Nnp ≈(5.1.1) 蒙特卡罗方法利用随机数进行统计试验,以求得均值、概率等特征值作为待解问题的数值解。
这一方法的提出,始于二次世界大战期间研制原子弹的“曼哈顿计划”,数学家冯.诺依曼和乌拉姆研究裂变物质的中子随机扩散的模拟,用摩洛哥赌城蒙特卡罗作为这项秘密工作的代号。
用赌城比喻仿真,贴切而又风趣,得到广泛的认同,于是将计算机随机仿真方法称为蒙特卡罗方法。
蒙特卡罗方法的基本思想是:为求解数学、物理、工程及生产管理等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求随机参数计算所求随机参数的统计特征,最后给出所求解的近似值。
蒙特卡罗方法以概率统计理论为其主要理论基础,以随机抽样为主要手段。
当所研究问题涉及某种事物发生的概率,或某一随机变量的数学期望,或其它数字特征时,则可通过实验方法得到事件发生的样本均值或样本频率等特征值。
只要实验次数足够多,则可通过统计推断获得样本参数代表总体参数的特征值。
【例5.1.1】射击弹着点到靶心的距离r 是一随机变量,设其分布密度函数为f (r ),若射中r 的得分为Y ,Y 与r 的关系为g (r ),即 )(r g Y = Y 也是随机变量,其数学期望为⎰⎰∞∞-∞∞-⋅=⋅=dr r f r g dr r f Y Y E )()()()(若N 次射击的弹着点为 N r r r ,,,21 则N 次射击的平均值为∑∑====N i i N i i r g N y N Y 11)(11 当射击次数N 足够多时,上述平均值可作为数学期望E (Y )的近似值。
、系统、模型和仿真三者之间具有怎样的相互关系答:系统是研究的对象,模型是系统的抽象,仿真通过对模型的实验以达到研究系统的目的。
、通过因特网查阅有关蒲丰投针实验的文献资料,理解蒙特卡罗方法的基本思想及其应用的一般步骤。
答:蒲丰投针实验内容是这样的:在平面上画有一组间距为a的平行线,将一根长度为L(L<a)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。
”布丰本人证明了,这个概率是:p=2L/(πa) (π为圆周率)利用这个公式可以用概率的方法得到圆周率的近似值。
所以,蒙特卡罗方法的基本思想就是:当试验次数充分多时,某一事件出现的频率近似等于该事件发生的概率。
一般步骤:(1)构造或描述概率过程(2)以已知概率分布进行抽样(3)建立各种估计量、简述离散事件系统仿真的一般步骤。
(1)阐明问题与设定目标(2)仿真建模(3)数据采集(4)仿真模型的验证(5)仿真程序的编制与校核(6)仿真模型的运行(7)仿真输出结果的统计分析、以第二章图2-5所示的并行加工中心系统为对象,试分别画出相应的实体流图和活动循环图,并比较它们两者有何区别和练习。
(1)实体流图(2)活动循环图、以第二章中图2-5所示的并行加工中心系统为对象,建立Petri 网模型。
3214Petri 网模型的运行过程,并将分析结果同例3-5相比较。
、任取一整数作为种子值,采用第三题中得到的随机数发生器生成随机数序列的前200项数据,并对其统计性能进行检验。
解:由第3题可得到一个随机数发生器: a=5 b=9 c=3 m=512取种子值,生成的随机数序列前200项数据如下: nn1500000332326458458t 4t 3 P 1 t 1P 2P 6 P 3 P 5 t 2 P 4(2)t 3发生后 t 4t 3 P 1 t 1P 2P 6 P 3 P 5 t 2P 4(3)t 2发生后 (4)t 1不能发生t 4t 3 P 1t 1 P 2 P 6 P 3 P 5 t 2 P 4 (5)t 4发生后2161882272293245 3413413281228204 4206820291023511 5103103302558510 65186312553505 73333322528480 8168168332403355 9843331341778242 101658122351213189 1161310136948436 12508508372183135 13254349538678166 14247843039833321 15215310540160872 165281641363363 178383421818282 18418418431413389 19209345441948412 2022822845206315 211143119467878 225988647393393 23433433481968432 242168120492163115 25603915057866n n 5133333376828316 52166813277158347 5366315178238238 54758246791193169 55123320980848336 56104824811683147 5712312382738226 58618106831133109 59533218454836 6010810885183183 615433186918406 62158158872033497 63793281882488440 641408384892203155 65192338790778266 661938402911333309 67201347792154812682388340936363 69170316794318318 7083832695159357 7116339796288288 72488488971443419 73244339598209850 74197844299253253 7522131651001268244n n 1011223199126478478 1029984861272393345 10324333851281728192 1041928392129963451 10519634271302258210 106213890131105329 107453453132148148 1082268220133743231 1091103791341158134 110398398135673161 1111993457136808296 11222882401371483459 11312031791382298250 1148983861391253229 11519333971401148124 1161988452141623111 117226321514255846 118107854143233233 1192732731441168144 1201368344145723211 1211723187146105834 122938426147173173 123213385148868356 1244284281491783247 1252143951501238214n n 1511073491764848 152248248177243243 15312432191781218194 154109874179973461 1553733731802308260 1561868332181130327915716631271821398374 1586381261831873337 1596331211841688152 16060896185763251 1614834831861258234 16224183701871173149 1631853317188748236 1641588521891183159 165263263190798286 16613182941911433409 1671473449192204800 168224820019333 16910034911941818 17024584101959393 17120535196468468 17228281972343295 1731431431981478454 1747182061992273225 175103392001128104对上述数据进行参数检验如下:经计算可知,===因此可知统计量=()==()=假定显著性水平,则查表可知故可以认为:在显著性水平时,该随机数序列总体的均值和方差与均匀分布U(0,1)的均值和方差没有显著性的差异。