线性方程组解的存在性
- 格式:ppt
- 大小:955.50 KB
- 文档页数:9
非齐次线性方程组解判定
非齐次线性方程组解的判定:当系数矩阵的秩等于增广矩阵的秩,那么非齐次线性方程组有解。
当r(A)=r(A|b)=n时有唯一解,当r(A)=r (A|b)<n时有无穷多解。
当r(A)不等于r(A|b)时方程组无解。
题目中的线性方程组根据解的判定定理判定为:r(A)=r(A|b)=4。
所以线性方程组有唯一解。
扩展资料:
解的存在性
非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。
(rank(A)表示A 的秩)
非齐次线性方程组解的结构:
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。
齐次线性方程组解法:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。
若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于c1、c2、c3……c(n-r),即可写出含n-r个参数的通解。
考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
非齐次线性方程组解的判定
非齐次线性方程组是一类常用的数学模型,它们有不同的解法,以决定一组参数的唯一值。
本文将讨论非齐次线性方程组的解的判定,其中包括非齐次线性方程组的存在性、唯一性和极值等。
首先,从非齐次线性方程组判定解存在性来看,它有两种情况:第一种情况是非齐次线性方程组存在一个可行解,有无数多个,那么它便是有解的方程组; 第二种情况是方程组中存在一个或多个约束条件,如果约束条件得不到满足,则此方程组就是无解的方程组。
其次,从非齐次线性方程组的唯一性判定来看,如果它的系数矩阵是可逆的,就说方程组有唯一解;如果它的系数矩阵是不可逆的,就说方程组有无数多个解。
最后,从非齐次线性方程组的极值判定来看,如果满足系数矩阵的列向量,使该系数矩阵的行列式的值为0,即该非齐次线性方程组有极值。
综上所述,从非齐次线性方程组解的判定上可以看出,非齐次线性方程组满足存在性、唯一性和极值的情况,都可以更好的反映出模型的实际情况,帮助我们更准确的判断出模型的解法。
通过对非齐次线性方程组的解的判定来总结,可以更准确的判定非齐次线性方程组的存在性、唯一性和极值。
进而可以辅助决策者指定模型参数和其解法,以及决定下一步采取的行动。
线性分析测试题及答案一、选择题(每题5分,共20分)1. 线性方程组的解法中,使用高斯消元法的步骤不包括以下哪一项?A. 将方程组写成增广矩阵的形式B. 将矩阵进行行变换C. 将矩阵的列进行交换D. 将矩阵的行进行交换答案:C2. 线性相关和线性无关的概念中,以下说法正确的是?A. 线性相关是指一组向量中至少有一个向量可以由其他向量线性表示B. 线性无关是指一组向量中没有一个向量可以由其他向量线性表示C. 线性相关和线性无关是相同的概念D. 线性相关是指一组向量中所有向量都可以由其他向量线性表示答案:B3. 在线性代数中,以下哪个矩阵是可逆的?A. 对角矩阵B. 零矩阵C. 奇异矩阵D. 单位矩阵答案:D4. 线性空间的基具有以下性质?A. 基是线性空间中的一组线性无关的向量B. 基是线性空间中的一组线性相关的向量C. 基是线性空间中的一组向量,但不一定线性无关D. 基是线性空间中的一组向量,但不一定线性无关答案:A二、填空题(每题5分,共20分)1. 若线性方程组的系数矩阵的秩等于增广矩阵的秩,且等于未知数的个数,则该方程组有________解。
答案:唯一2. 线性方程组中,若系数矩阵的秩小于增广矩阵的秩,则该方程组有________解。
答案:无3. 线性空间的维数是指基中向量的个数,也称为线性空间的________。
答案:维度4. 若向量组α1, α2, ..., αn线性无关,则它们构成的矩阵的行列式________。
答案:不为零三、简答题(每题10分,共20分)1. 请简述线性方程组解的存在性与系数矩阵的秩之间的关系。
答案:线性方程组的解的存在性与系数矩阵的秩密切相关。
如果系数矩阵的秩等于增广矩阵的秩,并且等于未知数的个数,则方程组有唯一解;如果系数矩阵的秩小于增广矩阵的秩,则方程组无解;如果系数矩阵的秩等于增广矩阵的秩但小于未知数的个数,则方程组有无穷多解。
2. 什么是线性空间?请给出一个例子。
线性方程组的解的结构与性质线性方程组是数学中常见的问题,它在各个领域都有广泛的应用。
解决线性方程组问题需要了解其解的结构与性质,这将有助于我们更好地理解和应用线性方程组。
一、线性方程组的定义与基本性质线性方程组由一组线性方程组成,每个方程都是关于未知数的一次多项式,并且未知数的次数都为1。
线性方程组的一般形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁、a₁₂、...、aₙₙ为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数。
线性方程组的基本性质包括:1. 线性方程组可以有唯一解、无解或无穷多解。
2. 若线性方程组有解,则其解可以表示为一个向量。
3. 若线性方程组有解,则其解的个数与未知数的个数之间存在关系。
二、线性方程组的解的结构线性方程组的解的结构与其系数矩阵的秩有关。
系数矩阵是指将线性方程组的系数按顺序排列形成的矩阵。
1. 若系数矩阵的秩等于未知数的个数,即rank(A) = n,则线性方程组有唯一解。
解向量可以通过高斯消元法或矩阵求逆的方法求得。
2. 若系数矩阵的秩小于未知数的个数,即rank(A) < n,则线性方程组有无穷多解。
此时,解向量可以表示为特解加上齐次方程的解的线性组合。
特解可以通过高斯消元法或矩阵求逆的方法求得。
3. 若系数矩阵的秩小于未知数的个数,并且存在某个未知数的系数全为0,则线性方程组无解。
三、线性方程组的解的性质线性方程组的解具有以下性质:1. 若线性方程组有唯一解,则解向量是唯一确定的。
不同的线性方程组可能具有相同的解向量。
2. 若线性方程组有无穷多解,则解向量可以表示为特解加上齐次方程的解的线性组合。
特解可以通过高斯消元法或矩阵求逆的方法求得。
3. 若线性方程组有无穷多解,则解向量的个数与未知数的个数之间存在关系。
线性方程组解的结构在数学领域中,线性方程组是一个包含多个线性方程的集合。
解析线性方程组是解决实际问题和在数学中的基础问题之一。
线性代数作为数学分支的一个基石,研究线性方程组解的结构是至关重要的。
本文将探讨线性方程组解的结构及相关性质。
一、线性方程组的定义线性方程组是形如以下形式的方程组:$$ \\begin{cases} a_{11}x_1 + a_{12}x_2 + \\cdots + a_{1n}x_n = b_1 \\\\a_{21}x_1 + a_{22}x_2 + \\cdots + a_{2n}x_n = b_2 \\\\ \\vdots \\\\ a_{m1}x_1 +a_{m2}x_2 + \\cdots + a_{mn}x_n = b_m \\\\ \\end{cases} $$其中,a ij和b i是已知的常数,x i是未知数。
二、线性方程组解的结构1. 解的存在性和唯一性对于线性方程组而言,可能出现以下几种情况:•若线性方程组有解,则解的存在性表明至少存在一组解;•若线性方程组有唯一解,则意味着只存在一组满足所有方程的解;•若线性方程组有无穷多个解,则说明有无穷多组解。
2. 解的结构线性方程组的解可以表示成一个通解和一个特解之和的形式。
具体而言,设A 是线性方程组的系数矩阵,X是未知数的向量,B是常数项的向量,通解可以表示为:X=Xℎ+X p其中Xℎ是方程组的齐次解,而X p是方程组的特解。
3. 解的分类根据线性方程组的系数矩阵的行、列数以及特殊性质,线性方程组的解可以分为以下几种情况:•若系数矩阵的行数等于列数且满秩(行列式不为零),则方程组有唯一解;•若系数矩阵的行数大于列数或者系数矩阵的秩小于行数,方程组可能无解或者有无穷多组解;•若线性方程组有特殊结构(如三角形方程组、对角矩阵方程组等),可以通过特殊性质简化解的求解过程。
三、线性方程组解的应用线性方程组解的结构在数学和应用领域均具有重要意义。
线性代数公式定理总结线性代数是一门研究向量空间及其线性映射与线性变换的数学学科,涉及了许多重要的公式和定理。
本文将对线性代数中的关键公式和定理进行总结,以帮助读者更深入地理解线性代数的基本概念和原理。
一、向量的基本性质和运算公式1. 向量空间的定义:向量空间是一个基于域上的向量集合,在满足一定性质(如封闭性、加法交换律等)的条件下进行线性组合和标量乘法运算。
2. 向量的加法和数乘:对于向量a和b,有加法公式a+b=b+a和数乘公式c(a+b) = ca + cb。
3. 零向量的性质:对于任意向量a,有a + 0 = a,其中0为零向量。
4. 向量的负向量:对于向量a,存在一个向量-b使得a + (-b) = 0。
5. 向量的数量积:向量a和b的数量积(内积)表示为a·b =||a|| ||b|| cosθ,其中||a||和||b||分别为向量a和b的模长,θ为a和b之间的夹角。
6. 内积的性质:内积满足加法性、齐次性、对称性和正定性等性质,如对于向量a,b和c,有a·(b + c) = a·b + a·c。
二、线性方程组和矩阵运算公式1. 线性方程组的标准形式:线性方程组可以表示为AX = B的形式,其中A为系数矩阵,X为未知变量向量,B为常数向量。
2. 线性方程组的解的存在性和唯一性:线性方程组的解存在并且唯一当且仅当系数矩阵A的秩等于常数向量B的秩。
3. 矩阵的乘法和转置:对于矩阵A和B,有乘法公式AB ≠ BA,矩阵转置的性质(A^T)^T = A和(AB)^T = B^T A^T。
4. 逆矩阵的性质:对于方阵A,若存在逆矩阵A^{-1}使得AA^{-1} = A^{-1}A = I,其中I为单位矩阵,则称A为可逆矩阵。
5. 逆矩阵的求解:对于方阵A,若A可逆,则可以使用伴随矩阵求解逆矩阵A^{-1} = (1/ det(A)) adj(A)。
6. 矩阵的行列式和性质:矩阵的行列式表示为det(A),满足交换行列式的值不变、对角矩阵的行列式等于对角线元素的乘积等性质。