高三数学 直线的交点坐标与距离公式复习 文
- 格式:ppt
- 大小:362.00 KB
- 文档页数:24
13.3.1直线的交点坐标第二课时 交点线系【学习目标】1、理解交点线系2、交点线系的应用 【重难点】 1、交点线系 2、交点线系的应用 【学习过程】 复习引入:1、两直线的位置关系如何判定?2、怎样求两直线的交点坐标?3、解下列方程组 (1)⎩⎨⎧=++=-+0220243y x y x (2)⎩⎨⎧=++-=-+0)22(0243y x y x (3)⎩⎨⎧=++=-+0)22(20243y x y x4、由此我们猜想:当λ 变化时,方程()022243=+++-+y x y x λ表示什么图形?图形有何特点?表示直线,都经过同一点M你能找出M 点的坐标吗?()2,2- 该点坐标如何求? 解方程组知识点一:交点线系一般地,方程 ()0222111=+++++C y B x A C y B x A λ表示经过直线0:1111=++C y B x A l 和直线0:2222=++C y B x A l 交点(不含2l )的直线的集合——直线束(简称交点线系)于是,过两条相交直线0:1111=++C y B x A l ,0:2222=++C y B x A l 交点的直线方程可设为()0222111=+++++C y B x A C y B x A λ(不含2l ),反之形如()0222111=+++++C y B x A C y B x A λ的方程表示的直线过定点,定点即为1l 与2l 的交点。
例题1:(新课程导学P44例1改编)求经过两条直线042:1=+-y x l ,02:2=-+y x l 交点P ,且满足下列条件的直线l :的方程:(1)l 过点(2,1); (2)l 与直线0543=+-y x 垂直; (3)l 与直线0543=+-y x 平行;巩固练习1:(课本P109习题3.3第5题)求满足下列条件的直线方程:(1)经过两直线024301032=-+=+-y x y x 和的交点,且垂直于直线0423=+-y x ; (2)经过两直线012082=+-=-+y x y x 和的交点,且平行于直线07-34=-y x ; 知识点二:含参直线过定点例2:两条直线y=kx+2k+1和x+2y-4=0,则y=kx+2k+1恒过点_____;若两直线的交点在第四象限,则k 的取值范围是__________巩固练习2:两条直线()23-+=x k y 和044=-+y x 的交点在第四象限,则k 的取值范围是__________ 【课堂检测】1、(新课程导学P44跟踪训练1-1(2))求经过两条直线02010-32=++=-y x y x 和交点,且与直线013=-+y x 平行的直线方程;2、(新课程导学P45达标检测第4题)当a 取不同值时,直线()()0312=+-++a y a x a 恒过一个定点,这个定点的坐标为 ________【拓展训练】【课堂小结】本节课我们主要学习了交点线系及其应用 【课后作业】作业与检测P88第3、6、7、11题 【课后反思】。
2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
第7讲直线的交点坐标与距离公式新课标要求1.能用解方程组的方法求两条直线的交点坐标。
2.探索并掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
知识梳理一、直线的交点与直线的方程组解的关系1.两直线的交点几何元素及关系代数表示点A A (a ,b )直线l 1l 1:A 1x +B 1y +C 1=0点A 在直线l 1上A 1a +B 1b +C 1=0直线l 1与l 2的交点是A(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0)2.两直线的位置关系一组无数组无解直线l 1与l 2的公共点的个数一个无数个零个直线l 1与l 2的位置关系相交重合平行二、两点间的距离公式条件点P 1(x 1,y 1),P 2(x 2,y 2)结论|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2特例点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 22025高二上数学专题第7讲 直线的交点坐标与距离公式(解析版)三、点到直线的距离1.概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离.2.公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.四、两平行直线间的距离1.概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离.2.公式:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B 2.名师导学知识点1两直线的交点问题【例1-1】(宜昌期末)已知两直线1:3420l x y +-=,2:220l x y ++=,则1l 与2l 的交点坐标为.【例1-2】(雅安期末)过直线1:240l x y -+=与直线2:10l x y ++=的交点,且过原点的直线方程为()A .20x y -=B .20x y +=C .20x y -=D .20x y +=【例1-3】(芜湖期末)若三条直线2380x y ++=,10x y --=和0x ky +=交于一点,则k 的值为()A .2-B .12-C .2D .12【变式训练1-1】(阎良区期末)直线5y x =-+与直线1y x =+的交点坐标是()A .(1,2)B .(2,3)C .(3,2)D .(2,1)【变式训练1-2】((安庆期末)直线210x y ++=与直线20x y -+=的交点在()A .第一象限B .第二象限C .第三象限D .第四象限【变式训练1-3】((庐江县期中)直线230x y k +-=和直线120x ky -+=的交点在x 轴上,则k 的值为()A .24-B .24C .6D .6±知识点2直线过定点问题【例2-1】(宿迁期末)设直线2(3)260x k y k +--+=过定点P ,则点P 的坐标为()A .(3,0)B .(0,2)C .(0,3)D .(2,0)【例2-2】(江阴市期中)直线:1(2)l y k x -=+必过定点()A .(2,1)-B .(0,0)C .(1,2)-D .(2,1)--【变式训练2-1】(黄浦区期末)已知a R ∈,若不论a 为何值时,直线:(12)(32)0l a x a y a -++-=总经过一个定点,则这个定点的坐标是()A .(2,1)-B .(1,0)-C .21(,)77-D .12(,)77-【变式训练2-2】(慈溪市期末)直线1(y kx k k =++为常数)经过定点()A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--知识点3两点间距离公式的应用【例3-1】(南充期末)已知点(1A ,0,2)与点B (1,3-,1),则||(AB =)A .2B C .3D【例3-2】(临川区校级一模)已知ABC ∆的三个顶点的坐标分别为(3,4)A ,(5,2)B ,(1,4)C --,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形【变式训练3-1】(琼山区校级期末)已知ABC ∆的顶点坐标为(7,8)A ,(10,4)B ,(2,4)C -,则BC 边上的中线AM 的长为()A .8B .13C .D 【变式训练3-2】(雁江区校级月考)如图,已知等腰梯形ABCD ,用坐标法证明:AC BD =.知识点4点到直线的距离【例4-1】(金凤区校级期末)已知点(2,1)P -.(1)若一条直线经过点P ,且原点到直线的距离为2,求该直线的一般式方程;(2)求过点P 且与原点距离最大的直线的一般式方程,并求出最大距离是多少?【例4-2】(韶关期末)已知点(1,3)A 和点(5,2)B 到直线l 的距离相等,且l 过点(3,1)-,则直线l 的方程为()A .410x y ++=或3x =B .410x y +-=或3x =C .410x y ++=D .410x y +-=【变式训练4-1】(保山期末)若直线l 过点,倾斜角为120︒,则点(1,到直线l 的距离为()A .32B C .332D .532【变式训练4-2】(新课标Ⅲ)点(0,1)-到直线(1)y k x =+距离的最大值为()A .1BC D .2知识点5两平行线间距离公式及其应用【例5-1】(张家界期末)直线3430x y +-=与直线690x my ++=平行,则它们的距离为()A .65B .32C .125D .2【例5-2】(广州期末)若两平行直线20(0)x y m m ++=>与30x ny --=之间的距离是,则(m n +=)A .0B .1C .1-D .2-【变式训练5-1】(靖远县期末)已知直线240x y +-=与直线230x my m +++=平行,则它们之间的距离为()A B C .352D .3102【变式训练5-2】(连云港期末)两条平行直线6450x y -+=与32y x =的距离是()A .13B .26C .13D .26【变式训练5-3】(广东期末)已知直线1:(1)2l x m y m ++=-与2:24160l mx y ++=,若12//l l ,则实数m 的值为()A .2或1-B .1C .1或2-D .2-【变式训练5-4】(崇左期末)已知直线1:20l x y n ++=,2:440l x my +-=互相平行,且1l ,2l 之间的距离(m n +=)A .3-或3B .2-或4C .1-或5D .2-或2知识点6运用距离公式解决最值问题【例6-1】(北碚区校级期末)已知ABC ∆的三个顶点(1,2)A ,(2,1)B ,(3,3)C ,若ABC ∆夹在两条斜率为1的平行直线之间,则这两条平行直线的距离的最小值是()A .355B C .322D 【例6-2】(鼓楼区校级期中)已知直线1:4270l x y +-=和2:210l x y +-=,直线m 分别与1l ,2l 交于A ,B 两点,则线段AB 长度的最小值为.【变式训练6-1】(闵行区校级模拟)过点(1,2)-且与原点的距离最大的直线方程是.【变式训练6-2】(和平区校级期末)已知点(2,5)A 和点(4,7)B ,点P 在y 轴上,若||||PA PB +的值最小,则点P 的坐标为.名师导练A 组-[应知应会]1.(辽源期末)点(3,1)到直线3420x y -+=的距离是()A .45B .75C .425D .2542.(宁波期末)直线6820x y +-=与6830x y +-=间的距离为()A .1B .3C .110D .253.(内江期末)已知点(1,3)M 到直线:10l mx y +-=的距离等于1,则实数m 等于()A .34B .43C .43-D .34-4.(兴庆区校级期末)设有直线(3)1y k x =-+,当k 变动时,所有直线都经过定点()A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.(沙坪坝区校级期中)已知直线1:10l x ay +-=与2:210l x y -+=平行,则1l 与2l 的距离为()A .15B .55C .35D .3556.(包头期末)点(,)P x y 在直线20x y +-=上,O 是坐标原点,则||OP 的最小值是()A .1B C .2D .7.(河池期末)点2(2,)P m m 到直线70x y ++=的距离的最小值为()A .4B .C .D .8.(江阴市期中)直线l 过(1,2)P ,且(2,3)A ,(4,5)B -到l 的距离相等,则直线l 的方程是()A .460x y +-=B .460x y +-=C .2370x y +-=或460x y +-=D .3270x y +-=或460x y +-=9.(平顶山期末)已知(1,2)P -,(2,4)Q ,直线:3l y kx =+.若P 点到直线l 的距离等于Q 点到直线l 的距离,则(k =)A .2.3或6B .23C ..0D ..0或2310.(昆山市期中)已知(2,3)M -,(6,2)N ,点P 在x 轴上,且使得PM PN +取最小值,则点P 的坐标为()A .(2,0)-B .12(5,0)C .14(5,0)D .(6,0)11.(宝安区校级模拟)已知0x <<,0y <<M =则M 的最小值为()A .B .C .2D .12.(多选)(江阴市期中)若两条平行直线1:20l x y m -+=与2:260l x ny +-=之间的距离是则m n +的可能值为()A .3B .17-C .3-D .1713.(多选)(山东模拟)若三条直线1:10l ax y ++=,2:10l x ay ++=,3:0l x y a ++=不能围成三角形,则a 的取值为()A .1a =B .1a =-C .2a =-D .2a =14.(田家庵区校级期末)原点(0,0)到直线:20l x y -+=的距离是.15.(尖山区校级期末)两条平行直线110l y -+=与2:230l ax y +-=之间的距离为.16.(嘉兴期末)直线1:0l x y m --=与直线2:30l mx y -+=平行,则m =;1l 与2l 之间的距离为.17.(金华期末)已知直线:(1)2l x m y m ++=-,则当0m =时,直线l 的倾斜角为;当m 变化时,直线l 过定点.18.(镇江期末)已知直线1:0l x y a ++=与直线2:0l x y +=a 的值为.19.(珠海期末)已知平面直角坐标系xOy 中,点(4,1)A ,点(0,4)B ,直线:31l y x =-,则直线AB 与直线l 的交点坐标为.20.(苏州期末)已知A ,B 两点分别在两条互相垂直的直线20x y -=和5x ay +=上,且线段AB 的中点为(0,5)P ,则||AB =.21.(昆山市期中)在平面直角坐标xOy 中,已知(4,3)A ,(5,2)B ,(1,0)C ,平面内的点P 满足PA PB PC ==,则点P 的坐标为.22.(新余期末)已知直线:2(2)l y ax a =+-过一、三、四象限,其中a Z ∈,则点(1,3)A -到直线l 的距离为.23.(乐山期末)已知两条直线1:420l mx y +-=和2:10l x my ++=.(1)当12//l l 时,求m 的值;(2)在(1)的条件下,求1l 、2l 间的距离.24.(宁德期末)已知直线:260l x y --=与x 轴的交点为A ,且点A 在直线m 上.(1)若m l ⊥,求直线m 的方程;(2)若点(1,1)B 到直线m 的距离等于2,求直线m 的方程.25.(新都区期末)已知ABC ∆的三个顶点坐标为(3,1)A -,(3,3)B -,(1,7)C .(1)求BC 边的中线所在直线方程的一般式方程;(2)求ABC ∆的面积.26.(沭阳县期中)已知直线:(12)(1)720l m x m y m ++-++=.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线1l ,使夹在两坐标轴之间的线段被M 点平分,求直线1l 的方程.27.(宁城县期末)已知点ABC ∆三顶点坐标分别是(1,0)A -,(1,0)B ,(0,2)C ,(1)求A 到BC 边的距离d ;(2)求证AB 边上任意一点P 到直线AC ,BC 的距离之和等于d .B 组-[素养提升]1.(尖山区校级期末)已知在ABC ∆中,顶点(4,2)A ,点B 在直线:20l x y -+=上,点C 在x 轴上,则ABC ∆的周长的最小值.2.(兰州期末)已知点(2,1)P -.(1)求过P 点与原点距离最大的直线l 的方程,最大距离是多少?(2)是否存在过P 点与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.第7讲直线的交点坐标与距离公式新课标要求1.能用解方程组的方法求两条直线的交点坐标。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结39 两条直线的位置关系与距离公式高考概览高考在本考点的常考题型为选择题,分值为5分,中、低等难度考纲研读1.能根据两直线方程判断这两条直线平行或垂直2.能用解方程组的方法求两条相交直线的交点坐标3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离一、基础小题1.已知直线x+a2y+6=0与直线(a-2)x+3ay+2a=0平行,则a的值为() A.0或3或-1 B.0或3C.3或-1 D.0或-1答案D解析由题意知1×3a-a2(a-2)=0,即a(a2-2a-3)=0,解得a=0或a=-1或a=3,经验证,当a=3时,两直线重合.故选D.2.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是() A.[-10,10] B.[-10,5] C.[-5,5] D.[0,10]答案D解析 由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].3.已知直线4x +my -6=0与直线5x -2y +n =0垂直,垂足为(t,1),则n 的值为( )A .7B .9 C.11 D .-7答案 A解析 由直线4x +my -6=0与直线5x -2y +n =0垂直得,20-2m =0,m =10.因为直线4x +10y -6=0过点(t,1),所以4t +10-6=0,t =-1.又点(-1,1)在直线5x -2y +n =0上,所以-5-2+n =0,n =7.4.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895 B .175 C.135 D .115答案 C解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0过定点B ⎝ ⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135. 5.若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是5,则m +n =( )A .0B .1 C.-2 D .-1答案 C解析 因为l 1,l 2平行,所以1×n =2×(-2),解得n =-4,所以直线l 2的方程为x -2y -3=0.又l 1,l 2之间的距离是5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2.故选C.6.直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0答案 D解析 由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎨⎧x +3=0,y -1=0,可得x =-3,y =1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于点M 对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0.故选D.7.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( )A.45 B .25 C.255 D .105答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|12+22=255,所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.8.在平面直角坐标系xOy (O 为坐标原点)中,不过原点的两直线l 1:x -my +2m -1=0,l 2:mx +y -m -2=0的交点为P ,过点O 分别向直线l 1,l 2引垂线,垂足分别为M ,N ,则四边形OMPN 面积的最大值为( )A .3B .32 C.5 D .52答案 D解析 将直线l 1的方程变形得(x -1)+m (2-y )=0,由⎩⎨⎧ x -1=0,2-y =0,得⎩⎨⎧x =1,y =2,则直线l 1过定点(1,2),同理可知,直线l 2过定点(1,2),所以,直线l 1和直线l 2的交点P 的坐标为(1,2),易知,直线l 1⊥l 2,如图所示,易知,四边形OMPN 为矩形,且|OP |=12+22=5,设|OM |=a ,|ON |=b ,则a 2+b 2=5,四边形OMPN 的面积为S =|OM |·|ON |=ab ≤a 2+b 22=52,当且仅当⎩⎨⎧a =b ,a 2+b 2=5,即当a =b =102时,等号成立,因此,四边形OMPN 面积的最大值为52.故选D.9.(多选)已知直线l :mx +y -m +1=0,A (1,2),B (3,4),则下列结论正确的是( )A .存在实数m ,使得直线l 与直线AB 垂直B .存在实数m ,使得直线l 与直线AB 平行C .存在实数m ,使得点A 到直线l 的距离为4D .存在实数m ,使得以线段AB 为直径的圆上的点到直线l 的最大距离为17+2 答案 ABD解析 ∵直线l :mx +y -m +1=0,A (1,2),B (3,4),∴直线l 的斜率为-m ,直线AB 的斜率为1,故当m =1时,直线l 与直线AB 垂直;当m =-1时,直线l 与直线AB 平行,故A ,B 正确;直线l :mx +y -m +1=0,即m (x -1)+y +1=0,令⎩⎨⎧x -1=0,y +1=0,求得⎩⎨⎧x =1,y =-1,可得直线经过定点P (1,-1),由于AP =3,故点A 到直线l 的最大距离为3,故C 错误;由于A (1,2),B (3,4),AB =4+4=22,故以AB 为直径的圆的圆心Q (2,3),且PQ =1+16=17,圆的半径为2,圆心Q 到直线l 的最大距离为17,故以线段AB 为直径的圆上的点到直线l 的最大距离为17+2,故D 正确.10.(多选)经过点P (0,1)的直线l 与两直线l 1:x -3y +10=0和l 2:2x +y -8=0分别交于P 1,P 2两点,且满足P 1P →=2PP 2→,则( )A .点P 1的坐标为⎝ ⎛⎭⎪⎫0,103 B .|P 1P 2|=212 C .点P 2的坐标为(7,1) D .直线l 的方程为y =1答案 BD解析 当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 与两直线l 1:x-3y +10=0和l 2:2x +y -8=0的交点P 1,P 2的坐标分别为⎝ ⎛⎭⎪⎫0,103,(0,8),则P 1P →=⎝⎛⎭⎪⎫0,-73,PP 2→=(0,7),不满足P 1P →=2PP 2→,故直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为y =kx +1,则直线l 与两直线l 1:x -3y +10=0和l 2:2x +y -8=0的交点P 1,P 2的横坐标分别为73k -1,7k +2,∵P 1P →=2PP 2→,∴0-73k -1=2⎝ ⎛⎭⎪⎫7k +2-0,解得k =0,则P 1,P 2的坐标分别为(-7,1),⎝ ⎛⎭⎪⎫72,1,∴|P 1P 2|=212,直线l 的方程为y =1.故选BD.11.已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为________,此时a =________,b =________.答案 25 5 5解析 由两直线互相平行可得a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6b a =25,当且仅当a =b=5时取等号.故2a +3b 的最小值为25.12. 如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.答案 (4,+∞)解析 从特殊位置考虑.如图,因为点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),所以kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,所以k FD >kA 1F ,即k FD ∈(4,+∞).二、高考小题13.(2022·新高考Ⅱ卷)抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =( )A .1B .2 C.22 D .4答案 B解析 抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离为d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.14.(2022·全国Ⅲ卷)点(0,-1)到直线y =k (x +1)距离的最大值为( )A .1B . 2 C.3 D .2答案 B解析 由y =k (x +1)可知直线过定点P (-1,0),设A (0,-1),当直线y =k (x +1)与AP 垂直时,点A 到直线y =k (x +1)的距离最大,即为|AP |= 2.故选B.15.(2022·全国Ⅱ卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B .255 C.355 D .455答案 B解析 由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆至少与一条坐标轴相交,不符合题意,所以圆心必在第一象限.设圆心的坐标为(a ,a ),a >0,则圆的半径为a ,圆的标准方程为(x -a )2+(y -a )2=a 2.由题意可得(2-a )2+(1-a )2=a 2,可得a 2-6a +5=0,解得a =1或a =5.所以圆心的坐标为(1,1)或(5,5).点(1,1),(5,5)到直线2x -y -3=0的距离均为d =25=255,所以圆心到直线2x -y -3=0的距离为255.故选B.16.(2022·江苏高考)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.答案 4解析 解法一:由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0),则动点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.解法二:设P ⎝ ⎛⎭⎪⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的动点到直线x +y=0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4. 三、模拟小题17.(2022·济南模拟)若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -(5-3x )-1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1).18.(2022·河北省实验中学高三开学考试)若直线l 1:y =kx -k +1与直线l 2关于点(2,3)对称,则直线l 2一定过定点( )A .(-3,5)B .(3,-5)C .(3,5)D .(5,3)答案 C解析 直线l 1:y =kx -k +1可化为y -1=k (x -1),故一定经过点(1,1);点(1,1)关于点(2,3)的对称点的坐标为(3,5),由于直线l 1:y =kx -k +1与直线l 2关于点(2,3)对称,所以直线l 2一定过定点(3,5).故选C.19.(2022·吉林省梅河口市第五中学月考)已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A.51313 B .91326 C.41313 D .71326答案 D解析 ∵直线3x +2y -3=0和6x +my +1=0互相平行,∴m =4,将直线3x +2y -3=0的方程化为6x +4y -6=0,则两条平行直线之间的距离d =|1-(-6)|62+42=71326.故选D.20.(多选)(2022·河北省实验中学高三开学考试)瑞士数学家莱昂哈德·欧拉(Leonhard Euler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是( )A .(2,0)B .(0,2)C .(-2,0)D .(0,-2)答案 AD解析 设C (x 1,y 1),AB 的垂直平分线为y =-x ,△ABC 的欧拉线方程为x -y +2=0,与直线y =-x 的交点为M (-1,1),∴|MC |=|MA |=10,∴(x 1+1)2+(y 1-1)2=10①,由A (-4,0),B (0,4),得△ABC 的重心为⎝ ⎛⎭⎪⎫x 1-43,y 1+43,代入欧拉线方程x -y +2=0,得x 1-y 1-2=0 ②,由①②可得x 1=2,y 1=0或x 1=0,y 1=-2.故选AD.21.(多选)(2022·湖南永州高三复习检测)已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的可能取值为( )A.43 B .23 C.-43 D .-23答案 BCD解析 设l 1:2x -3y +1=0,l 2:4x +3y +5=0,l 3:mx -y -1=0,易知l 1与l 2交于点A ⎝ ⎛⎭⎪⎫-1,-13,l 3过定点B (0,-1).因为l 1,l 2,l 3不能构成三角形,所以l 1∥l 3或l 2∥l 3或l 3过点A .当l 1∥l 3时,m =23;当l 2∥l 3时,m =-43;当l 3过点A 时,m =-23,所以实数m 的可能取值为-43,-23,23.故选BCD.22.(2022·安徽四校联考(二))已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧ b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 23.(2022·山东省历城二中上学期学情检测)已知m ∈R ,动直线l 1:x +my -1=0过定点A ,动直线l 2:mx -y -2m +1=0过定点B ,则B 点坐标为________;若直线l 1与l 2相交于点P (异于点A ,B ),则△P AB 周长的最大值为________.答案 (2,1) 2+2解析 由条件知直线l 1过定点A (1,0),直线l 2过定点B (2,1),所以|AB |=12+12=2,又因为1×m +m ×(-1)=0,所以l 1⊥l 2,即P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=2,|P A |+|PB |≤2 |P A |2+|PB |22=2,当且仅当|P A |=|PB |=1时取等号,所以|P A |+|PB |+|AB |≤2+2,故△P AB 周长的最大值为2+ 2. 24.(2022·岳阳模拟)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则m =________,12a +2c 的最小值为________.答案 0 94解析 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,设点Q (4,0)到直线l 的距离为d ,当d =|PQ |时取最大值,所以(4-1)2+(-m )2=3,解得m =0.所以a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12×⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12×⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94,当且仅当c =2a =43时取等号.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·陕西榆林质量检测)已知两条不重合的直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解 (1)因为l 1⊥l 2,所以a (a -1)-b =0.又因为直线l 1过点(-3,-1),所以-3a +b +4=0.故a =2,b =2.(2)因为直线l 2的斜率存在,且l 1∥l 2,所以直线l 1的斜率存在.所以a b =1-a .①又因为坐标原点到这两条直线的距离相等,所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .②联立①②,可得a =2,b =-2或a =23,b =2.2.(2022·深圳调研)已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),由题意知⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧ x =-3313,y =413. 所以A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3). 又因为m ′经过点N (4,3), 所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为直线l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 所以直线l ′的方程为2x -3y -9=0.。
(1)能用解方程组的方法求两条相交直线的交点坐标.(2)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 学习过程:一、知识梳理:1.直线的交点坐标(1)点、线关系及代数表示: 直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两点点,直线1、(1)三条直线,与相交于一点,求a 的值(2)已知两条直线:,:m 为何值时,:(1)相交;(2)平行;(3)垂直2、(1)求在x 轴上与点的距离为13的点的坐标; (2)已知点,,,且|PQ|=|PM|,求a 的值。
3、(1)求点P(-5,7)到直线的距离;(2)在在x 轴上求一点P ,使以点A(1,2),B(3,4)和P 为顶点的三角形的面积为10。
直线在直线4、(1)求两条平行线间的距离;(2)求与两条平行线等距离的平行线的方程三、拓展升华:1、已知0<x<1,0<y<1,求证:+++≥22、已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程.(3)求直线l关于点A(-1,-2)对称的直线l′的方程.3、(1)在直线l:3x-y-1=0上求一点P,使点到A(1,7)和B(0,4)的距离之和最小.(2)已知点A(3,1),在直线x-y=0和y=0上分别有点M和N使△AMN的周长最短,求点M、N的坐标.4、(1)已知直线l1:Ax+By+C1=0,l2:Ax+By+C2=0相交,证明方程Ax+By+C1+(Ax+By+C2)=0()表示过l1与l2交点的直线。
(2)已知直线(m+2)x-(2m-1)y-3(m-4)=0.①求证:不论m怎样变化,直线恒过定点;②求原点(0,0)到直线的距离的最大值.四、规律总结:。