高光谱遥感的传感器是成像光谱仪ImagingSpectrometer
- 格式:ppt
- 大小:1.48 MB
- 文档页数:84
外、热红外光谱特征,大大提高了地物的分类和识别能力,在农业、林业、海洋、气象、地质、全球环境及军事遥感等诸多领域显示出巨大的应用前景。
目前,已有许多国家相继研制出或正在研制各具特色的成像光谱仪,数量达四十种之多[3-61。
从第一代AIS的32个连续波段,到第二代高光谱成像仪。
航空可见光、红外光成像光谱仪(AVIRIS)的224个波段,光谱分辨率在不断提高,AVRIS是首次测量全反射波长范围(O.4~2.5run)的成像光谱仪。
美国宇航局在1999年底发射的中等分辨率成像光谱仪(MODIS)和高分辨率成像光谱仪(HIRjS)为人类提供了更多信息。
2001年发射的OrbView卫星能够同时提供更高空间分辨率和光谱分辨率的数据,它能获取】m全色波段影像和4m~5m的多光谱波段以及空间分辨率为8m的200个波段的高光谱数据。
此外,许多具有高空间分辨率和高光谱分辨率的成像光谱仪正在或即将进入实用阶段,例如:美国的HYDICE、SEBAS,加拿大的FLI、CASI和SFSI,德国的ROSIS以及澳大利亚的HYMAP等。
这些传感器有的已经进入了商业运营,技术比较成熟。
特别是美国的HYDICE和AVIRIS多次参与军方的实验,提供了大量的军事应用的第一手资料。
图l—l高光谱图像数据立方体示意我国在这一领域的发展也十分迅速。
中科院上海技术物理研究所于1997年开始研制244波段的推扫式(PHI)和128波段的可见光/近红外、短波红外、热红外模块化成像光谱仪系统(OMIS)并取得了成功,特别是OMIS已经成功转入商业运营。
另外,中科院长春光学精密机械与物理研究所、西安光学精密机械研究所也在这一领域取得了重要的研究成果。
高光谱数据除了拥有图像数据的几何信息外,还具有光谱信息,从而构成三维的图像立方体。
如图1.1,光谱维信息可以记录地物所具有的反射、吸收和发射电磁能量的能力,这种能力是由物质的分子和原子结构确定,不同的地物类型对应于不同的谱特征,这就是光谱的“指纹效应”,如图1.2。
什么是高光谱,多光谱,超光谱作者:felles提交日期:2010-4-26 8:16:00 | 分类:高光谱 | 访问量:196到底什么是高光谱,多光谱和超光谱技术2009-11-18 13:53多光谱,高光谱和高光谱技术都被称为成像光谱技术,在遥感和其他科研领域具有举足轻重的作用。
多年来,我一直对这种技术理解不深,很多人说什么多光谱,甚至是超光谱,多光谱技术实际上是高光谱技术的原始阶段,几乎被淘汰了。
而有些人说的超光谱实际上还在美国研发,根本没有进入到市面上,也就说诸多同仁对成像光谱技术也是糊里糊涂。
今日,我在一个网站上发现了对这种技术的解释 ,我认为从专业角度来说,他们说的还比较靠谱。
对于科研确实有一定的帮助。
我在这里吧相关资料拷贝过来供大家欣赏。
成像光谱技术(高光谱成像技术)基础Imaging Spectrometer Fundamentals说明:1.下文所属的成像光谱仪又叫高光谱成像系统,而且同一个概念。
2.该资料为天津菲林斯光电仪器公司 编写,仅作成像光谱技术的内部交流之用,禁止一切形式的侵权传播或引用行为。
一.技术历史背景在现代科研过程中, 多数情况下必须对空间不均匀样品的分布特性加以分析和确认,使用传统的光谱仪仅仅能够以聚焦的镜头扫描样品或者获得整个样品的平均特性,这种光谱和空间信息不可兼得的局限性促使高光谱成像技术(Hyperspectral Imaging)应用而生。
早在20世纪60年代(1960s)人造地球卫星围绕地球获取地球的图片资料时,成像就成为研究地球的有利工具。
在传统的成像技术中,人们就知道黑白图像的灰度级别代表了光学特性的差异因而可用于辨别不同的材料,在此基础上,成像技术有了更高的发展,对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、研究大气、海洋、土壤等的辨别能力大有裨益。
这就是人类最早的多光谱技术(Multispectral imaging)它最早出现在LandSat卫星上。
遥感传感器的分类及应用遥感传感器是遥感技术实现的关键设备,通过感知地球表面物体的辐射信息,将其转化为电信号,再经过信号处理和解译,获取地球表面物体的信息。
根据传感器获取的波段不同,遥感传感器可分为光学传感器、热红外传感器、微波传感器和辐射计传感器等。
下面将对这些传感器的分类和应用进行详细介绍。
1. 光学传感器:光学传感器是利用可见光、红外线和紫外线等电磁波进行观测的遥感传感器。
根据波长的不同,光学传感器可分为几何光学传感器和光谱光学传感器两类。
- 几何光学传感器:主要用于获取地表物体的几何信息,如高程、表面形态、形状等,常见的传感器有激光扫描仪、全球定位系统(GPS)等。
- 光谱光学传感器:通过感知不同波段的辐射能量,获取地表物体的光谱特征和反射率,常见的传感器有光电成像仪、多光谱仪、高光谱仪等。
光学传感器在土地利用、环境监测、农业生产、城市规划等领域具有广泛应用。
例如,农业生产中,利用多光谱仪对作物进行光谱测量,可以实现作物的生长监测、病虫害预警和施肥调控。
2. 热红外传感器:热红外传感器是使用地物自身辐射的热红外波段信息进行探测的遥感传感器,主要用于获取物体的温度信息和热特性。
常见的传感器有热像仪和红外测温仪等。
热红外传感器广泛应用于军事侦察、夜视系统、火灾监测、温室气体排放检测等领域。
例如,在环境监测中,利用热像仪可以检测热污染源,指导环境管理和污染治理。
3. 微波传感器:微波传感器利用地物对微波辐射的响应进行探测,主要用于获取地物的微波反射、散射和辐射特性。
根据工作波段的不同,微波传感器可分为多频雷达、合成孔径雷达(SAR)和微波亮温计等。
微波传感器广泛应用于地貌地貌、冰雪覆盖、测风雷达、大气科学等领域。
例如,在气象预测中,利用微波辐射计可以获取大气温度、湿度和降水等气象要素。
4. 辐射计传感器:辐射计传感器主要用于测量地球表面辐射通量,例如太阳辐射、热辐射、长波辐射等。
常见的传感器有太阳辐射计、红外辐射计和长波辐射计等。
超光谱遥感监测发展历史1.国内外超光谱遥感器的发展在遥感的发展史上,超光谱遥感的出现是一个概念上和技术上的创新。
1983年世界上第一台成像光谱仪Als一1(AirborneImagingSpectrometer一1)在美国喷气推进实验室(JPL)研制成功,标志这第一代超光谱分辨率传感器的问世。
至上世纪90年代,国际上超光谱,高光谱的研究,包括传感器研制、信息获取、数据处理和分析、辐射定标、光谱重建、波形分析、光谱识别、各种物化参量的反演和应用模型的研究,都日益成熟。
发展了一系列数据处理和地物识别的方法,建立了多种应用模型,开发了一些通用和专用处理软件。
并在矿物填图、植被调查等领域取得了显著的应用成效,展现了宏伟的应用前景。
第一代成像光谱仪以AIS一和A工S一2为代表,以扫描式的二维面阵列成像(AIS一1用32x32面陈列成像)。
至此许多发达国家也相继投入大批财力进行成像光谱仪的研制和应用示范的研究。
目前国际上有近五、六十台各种类型的民用航空成像光谱仪,例如:美国机载可见光/红外成像光谱仪(A VIRIS)、加拿大的荧光线成像光谱仪(FLI)和在此基础上发展的小型机载成像光谱仪(AIS)、美国DeadaluS公司的MIVIS、GER公司的79通道机载成像光谱仪(DAIS一7915)、芬兰的机载多用成像光谱仪(DAISA)、德国的反射式成像光谱仪(BOSIS一10和22)、美国海军研究所实验室的超光谱数字图像采集试验(HYD工CE)、澳大利亚的HyM即、美国Probe、加拿大的工TRES公司的系列产品以及由美国GER公司为德士古(TEXACO)石油公司专门研制的TEEMS系统等等。
最近新出现了美国SpeCtir公司生产的HyperspeeTIR(HST)传感器的有227个独立波段,光谱范围是450一245Onm,其技术特性如表1一1所示,它的主要优势是高空间分辨率。
可以达到0.sm,这对于检测路面健康状况是巨大的优势。