八年级数学(下)期末模拟试卷及答案
- 格式:doc
- 大小:643.00 KB
- 文档页数:11
2022—2023学年河南省平顶山市八年级下册数学期末专项模拟试卷注意事项:1.本试卷共4页,三个大题,满分125分,其中试题120分,卷面5分,考试时间100分钟.2.本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上,答在试卷上的答案无效.3.答题前,考生务必将本人姓名,准考证号填写在答题卡第一面的指定位置.一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形不能由旋转得到的是()A .B .C .D .2.下列各分式中,最简分式是()A .23x x x-B .()222x y x y -+C .2222y x xy x xy +++D .2222x y x y xy ++3.将长度为5cm 的线段向上平移所得线段长度是()A .10cm B .5cmC .15cmD .无法确定4.下列说法正确的是()A .平行四边形是轴对称图形B .平行四边形的邻边相等C .平行四边形的对角线互相垂直D .平行四边形的对角线互相平分5.()2n +边形的内角和比n 边形的内角和大()A .180°B .360°C .180n ⋅︒D .360n ⋅︒6.如图,在ABC △中,AB AC =,AD 是ABC △的角平分线.若13AB =,12AD =,则BC 的长为()A .5B .10C .20D .247.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A .()621031x x -=B .621031x =-C .621031x x-=D .62103x =8.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]1.41=.若352x +⎡⎤⎢⎥⎦=⎣,则x 的取值范围是()A .13x ≥B .16x ≤C .1316x ≤<D .1316x <≤9.如图所示,平面直角坐标系中,已知三点()–1,0A ,()2,0B ,()0,1C ,若以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 点的坐标不可能是()A .()3,1B .()3,1-C .()1,1-D .()1,310.如图,四边形中ABCD 中.AC BC ⊥,AD BC ∥,BD 为ABC ∠的平分线,6BC =,8AC =.E ,F 分别是BD ,AC 的中点,则EF 的长为()A .1B .1.5C .2D .2.5二、填空题(本大题共5小题,每小题3,共15分)11.分式121x x-+中的取值范围是_______.12.直角三角形中,两个锐角度数之比为1:5,则较小的锐角度数为_______.13.我们知道正五边形不能进行平面镶嵌,若将三个完全相同的正五边形按如图所示的方式拼接在一起,那么图中1∠的度数是________.14.若三角形ABC 的三边长a ,b ,c 满足22a ab c bc +=+,则三角形ABC 的形状是_______.15.如图,120AOB ∠=︒,点P 为AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:①PM PN =;②OM ON OP +=;③四边形PMON 的面积保持不变;④PMN △的周长保持不变.其中说法正确的是_______填序号.三、解答题(本大题共8小题,共75分)16.(1)(4分)分解因式2232x y xy y -+;(2)(5分)解方程24322112x x x-+=--17.(10分)先化简,再求值:211141x x x +⎛⎫⋅+ ⎪-+⎝⎭,其中x 是不等式组10523x x +≥⎧⎨->⎩的整数解.18.(8分)如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O 顺时针方向旋转90°、180°、270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A 的对应点依次为1A 、2A 、3A ,求四边形123AA A A 的面积;19.(10分)证明:两条边上的高相等的三角形是等腰三角形.20.(8分)“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?21.(10分)在坐标系中直接作出函数2y x =+的图象,根据图象回答下列问题:(1)方程20x +=的解是______;(2)不等式21x +>的解________;(3)若22y -≤≤,则x 的取值范围是________.22.(9分)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替,不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式()()2241479x x x x -+-++进行因式分解的过程.解:设24x x y-=原式()()179y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =-+(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的_________;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:___________;(3)请你用换元法对多项式()()222221x x x x ++++进行因式分解.23.(11分)如图,AM 是ABC △的中线,D 是线段AM 上一动点(不与点A 重合).DE AB ∥交AC 于点F ,CE AM ∥,连接AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,MG DE ∥交CE 于点G ,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =,则CAM ∠=_________.答案解析一、选择题(每小题3分,共30分)1.A 2.D 3.B4.D 5.B 6.B 7.A 8.C 9.D 10.C 二、填空题(本大题共5小题,共15分)11.1x ≠-12.15°13.36°14.等腰三角形15.①②③三、解答题(本大题共8小题,共75分)16.解:(1)原式()()2222y x xy y y x y =-+=-;(2)去分母得:()242213x x -+-=-,解得:12x =,检验:把12x =代入得:210x -=,∴12x =是增根,分式方程无解.17.解:211141x x x +⎛⎫⋅+ ⎪-+⎝⎭()()111221x x x x x +++=⋅+-+()()21222x x x x +==+--由不等式组10523x x +≥⎧⎨->⎩得11x -≤<,∵x 是不等式组10523x x +≥⎧⎨->⎩的整数解,∴1x =-,0,∵当1x =-时,原分式无意义,∴0x =,当0x =时,原式11022==--18.解:(1)如图(2)如图,四边形123AA A A 的面积=四边形123BB B B 的面积4ABCS -△()2135435342=+-⨯⨯⨯=故四边形123AA A A 的面积为34.19.已知:如图,在ABC △中,,BE AC CD AB ⊥⊥,且BE CD =.求证:ABC △是等腰三角形.证明:∵,BE AC CD AB ⊥⊥,∴90CDB BEC ∠=∠=︒,在Rt BCD △与Rt CBE △中,CD BEBC CB==⎧⎨⎩∴()Rt Rt BCD CBE HL △≌△,∴ABC ACB ∠=∠,∴AB AC =,即ABC △是等腰三角形.20.解:设原来车辆的平均速度为x 千米/小时.由题意可得:()3603602150%x x -=+,解这个方程得:60x =.经检验:60x =是原方程的解.答:原来车辆的平均速度为60千米/小时.21.作图(1)2x =-;(2)1x >-;(3)40x -≤≤.22.解:(1)C ﹔(2)()42x -;(3)设22x x y +=,原式()()()()2242221211211y y y y y x x x =++=++=+=++=+23.解:(1)∵DE AB ∥,∴EDC ABM ∠=∠,∵CE AM ∥,∴ECD ADB ∠=∠,∵AM 是ABC △的中线,且D 与M 重合,∴BD DC =,∴ABD EDC △≌△,∴AB ED =,∵AB ED ∥,∴四边形A BDE 是平行四边形;(2)∵CE AM ∥,MG DE∥∴四边形DMGE 是平行四边形,∴ED GM =,且ED GM ∥,由(1)知,AB GM =,AB GM ∥,∴AB DE ∥,AB DE =,∴四边形ABDE 是平行四边形;(3)30°.。
新人教版八年级数学下册期末模拟考试(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.4的平方根是 .4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、D6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、±2.4、﹣2<x <25、706、4三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=.2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略(2)等腰三角形,理由略6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2023-2024学年上海市奉贤区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=﹣3x﹣2的截距是()A.﹣3B.﹣2C.2D.32.(3分)下列方程中是二项方程的是()A.x4+x=0B.x5=0C.x3+x=1D.3.(3分)以下描述和的关系不正确的是()A.方向相反B.模相等C.平行D.相等.4.(3分)如果二次三项式x2﹣6x+p能在实数范围内分解因式,那么p的取值范围是()A.p≤9B.p≥9C.p<9D.p>95.(3分)小明是这样画平行四边形的:如图,将三角尺ABC的一边AC贴着直尺推移到A1B1C1的位置,这时四边形ABB1A1就是平行四边形.小明这样做的依据是()A.有两组对边分别平行的四边形是平行四边形B.有两组对边分别相等的四边形是平行四边形C.有一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.(3分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.二、填空题(本大题共12题,每小题2分,满分24分)7.(2分)方程x3﹣2x=0的根是.8.(2分)方程的解是.9.(2分)如果把直线y=3x﹣1沿y轴向上平移2个单位,所得直线的解析式是.10.(2分)关于x的方程(a+2)x=a2﹣4(a≠﹣2)的解是.11.(2分)如果一个多边形的内角和是1800°,那么这个多边形的边数是.12.(2分)一次函数y=(m﹣3)x的函数值y随着x的值增大而减小,那么m取值范围是.13.(2分)用换元法解方程:时,如果设,那么原方程可以化为关于y的整式方程是.14.(2分)“六一”儿童节上,某小队建议每位同学向其他同学赠送1句祝福语,结果小队内共收到210句祝福语,设小队共有x人,那么根据题意所列方程为.15.(2分)如图,一次函数y=3x+2与的图象相交于点P,那么k=.16.(2分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD互相垂直,AC=3,那么梯形ABCD 的中位线长为.17.(2分)我们把有两个相邻的内角是直角且有两条邻边相等的四边形称为邻等四边形.如图,在5×5的方格纸中,每个小正方形的边长为1,A、B、C三点均在格点上,若四边形ABCD是邻等四边形,且点D也在格点上,那么边AD的长为.18.(2分)如图,在正方形ABCD中,AB=4cm,点E在边AD上,联结BE,将△ABE沿BE翻折,点A 的对应点为点F.当直线BF恰巧经过CD的中点M时,AE的长为cm.三、解答题(本大题共8题,第19、20、21、22题每题6分,第23、24、25题每题8分,第26题10分)19.(6分)解分式方程:+1=.20.(6分)解方程组21.(6分)如图,在平行四边形ABCD中,点E、F分别在边AB、CD上,且AE=2EB,CF=2FD,联结EF.(1)写出与相等的向量;(2)填空:=;(3)求作:.(在原图上保留作图痕迹,不要求写作法)22.(6分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=1,CD=2,AB=BC.求S梯形ABCD.23.(8分)“人民群众多读书,我们的民族精神就会厚重起来、深邃起来.”某书店在世界读书日之际,计划购进A类和B类图书,因为A类图书每本进价比B类图书每本进价高60%,所以用960元购进A类图书的数量比用同样的费用购进B类图书的数量少12本.(1)求A、B两类图书每本的进价;根据题意,甲、乙两名同学分别列出如下方程:甲:,解得x=30,经检验x=30是原方程的解.乙:,解得x=20,经检验x=20是原方程的解.那么甲同学所列方程中的x表示,乙同学所列方程中的x表示.(2)按以上两类图书的进价,该书店用4500元购进A类图书m本及B类图书n本.然后将A类图书的售价定为每本52元,B类图书的售价定为每本40元,书店售完这一批次购进的两类图书共获利900元,那么书店分别购进了这两类图书多少本?24.(8分)已知:如图,四边形ABCD中,∠ABC<90°,AD∥BC,AB∥CD,DE⊥AB,DF⊥BC,垂足分别为E、F,DE=DF.(1)求证:四边形ABCD为菱形;(2)联结AC交BD于点O,联结OF,求证:∠BDC=∠OFB.25.(8分)如图,在平面直角坐标系中,直线y=2x﹣3与x轴和y轴分别交于点B、C,与直线y=x相交于点A.(1)求点A的坐标;(2)已知点P在线段OA上.①若点P是OA的中点,求线段BP的长度;②点D在直线AC上,点H在x轴上,当四边形OPHD是正方形时,求点P的坐标.26.(10分)如图,矩形ABCD中,AB=3,BC>AB,将矩形ABCD绕着点B逆时针旋转后得到矩形BEFG,点C恰好落在边AD上,点C的对应点是点E,点D的对应点是点F,点A的对应点是点G.(1)如图1,当BC=5时,求DE的长;(2)如图2,延长FE交边DC于点H,设CH=m,用m的代数式表示线段BC的长;(3)联结AF,当△AEF是以AE为腰的等腰三角形时,请直接写出此时BC的长.2023-2024学年上海市奉贤区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.【分析】代入x=0求出与之对应的y值,该值即是一次函数y=﹣3x﹣2的截距.【解答】解:当x=0时,y=﹣3x﹣2=﹣2,∴一次函数y=﹣3x﹣2的截距是﹣2.故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记截距的定义是解题的关键.2.【分析】二项方程的左边只有两项,其中一项含未知数x,这项的次数就是方程的次数;另一项是常数项;方程的右边是0,结合选项进行判断即可.【解答】解:A、不是二项方程,故本选项错误;B、不是二项方程,故本选项错误;C、不是二项方程,故本选项错误;D、是二项方程,故本选项正确;故选:D.【点评】本题考查了二项方程的定义,注意二项方程的左边只有两项,一项含未知数,一项是常数,右边为0.3.【分析】利用单位向量的定义和性质直接判断即可.【解答】解:A、和的关系是方向相反,正确;B、和的关系是模相等,正确;C、和的关系是平行,正确;D、和的关系不相等,错误;故选:D.【点评】此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.4.【分析】根据多项式能分解因式,得到多项式为0时方程有解,确定出p的范围即可.【解答】解:∵二次三项式x2﹣6x+p能在实数范围内分解因式,∴Δ=36﹣4p≥0,解得:p≤9,故选:A.【点评】此题考查了实数范围内分解因式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.5.【分析】直接利用平移的性质结合平行四边形的判定定方法得出答案.【解答】解:根据平移的性质,得到AB∥B1A1,AB=B1A1,故选:C.【点评】本题考查了平移,平行四边形的判定,熟练掌握一组对边平行且相等的四边形是平行四边形是解题的关键.6.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.【点评】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=﹣2x+4,然后根据一次函数的图象的性质求解.二、填空题(本大题共12题,每小题2分,满分24分)7.【分析】用因式分解的方法解题,在提取x后,要观察题中各因式的形式,要分解彻底.【解答】解:因式分解得x(x+)(x﹣)=0,解得x1=0,x2=﹣,x3=.故答案为0,.【点评】本题考查了因式分解法解高次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解方程的一种简便方法,要会灵活运用.8.【分析】移项后方程两边平方得出方程3+x=1,再求出方程的解,最后进行检验即可.【解答】解:﹣1=0,移项,得=1,方程两边平方得:3+x=1,解得:x=﹣2,经检验x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【分析】只向上平移,比例系数不变,让常数项加平移的单位即可.【解答】解:原直线的k=3,b=﹣1;向下平移2个单位长度得到了新直线,那么新直线的k=3,b =﹣1+2=1,则新直线的解析式为y=3x+1.故答案为:y=3x+1.【点评】本题考查了函数图象的几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b 发生变化.上下平移时只需让b的值加减即可.10.【分析】根据等式的性质,两边同时除以a+2,求出关于x的方程(a+2)x=a2﹣4(a≠﹣2)的解即可.【解答】解:∵a≠﹣2,∴a+2≠0;∵(a+2)x=a2﹣4(a≠﹣2),∴x=(a≠﹣2),∴x=a﹣2.故答案为:x=a﹣2.【点评】此题主要考查了解一元一次方程的方法,要明确解一元一次方程的一般步骤,去括号要注意括号前面的符号,移项时要改变符号是关键.11.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个正多边形是12.【点评】此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.12.【分析】根据一次函数y=kx+b(k≠0)的增减性来确定k的符号.【解答】解:∵一次函数y=(m﹣3)x的函数值y随着x的值增大而减小,∴m﹣3<0,∴m<3;故答案为:m<3.【点评】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b 的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.13.【分析】根据设,则方程可转化为:,然后再去分母,将该分式方程转化为整式方程即可.【解答】解:设,则方程可转化为:,去分母,方程两边同时乘以y,得:y2﹣2y﹣1=0,故答案为:y2﹣2y﹣1=0.【点评】此题主要考查了换元法,熟练掌握换元法是解决问题的关键.14.【分析】由每位同学向其他同学赠送1句祝福语及小队共有x人,可得出每人赠送(x﹣1)句祝福语,再利用小队内共收到的祝福语=人数×每人赠送祝福语数,即可得出关于x的一元二次方程,此题得解.【解答】解:∵小队共有x人,且每位同学向其他同学赠送1句祝福语,∴每人赠送(x﹣1)句祝福语,又∵小队内共收到210句祝福语,∴可列方程x(x﹣1)=210.故答案为:x(x﹣1)=210.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】把点P的纵坐标代入一次函数解析式,即可得到点P的坐标,然后代入反比例函数解析式,即可求得k.【解答】解:∵点P的纵坐标为5,∵点P在一次函数y=3x+2的图象上,∴5=3x+2,得x=1,∴点P的坐标为(1,5),把P点的坐标代入得,5=∴k=5,故答案为:5.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求得P点的坐标是解答本题的关键.16.【分析】作DE∥AC,从而得到四边形ACED为平行四边形,将两底的和转化为线段BE的长,利用梯形的中位线定理求得答案即可.【解答】解:作DE∥AC交BC的延长线于点E,∵AD∥CE,∴四边形ACED为平行四边形,∴AD=CE,DE=AC=3,ED⊥BD,AD+BC=CE+BC=BE===3,∴梯形的中位线为:(AD+BC)=×3=,故答案为:.【点评】本题考查梯形的中位线,等腰梯形的性质,平行四边形的判定和性质,等腰三角形的性质,熟练掌握梯形中位线定理是解题的关键..17.【分析】根据定义可以画出两个图,进而得出答案.【解答】解:如图:AD==,如图:AD=1.故答案为:或1.【点评】本题主要考查多边形,画出图形是解题的关键.18.【分析】首先结合题意得到CM=DM,利用勾股定理求出BM,由折叠的性质可得:AE=EF,AB=BF,进而得到FM,设AE=EF=x,用x表示ED,利用勾股定理得到EM2=EF2+FM2=ED2+DM2,列出关于x的方程,进一步解答即可得解.【解答】解:如图,连接EM,在正方形ABCD中,AB=4cm,直线BF恰好经过CD的中点M,∴CM=DM=2cm,∴BM===2,由折叠的性质可知:AE=EF,AB=BF=4cm,∴FM=BM﹣BF=2﹣4(cm),设AE=EF=x cm,则ED=(4﹣x)cm,由勾股定理得:EM2=EF2+FM2=ED2+DM2,∴x2+(2﹣4)2=(4﹣x)2+22,解得:x=2﹣2∴AE=2﹣2(cm),故答案为:(2﹣2).【点评】本题主要考查了翻折变换(折叠问题),正方形的性质,勾股定理等知识点,解答本题的关键是熟练掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共8题,第19、20、21、22题每题6分,第23、24、25题每题8分,第26题10分)19.【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:化为整式方程得:x2﹣4x+4+x2﹣4=16,x2﹣2x﹣8=0,解得:x1=﹣2,x2=4,经检验x=﹣2时,x+2=0,所以x=4是原方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】由方程②可得x+y=0或x﹣2y=0,据此可得两个关于x、y的方程组,再分别求解可得.【解答】解:由②得(x+y)(x﹣2y)=0,则x+y=0或x﹣2y=0,所以方程组可变形为或,解得或.【点评】本题主要考查高次方程,解高次方程的关键是利用合适的方法将方程中未知数的次数降低.21.【分析】(1)利用平行四边形的性质以及题目条件证明DF=BE,可得结论;(2)利用三角形法则求解;(3)在AB的下方作BG∥EF,且BG=EF,连接AG,即为所求.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=2EB,CF=2DF,∴DF=BE,∴与相等的向量是.故答案为:;(2)连接CE.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴+=,∴+﹣=﹣﹣=﹣=.故答案为:;(3)如图,即为所求.【点评】本题考查作图﹣复杂作图,平行四边形的性质,平面向量等知识,解题的关键是掌握三角形法则.22.【分析】过A作AH⊥BC于H,根据平行线的性质得到∠D=90°,根据矩形的性质得到AH=CD=2,CH=AD=1,∵AB=BC,求得BH=BC﹣1,根据勾股定理得到BC=,根据梯形的面积公式即可得到结论.【解答】解:过A作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠D=90°,∴∠D=∠C=∠AHC=90°,∴四边形AHCD是矩形,∴AH=CD=2,CH=AD=1,∵AB=BC,∴BH=BC﹣1,∵AB2=AH2+BH2,AB=BC,∴BC2=22+(BC﹣1)2,∴BC=,=(AD+BC)•CD=×(1+)×2=.∴S梯形ABCD【点评】本题考查了直角梯形,矩形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.23.【分析】(1)观察所列方程可知,甲同学所列方程中的x表示B类图书每本进价,乙同学所列方程中的x表示购进A类图书的数量;(2)结合(1)求出A类图书每本进价48元,B类图书每本进价30元;根据题意可得,即可解得答案.【解答】解:(1)观察所列方程可知,甲同学所列方程中的x表示B类图书每本进价,乙同学所列方程中的x表示购进A类图书的数量;故答案为:B类图书每本进价,购进A类图书的数量;(2)由=﹣12可得x=30,经检验,x=30是原方程的解,∴1.6x=1.6×30=48,∴A类图书每本进价48元,B类图书每本进价30元;根据题意得:,解得,∴书店购进A类图书50本,B类图书70本.【点评】本题考查二元一次方程组和分式方程的应用,解题的关键是读懂题意,找到等量关系列方程.24.【分析】证明四边形ABCD是平行四边形,再由平行四边形面积证明AB=BC,然后由菱形的判定即可得出结论;(2)由菱形的性质得OB=OD,BC=DC,则∠BDC=∠DBC,再由直角三角形斜边上的中线性质得OF=BD=OB,则∠DBC=∠OFB,即可得出结论.【解答】证明:(1)∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵DE⊥AB,DF⊥BC,=AB•DE=BC•DF,∴S平行四边形ABCD∵DE=DF,∴AB=BC,∴平行四边形ABCD是菱形;(2)如图,由(1)可知,四边形ABCD是菱形,∴OB=OD,BC=DC,∴∠BDC=∠DBC,∵DF⊥BC,∴∠DFB=90°,∴OF=BD=OB,∴∠DBC=∠OFB,∴∠BDC=∠OFB.【点评】本题主要考查了菱形的判定与性质、平行四边形的判定与性质、等腰三角形的性质以及直角三角形斜边上的中线性质等知识,熟练掌握菱形的判定与性质是解题的关键.25.【分析】(1)根据交点联立,即可求解;(2)①根据中点的定义即可求解;②根据正方形的性质即可求解.【解答】解:(1)由题意得,解得,∴点A的坐标为(3,3);(2)∵点B在直线AC上,当y=0时,即2x﹣3=0,∴x=,∵点P是OA的中点,A(3,3),∴P(,),∵点P和点B的横坐标都等于,∴BP=﹣0=,∴线段BP的长度为;(3)如图,∵四边形OPHD是正方形,∴OH=PD,OH⊥PD,则PD⊥x轴,∵点P在线段OA上,设P(x,x),∵点D在直线AC上,∴D(x,2x﹣3),则OH=2x,PD=x﹣(2x﹣3)=3﹣x,∴2x=3﹣x,∴x=1,∴点P的坐标为(1,1).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,解题的关键是熟练掌握正方形的性质.26.【分析】(1)先由矩形的性质与旋转的性质得AB=CD=3,BC=AD=5,BE=CB=5,在Rt△ABE中,利用勾股定理求得AE,即可解决问题;(2)设AE=x,DE=y,则BE=BC=AD=x+y,证明△ABE∽△DEH,得,则xy=9﹣3m,再由勾股定理得AE2+AB2=BE2,即x2+32=(x+y)2,即2xy+y2=9,所以2(9﹣3m)+y2=9,求得,从而求得,即可由BC=x+y求解.(3)分两种情况:当AE=EF时,当AE=AF时,分别求解即可.【解答】解:(1)∵四边形ABCD矩形,∴AB=CD=3,BC=AD=5,∠A=90°,矩形GBEF是由矩形ABCD旋转得到,∴BE=CB=5,在Rt△ABE中,,∴DE=AD﹣AE=5﹣4=1;(2)∵四边形ABCD是矩形,∴AB=CD=3,∠A=∠C=∠D=90°,∴∠AEB+∠ABE=90°,∵CH=m,∴DH=3﹣m,∵矩形GBEF是由矩形ABCD旋转得到,∴BE=CB,∠BEF=∠C=90°,∴BE=CB=AD,设AE=x,DE=y,则BE=BC=AD=x+y,∵∠AEB+∠AEF=∠BEF=90°,∠AEF=∠DEH,∴∠ABE=∠DEH,∴△ABE∽△DEH,∴,即,∴xy=9﹣3m,由勾股定理得AE2+AB2=BE2,即x2+32=(x+y)2,∴2xy+y2=9,∴2(9﹣3m)+y2=9,解得,∴,∴.(3)当AE=EF时,∵四边形ABCD是矩形,∴AB=CD=3,∠A=90°,由旋转可得EF=CD=3,BE=BC,∴AE=3,由勾股定理得,∴,当AE=AF时,过点A作AH⊥EF于H,如图,∵AE=AF,AH⊥EF,∴,∵∠AEH+∠AEB=90°,∠ABE+∠AEB=90°,∴∠AEH=∠ABE,∵∠AHE=∠BAE=90°,∴△AEH∽△EBA,∴,∴,由勾股定理得BE2=AE2+AB2,∴,解得,由旋转可得,综上,当△AEF是以AE为腰的等腰三角形时,BC的长为或.【点评】本题考查四边形的综合应用,主要考查了矩形的性质,旋转的性质,相似三角形的判定与性质,勾股定理,等腰三角形三线合一的性质,本题综合性较强,有一定难度。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
2023-2024学年四川省成都市武侯区西川中学八年级(下)期末数学模拟试卷一、选择题(本大题共8个小题,每小题4分,共32分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(4分)下列因式分解正确的是()A.a3+a2+a=a(a2+a)B.a2+4a﹣21=(a﹣3)(a+7)C.﹣2a2+4a=﹣2a(a+2)D.x2﹣3x+1=x(x﹣3)+13.(4分)若分式的值为0,则x的值是()A.﹣2B.0C.2D.44.(4分)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=6,AD平分∠CAB交BC于点D,点E 为边AB上一点,则线段DE长度的最小值为()A.B.C.2D.35.(4分)不等式组的解集在数轴上表示为()A.B.C.D.6.(4分)已知正n边形的内角和是它的外角和的3倍,则这个正n边形的中心角为()A.45°B.150°C.120°D.135°7.(4分)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8.(4分)当2≤x≤5时,一次函数y=(﹣m2﹣1)x+2有最大值﹣8,则实数m的值为()A.1B.1或﹣1C.2D.2或﹣2二、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)9.(4分)因式分解:x2y+2xy=.10.(4分)如图,一次函数y=kx+b的图象经过点P,则关于x的不等式kx+b<3的解集为.11.(4分)如图,在Rt△ABC中,∠ABC=90°,D、E、F分别为AB、BC、CA的中点,若DE=3,则BF=.12.(4分)定义新运算:对于非零的两个实数a和b,规定a※b=,如3※2=.若(x ﹣4)※(x+1)=0,则x的值为.13.(4分)如图,在△ABC中,∠ACB=45°,CD是AB边上的高,分别以点A,C为圆心,以大于的长为半径作弧,两弧交于点E,F,连接EF,分别交CB,CD,CA于点G,M,N,连接AG交CD 于点Q,若AD=3,CM=5,则GN的长为.三、解答题(本大题共5个题,共48分.解答过程写在答题卡上)14.(12分)(1)解不等式组(2)解方程:.;15.(8分)先化简:(﹣)÷,再从﹣2,﹣1,0,1,2之中选择一个合适的数作为x 的值代入求值.16.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,1),B (4,1),C (3,3).(1)画出将△ABC 向下平移5个单位后得到的△A 1B 1C 1,点A ,B ,C 的对应点分别为点A 1,B 1,C 1;(2)画出将△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2,点A ,B ,C 对应点分别为点A 2,B 2,C 2.(3)在y 轴上有一个动点P ,求A 1P +B 2P 的最小值.17.(10分)已知,如图,AD ,BE 分别是△ABC 的BC 和AC 边上的中线,过C 作CF ∥AB ,交BE 的延长线于点F ,连接AF .(1)求证:四边形ABCF 是平行四边形;(2)连接DE ,若DE =EC =3,∠AFC =45°,求线段BF 的长.18.(10分)如图,在平面直角坐标系xOy 中,直线与x 轴交于点A ,与直线y =kx ﹣2k +1相交于点B ;直线y =kx ﹣2k +1与x 轴交于点C .(1)当时,求△ABC 的面积;(2)若∠ABC =45°,求k 的值;(3)若△ABC 是以BC 为腰的等腰三角形,求k 的值.一、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)19.(4分)当=2时,的值是.20.(4分)如图,在△ABC中,AB=AC,∠BAC=100°,在同一平面内,将△ABC绕点A顺时针旋转到△AB1C1的位置,连接BB1,若BB1∥AC1,则∠CAC1的度数是.21.(4分)若关于x的方程无解,求a的值.22.(4分)定义:若x,y满足x2=4y+k,y2=4x+k(k为常数)且x≠y,则称点M(x,y)为“妙点”,比如点(5,﹣9).若函数y=2x+b的图象上的“妙点”在第三象限,则b的取值范围为.23.(4分)如图,在Rt△ABC中,AB=6,∠ACB=30°,E为BC的中点,将△ABC沿AC边翻折得到△AFC,M、N是AC边上的两个动点,且MN=2,则四边形BENM周长的最小值为.二、解答题(本大题共3个题,共30分.解答过程写在答题卡上)24.(8分)某学校为参加春运会的同学准备了钢笔和笔记本两种奖品,已知钢笔比笔记本每件多12元;学校计划用1200元购买钢笔,960元购买笔记本,购买笔记本的数量是钢笔数量的2倍.(1)求钢笔和笔记本两种奖品的单价.(2)购买当日,正逢商店周年庆典,所有商品均按原价八折销售,学校调整了购买方案:计划购买钢笔、笔记本两种奖品共200件,购买资金不少于1856元且不超过1880元,问购买钢笔、笔记本两种奖品有哪几种方案?25.(10分)【阅读理解】定义:在同一平面内,有不在同一条直线上的三点M,N,P,连接PM,PN,设线段PM,PN的夹角为α,,则我们把(α,w)称为∠MPN的“度比坐标”,把称为∠NPM的“度比坐标”.【迁移应用】如图,在平面直角坐标系xOy中,直线y=kx+4与x轴相交于点A,与y轴相交于点B.(1)求点A的坐标,并写出∠AOB的“度比坐标”(用含k的代数式表示);(2)C,D为直线AB上的动点(点C在点D左侧),且∠COD的“度比坐标”为(90°,1).ⅰ)若,求CD的长;ⅱ)在ⅰ)的条件下,平面内是否存在点E,使得∠DOE的“度比坐标”与∠OCB的“度比坐标”相等?若存在,请求出点E的坐标;若不存在,请说明理由.26.(12分)在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,求证:∠ABE+∠AEB=∠DAC;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,BC=4,当AD⊥BE时,求CE的长.2023-2024学年四川省成都市武侯区西川中学八年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【分析】根据轴对称图形的定义(如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,那么这个图形叫做轴对称图形)和中心对称图形的定义(如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形)逐项判断即可.【解答】解:A.该图形是轴对称图形,但不是中心对称图形,不符合题意;B.该图形既是轴对称图形又是中心对称图形,符合题意;C.该图形是轴对称图形,但不是中心对称图形,不符合题意;D.该图形是轴对称图形,但不是中心对称图形,不符合题意.故选:B.【点评】本题考查了轴对称图形和中心对称图形的定义,正确理解轴对称图形和中心对称图形的定义是解答本题的关键.2.【分析】利用提公因式法与十字相乘法进行分解,逐一判断即可解答.【解答】解:A、a3+a2+a=a(a2+a+1),故A不符合题意;B、a2+4a﹣21=(a﹣3)(a+7),故B符合题意;C、﹣2a2+4a=﹣2a(a﹣2),故C不符合题意;D、x2﹣3x+1=x(x﹣3)+1,不是因式分解,故D不符合题意;故选:B.【点评】本题考查了因式分解﹣十字相乘法、提公因式法运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.3.【分析】根据分子为零且分母不为零的条件进行解题即可.【解答】解:由题可知,,解得x=﹣2.故选:A.【点评】本题考查分式的值为零的条件,掌握分子为零且分母不为零的条件是解题的关键.4.【分析】先利用30°的正切求出AC的长,再在Rt△ACD中,用∠CAD的正切值可求出CD的长,最后利用角平分线的性质及垂线段最短即可解决问题.【解答】解:在Rt△ABC中,tan B=,∴AC=.∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=.在Rt△ACD中,tan∠CAD=,∴CD=.∵AD平分∠CAB,且DC⊥AC,∴点D到AB边的距离等于线段CD的长,即线段DE长度的最小值为2.故选:C.【点评】本题考查勾股定理、垂线段最短及含30度角的直角三角形,熟知角平分的性质及特殊角的三角函数值是解题的关键.5.【分析】分别求出每一个不等式的解集,确定不等式组的解集,然后在数轴上表示出来即可.【解答】解:由x﹣3≤﹣1,得:x≤2,由2(1﹣x)<4,得:x>﹣1,∴不等式组的解集为:﹣1<x≤2,解集在数轴上表示为.故选:C.【点评】本题考查在数轴上表示不等式的解集,解题的关键是正确的求出每一个不等式的解集.6.【分析】根据题意列出方程求得边数,即可求得中心角的度数.【解答】解:根据题意,得(n﹣2)×180°=3×360°,解得n=8,∴这个正n边形的中心角为.故选:A.【点评】本题考查了正多边形的内角和和外角和,掌握正多边形的中心角是解题的关键.7.【分析】根据题意可以得到相等关系:乙用的时间﹣甲用的时间=,据此列出方程即可.【解答】解:设乙每小时加工x个零件,则甲每小时加工1.2x个零件,根据题意得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解题的关键是找到等量关系.8.【分析】根据一次函数的性质,可知函数y=(﹣m2﹣1)x+2中y随x的增大而减小,再根据当2≤x ≤5时,一次函数y=(﹣m2﹣1)x+2有最大值﹣8,即可求得m的值.【解答】解:∵一次函数y=(﹣m2﹣1)x+2,﹣m2﹣1≤﹣1<0,∴该函数y随x的增大而减小,∵当2≤x≤5时,一次函数y=(﹣m2﹣1)x+2有最大值﹣8,∴x=2时,(﹣m2﹣1)x+2=﹣8,解得m=±2,故选:D.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.二、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)9.【分析】直接提取公因式xy即可.【解答】解:原式=xy(x+2),故答案为:xy(x+2).【点评】本题考查因式分解﹣提公因式法,熟练掌握相关的知识点是解题的关键.10.【分析】根据图象法解不等式即可.【解答】解:如图,直线y=kx+b与直线y=3交于点P(﹣1,3),由图可知kx+b<3的解集为x>﹣1;故答案为:x>﹣1.【点评】本题考查一次函数与一元一次不等式.从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11.【分析】由三角形中位线定理推出DE=AC,由直角三角形斜边中线的性质得到BF=AC,因此BF =DE=3.【解答】解:∵D、E分别为AB、BC的中点,∴DE=AC,∵∠ABC=90°,F是AC中点,∴BF=AC,∴BF=DE=3.故答案为:3.【点评】本题考查三角形中位线定理,直角三角形斜边的中线,掌握以上定理是解题的关键12.【分析】根据已知新定义进行转化,然后结合分式方程的求法可求.【解答】解:∵,∴(x﹣4)※(x+1)=,∵(x﹣4)※(x+1)=0,∴,解得:x=﹣6,经检验,x=﹣6是的解.故答案为:﹣6【点评】本题侧重考查了解分式方程,掌握定义的新运算的意义是解题的关键.13.【分析】连接AM,由题意知:EF垂直平分AC,推出AM=MC=5,CN=AC,由勾股定理得到DM==4,AC==3,因此CN=,判定△CNG是等腰直角三角形,得到GN=CN=.【解答】解:连接AM,由题意知:EF垂直平分AC,∴AM=MC=5,CN=AC,∵AD=3,CD⊥AB,∴DM==4,∴CD=CM+DM=9,∴AC==3,∴CN=,∵∠ACB=45°,∵EF⊥AC,∴△CNG是等腰直角三角形,∴GN=CN=.故答案为:.【点评】本题考查线段垂直平分线的性质,勾股定理,关键是由线段垂直平分线的性质推出AM=MC,由勾股定理求出DM,AC的长.三、解答题(本大题共5个题,共48分.解答过程写在答题卡上)14.【分析】(1)解各不等式后即可求得不等式组的解集;(2)利用去分母将原方程化为整式方程,解得x的值后进行检验即可.【解答】解:(1)解不等式①得x>﹣2,解不等式②得x≤1,故原不等式组的解集为﹣2<x≤1;(2)原方程去分母得:x2=x2﹣4﹣3(x+2),整理得:﹣4﹣3x﹣6=0,解得:x=﹣,检验:当x=﹣时,x2﹣4≠0,故原方程的解为x=﹣.【点评】本题考查解一元一次不等式组及分式方程,熟练掌握解不等式组及方程的方法是解题的关键.15.【分析】先把括号内通分和除法运算化为乘法运算,再进行同分母的减法运算,接着把分子分母因式分解,则约分得到原式=,然后根据分式有意义的条件,把x=1代入计算即可.【解答】解:原式=•=•=•=,∵x﹣2≠0且x+2≠0且x≠0且x+1≠0,∴x可以取1,当x=1时,原式==2.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.16.【分析】(1)根据平移的性质即可得到结论;(2)根据旋转的性质即可得到结论;(3)连接A1P+B2P与y轴交于点P,即为所求P点,利用勾股定理求得A1P+B2P的最小值即A1B2即可.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图2所示,点P即为所求;A1P+B2P的最小值即A1B2即长度为:=2.【点评】本题主要考查作图﹣旋转变换,轴对称﹣最短路线问题,作图﹣平移变换,解题的关键是掌握旋转变换,平移变换的性质.17.【分析】(1)利用AAS证明△ABE≌△CFE,根据全等三角形的性质求出BE=FE,根据“对角线互相平分的四边形是平行四边形”即可得证;(2)根据三角形中位线的判定与性质求出DE=AB,DE∥AB,结合平行线的性质、等腰三角形的性质求出∠EDC=∠ECD=45°,AC=AB=6,则∠BAC=90°,再根据勾股定理求解即可.【解答】(1)证明:∵CF∥AB,∴∠ABE=∠CFE,∠BAE=∠FCE,∵BE是△ABC的AC边上的中线,∴AE=CE,在△ABE和△CFE中,,∴△ABE≌△CFE(AAS),∴BE=FE,又∵AE=CE,∴四边形ABCF是平行四边形;(2)解:如图,∵四边形ABCF是平行四边形,∴∠ABC=∠AFC=45°,BE=EF=BF,∵AE=CE,AD是△ABC的BC边上的中线,∴DE是△ABC的中位线,∴DE=AB,DE∥AB,∴∠EDC=∠ABC=45°,∵DE=EC=AE=3,∴∠EDC=∠ECD=45°,AC=AB=6,∴∠BAC=180°﹣45°﹣45°=90°,∴BE===3,∴BF=2BE=6.【点评】此题考查了平行四边形的判定与性质、三角形中位线定理、全等三角形的判定与性质、勾股定理,熟练运用平行四边形的判定与性质、三角形中位线定理、全等三角形的判定与性质、勾股定理是解题的关键.18.【分析】(1)分别求出B、C、A点坐标,再求△ABC的面积即可;(2)过点A作AG⊥AB交BC于点G,过点A作MN⊥x轴,过点B作MB⊥MN交于M点,过点G作GN⊥MN交于N点,可证明△ABM≌△GAN(AAS),从而求出G(,),再将点G代入直线y=kx﹣2k+1中,即可求k的值;(3)分两种情况讨论:当BC=AB时,2x B=x A+x C,k=﹣;当BC=AC时,(﹣)2+()2=(+4)2,k=.【解答】解:(1)当k=时,y=x﹣2,当x+2=x﹣2时,解得x=4,∴B(4,4),当y=0时,x=,∴C(,0),当y=0时,x=﹣4,∴A(﹣4,0),=×(+4)×4=;∴S△ABC(2)过点A作AG⊥AB交BC于点G,过点A作MN⊥x轴,过点B作MB⊥MN交于M点,过点G作GN⊥MN交于N点,∵∠ABC=45°,∴AB=AG,∵∠MAB+∠NAG=90°,∠MAB+∠MBA=90°,∴∠NAG=∠MBA,∴△ABM≌△GAN(AAS),∴BM=AN,AM=NG,当kx﹣2k+1=x+2时,解得x=,∴B(,),当y=0时,x=,∴C(,0),∴BM=+4,AM=,∴G(,),∴•k﹣2k+1=,解得k=3或k=(舍);(3)当BC=AB时,2x B=x A+x C,∴2×=﹣4+,解得k=﹣或k=(舍);当BC=AC时,(﹣)2+()2=(+4)2,解得k=或k=0(舍);综上所述:k的值为﹣或.【点评】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,等腰三角形的性质,三角形全等的判定及性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)19.【分析】当=2时,则得到2ab=b﹣a=﹣(a﹣b),代入可以求出它的值.【解答】解:当=2时,===,故的值是.故答案为.【点评】解题关键是用到了整体代入的思想.20.【分析】根据旋转的性质得到∠C1AB1=∠CAB=100°,AB1=AB,∠CAC1=∠BAB1,根据平行线的性质得到∠C1AB1+AB1B=180°,根据等腰三角形的性质即可得到结论.【解答】解:∵将△ABC绕点A顺时针旋转到△AB1C1的位置,∴∠C1AB1=∠CAB=100°,AB1=AB,∠CAC1=∠BAB1,∵BB1∥AC1,∴∠C1AB1+AB1B=180°,∴∠AB1B=80°,∵AB=AB1,∴∠ABB1=∠AB1B=80°,∴∠BAB1=20°,∴∠CAC1=20°,故答案为:20°.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握旋转的性质是解题的关键.21.【分析】根据分式方程无解的条件进行解答即可.【解答】解:去分母得:ax=3+x﹣2,整理得:(a﹣1)x=1,∵关于x的方程无解,∴2×(a﹣1)=1,解得:a=或1.故答案为:或1.【点评】本题考查了分式方程的解,熟练掌握分式方程无解的条件是解答本题的关键.22.【分析】根据“妙点”定义可得:x+y=﹣4,进而计算得出x=,y=,即可得出答案.【解答】解:由“妙点”定义可得:x2=4y+k,y2=4x+k,∴x2﹣y2=4y﹣4x,∵x≠y∴x+y=﹣4,∴x=,y=,∵函数y=2x+b的图象上的“妙点”在第三象限,∴x<0,y<0,∴b>﹣4,b<8,∴﹣4<b<8,故答案为:﹣4<b<8.【点评】本题主要考查了解一元一次不等式组,一次函数图象上点的坐标的特征以及新定义问题,正确理解新定义是解决本题的关键.23.【分析】由含30°角的直角三角形的性质结合勾股定理得出BE=BC=3,推出四边形BENM周长=,则要使四边形BENM周长最小,则要BM+NE最小,取AF的中点G,CF的中点E1,连接GE1,在GE1上截取E1E2=2,连接E1N,E2M,证明四边形MNE1E2为平行四边形得出EN+BM=E2M+BM,则当M在BE2的连线上时,所得周长最小,连接BF,交GE1于P,交AC于Q,连接BE2,证明△ABQ≌△AFQ(SAS),得出∠AQB=∠AQF=90°,BQ=FQ,证明出△BPE2是直角三角形,求出BP、E2P的长,再由勾股定理计算出BE2,即可得解.【解答】解:在Rt△ABC中,AB=6,∠ACB=30°,E为BC的中点,∴AC=12,∴BC===6,∴BE=BC=3,∴四边形BENM周长=BM+MN+NE+BE=2+BM+NE+3,要使四边形BENM周长最小,则要BM+NE最小,将△ABC沿AC边翻折得到△AFC,M、N是AC边上的两个动点,取AF的中点G,CF的中点E1,连接GE1,在GE1上截取E1E2=2,连接E1N,E2M,如图,则GE1是△ACF的中位线,∴GE1∥AC,GE1=AC=6,AF=AB=6,由题意得:点E1、E关于直线AC对称,∴E1N=EN,MN=E1E2=2,∴四边形MNE1E2为平行四边形,E2M=E1N=EN,∴EN+BM=E2M+BM,∴当M在BE2的连线上时,周长最小,连接BF,交GE1于P,交AC于Q,连接BE2,由折叠的性质可知:AB=AF,∠BAC=∠FAC=60°,∵AQ=AQ,∴△ABQ≌△AFQ(SAS),∴∠AQB=∠AQF=90°,BQ=FQ,∴BF⊥AC,∵GE1∥AC,∴GE1⊥BF,∴△BPE2是直角三角形,在Rt△FAQ中,GP∥AQ,点G为AF的中点,则P为FQ的中点,∵∠FAQ=60°,∴∠AFQ=30°,∴AQ=AF=3,∴FQ===3,∴PQ=FQ=,BQ=FQ=3,∴BP=PQ+BQ=,∵PG为△AFQ的中位线,∴PG=AQ=,∴E2P=GE1﹣PG﹣E1E2=,∴BE2==,∴四边形BENM周长=2+3+,故答案为:2+3+.【点评】本题考查了轴对称的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、勾股定理、平行四边形的判定与性质、三角形中位线定理等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.二、解答题(本大题共3个题,共30分.解答过程写在答题卡上)24.【分析】(1)设钢笔的单价为x元,则笔记本的单价为(x﹣12)元,根据学校计划用1200元购买钢笔,960元购买笔记本,购买笔记本的数量是钢笔数量的2倍,列出分式方程,解方程即可;(2)设购买钢笔m支,则购买笔记本(200﹣m)本,根据所有商品均按原价八折销售,购买资金不少于1856元且不超过1880元,列出一元一次不等式组,解不等式组,求出正整数解,即可解决问题.【解答】解:(1)设钢笔的单价为x元,则笔记本的单价为(x﹣12)元,根据题意得:=×2,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴x﹣12=20﹣12=8,答:钢笔的单价为20元,笔记本的单价为8元;(2)设购买钢笔m支,则购买笔记本(200﹣m)本,根据题意得:,解得:60≤m≤62.5,∵m为正整数,∴m=60,61,62,∴购买钢笔、笔记本两种奖品有3种方案:①购买钢笔60支,笔记本140本;②购买钢笔61支,笔记本139本;③购买钢笔62支,笔记本138本.【点评】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式组.25.【分析】(1)由y=kx+4得:A(﹣,0),B(0,4),得=÷4=,故∠AOB的“度比坐标”为(90°,).(2)①由得直线解析式为y=x+4.过C作CM⊥x轴,过D作DN⊥x轴.由一线三垂直得△DON≌△OCM,得MC=ON=m,OM=DN=m+4.得C(﹣m﹣4,m).代入直线得m=,故D(,),C(﹣,),再利用勾股定理计算即可.②过E作EQ⊥x轴.由∠DOE的“度比坐标”与∠OCB的“度比坐标”相等,得△DOE∽△OCB,故OE=OB=4,设E(n,n+4),得n2+(n+4)2=42,故n=﹣(n=0舍去),故E(﹣,).【解答】解:(1)由y=kx+4得:A(﹣,0),B(0,4),∴=÷4=,∴∠AOB的“度比坐标”为(90°,).(2)①∵,∴直线解析式为y=x+4.过C作CM⊥x轴,过D作DN⊥x轴.设D(m,m+4).∵∠COD=90°,∴∠COM+∠DON=90°,∵∠COM+∠MCO=90°,∴∠DON=∠MCO,在△DON和△OCM中,,∴△DON≌△OCM(AAS),∴MC=ON=m,OM=DN=m+4.∴C(﹣m﹣4,m).代入直线y=x+4得:m=(﹣m﹣4)+4,∴m=,∴D(,),C(﹣,),∴CD==.②过E作EQ⊥x轴.∵∠DOE的“度比坐标”与∠OCB的“度比坐标”相等,∴△DOE∽△OCB,∴∠DEO=∠OBC,∴OE=OB=4,设E(n,n+4),∴n2+(n+4)2=42,∴n=﹣(n=0舍去),∴E(﹣,).【点评】本题考查了一次函数综合题,求一次函数解析式,构造一线三垂直,以及利用相似,都是解题关键.26.【分析】(1)由∠DAE+∠BAC=180°得出∠DAC+∠CAE+∠BAD+∠DAC=180°,由三角形内角和定理得出∠ABE+∠BAD+∠DAC+∠CAE+∠AEB=180°,即可得出答案;(2)延长BA至点M,使AM=AB,连接EM,由题意得AG=ME,证明△ADC≌△AEM(SAS)得出CD=EM,即可得证;(3)连接DE,证明△ADE为等边三角形,设AD与BE交于点O,得出BE为AD的垂直平分线,且∠AEB=∠DEB=∠AED=30°,推出AB=BD,由等边对等角结合三角形内角和定理得出∠ABC=∠ACB=30°,∠BAD=∠ADB=75°,设AC与BE交于N,求出∠ABE=∠EBC,作∠EAM=120°,交BE于M,证明△AOM≌△AOE(ASA),得出AM=AE,证明△ABM≌△ACE(SAS),得出∠ABM =∠ACE=15°=∠EAC,求出得出∠EDC=∠ECD=45°,∠DEC=90°,DC=,作AH⊥BC于H,则BH=CH=BC=2,由含30°角的直角三角形的性质结合勾股定理得出AB=,推出BD=,求出CD=BC﹣BD=4﹣,即可得出答案.【解答】(1)解:∵∠DAE+∠BAC=180°,∴∠DAC+∠CAE+∠BAD+∠DAC=180°,∵∠ABE+∠BAD+∠DAC+∠CAE+∠AEB=180°,∴∠DAC+∠CAE+∠BAD+∠DAC=∠ABE+∠BAD+∠DAC+∠CAE+∠AEB,∴∠ABE+∠AEB=∠DAC;(2)AG=CD,证明:如图,延长BA至点M,使AM=AB,连接EM,∵G是BE的中点,∴AG=ME,∴∠BAC+∠DAE=∠BAC+∠CAM=180°,∴∠DAE=∠CAM,∵AB=AM,AB=AC∴AC=AM,∵AD=AE,∴△ADC=△AEM(SAS),∴CD=EM,∴AG=CD;(3)解:如图,连接DE,∵∠BAC=120°,∠DAE+∠BAC=180°,∴∠DAE=60°,∵AD=AE,∴△ADE为等边三角形,设AD与BE交于点O,∵AD⊥BE,∴BE为AD的垂直平分线,且∠AEB=∠DEB=∠AED=30°,∴AB=BD,∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,∵AB=BD,∴∠BAD=∠ADB==75°,∴∠DAC=∠BAC﹣∠BAD=45°,∴∠EAC=∠EAD﹣∠DAC=15°,设AC与BE交于N,∴∠ANE=∠BNC,∵∠AEB=∠ACB=30°,∴∠EBC=∠EAC=15°,∴∠ABE=∠ABC﹣∠EBC=15°=∠EBC,作∠EAM=120°交BE于M,∴∠MAD=∠EAM﹣∠DAE=60°=∠DAE,∵∠BAM=∠BAD﹣∠MAD=15°=∠EAC,∵∠MAO=∠EAO=60°,AO=AO,∠AOM=∠AOE=90°,∴AOM=AOE(ASA),∴AM=AE,∵∠BAC﹣∠MAC=∠MAE﹣∠MAC,∴∠BAM=∠CAE,∴AB=AC,∴△ABM=△CE(SAS),∴∠ABM=∠ACE=15°=∠EAC,∴AE=EC,∵DE=AE,∴DE=EC,∵∠ECD=∠ACE+∠ACB=45°,∴∠EDC=∠ECD=45°,∴∠DEC=180°﹣∠EDC﹣∠ECD=90°,∴DC==CE,作AH⊥BC于H,∵AB=AC,∴BH=CH=BC=2,∵∠AHB=90°,∠ABH=30°,∴AB=2AH,∵AB2=AH2+BH2,∴AB2=BH2=4,∴AB=,∴BD=,∴CD=BC﹣BD=4﹣,∴CE=CD=.【点评】此题是几何变换综合题,考查的知识点有三角形内角和定理、全等三角形的判定与性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、等边三角形的判定与性质、勾股定理、旋转的性质等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键。
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
八年级下学期期末考试数学模拟试卷一.选择题1.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需()米A.4 B。
5 C。
6 D.72。
当分式有意义时,字母应满足( )A。
B. C. D。
3.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -错误!的图像上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y24.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B. C. D.25。
函数的图象经过点(1,-2),则k的值为()A. B. C. 2 D。
-26. 如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致( )A B D7.A。
正方形8. 0,则x的值为()A.3 B。
3或-3 C。
-3 D。
09。
甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的()A.倍B。
倍C。
倍 D.倍10.如图,把一张平行四边形纸片ABCD沿BD对折。
使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=A.130 ° B.140 ° C.150 °D。
160°二.填空题11。
已知-=8,则的值是12.边长为8,15,17的△ABC内有一点P到三边距离相等,则这个距离为13. 如果函数y=是反比例函数,那么k=____, 此函数的解析式是__ ______14.若点P是反比例函数上的一点,PD⊥轴于点D,则△POD的面积为15. 从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果ABCDE如下:−1。
2,0.1,−8.3,1.2,10。
8,−7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)三、解答题16.( 6分)解方程:17. (7分) 先化简,再求值:,其中.18.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积. 19.(8(1)计算小军上学期平时的平均成绩; (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分? 20.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形? 21.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒。
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
(第8题) 八年级数学(下)期末模拟试卷及答案一、选择题(每小题3分,共30分) 1.下列式子为最简二次根式的是( ) A .5xB .8C .92 xD .y x 23 2. 已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于A. 1B.0C.-1D.23.对八年级200名学生的体重进行统计,在频率分布表中,40kg —45kg 这一组的频率是0.4,那么八年级学生体重在40kg —45kg 的人数是( )A .8人B .80人C .4人D .40人4.如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影 (圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )A.0.36πm 2B.0.81πm 2C.2πm 2D.3.24πm 25.下面正确的命题中,其逆命题不成立的是( )A .同旁内角互补,两直线平行B .全等三角形的对应边相等C .角平分线上的点到这个角的两边的距离相等D .对顶角相等6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( ) A .4x B .-4x C .4x 4 D .-4x 4 7.下列四个三角形,与右图中的三角形相似的是( )8.按如下方法,将△ABC 的三边缩小的原来的一半,如图, 任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、 F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1(第7题) A . B .C .D .A .1B .2C .3D .4 9.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ②对角线相等且互相平分的四边形是矩形; ③对角线垂直且互相平分的四边形是菱形;④顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形。
其中你认为正确的个数有( )A 、1个B 、2个C 、3个D 、4个10.直线b x k y l +=11:与直线x k y l 22:=关于x 的不等式21k x k x b >+的解集为( ).A .x >-1B .x <-1C .x <-2D .无法确定二、填空题(每小题3分,共18分) 11.当x 时,2x -的值为正数;不等式35)1(3-≥+x x 的正整数解是_______.12.分解因式24x y y -= ____________;222224)(b a b a -+=___________.13.小明同学在布置班级文化园地时,想从一块长为20cm ,宽为8cm 的长方形彩色纸板上剪下一个腰长为10cm 的等腰三角形,并使其一个顶点在长方形的一边上,另两个顶点落在对边上,请你帮他计算出所剪下的等腰三角形的底边长可以为______. 14.如图,已知△ADE ∽△ABC ,AD =6cm ,AB=9cm ,DE=4cm ,则BC = . 15.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于 . 16. 小明同学在布置班级文化园地时,想从一块长为20cm ,宽为8cm 的长方形彩色纸板上剪下一个腰长为10cm 的等腰三角形,并使其一个顶点在长方形的一边上,另两个顶点落在对边上,请你帮他计算出所剪下的等腰三角形的底边长可以为______.三、解答题(共72分)www .x kb1 .co m17.(6分)解分式方程:2316111x x x +=+--A E B C D(第14题) (第12题图)18.(6分)解不等式组,并把解集表示 19.(6分)请先化简,再选择一个你喜欢又能使原式有意义的数代入求值. x x xx x x x ÷--++--2212122220.(8分)已知在△ABC 中,CF ⊥AB 于F ,ED ⊥AB 于D ,∠1=∠2. (1)求证:FG ∥BC(2)请你在图中找出一对相似三角形,并说明相似的理由.21.(8分)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据信息,问哪位同学获胜?(转身拐弯处路程可忽略不计)A BC DE F G12(第20题)⎪⎩⎪⎨⎧--125x x ≤()342-x .22.(8分)甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.(1)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ;(2)就这五场比赛,分别计算两队成绩的极差;(3)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?23.(9分)第41届上海世博会于2010年5月1日开幕,它将成为人类文明的一次精彩对话.某小型企业表:该企业现有A 种材料900m ,B 种材料3850m ,计划用这两种材料生产2000个海宝造型玩具.设该企业生产甲造型玩具x 个,生产这两种造型的玩具所获利润为y 元.(1)求出x 应满足的条件,并且说出有多少种符合题意的生产方案?(2)写出y 与x 的关系式.(3)请你给该企业推荐一种生产方案,并说明理由.得分/ 甲、乙两球队比赛成绩条形统计图1 场次/场图2甲、乙两球队比赛成绩折线统场(第22题)新课标第一网24.(9分)阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:(1)菱形的“二分线”可以是。
(2)三角形的“二分线”可以是。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.B C B C25. 如图1,在正方形ABCD 中,点E F ,分别为边BC CD ,的中点,AF DE ,相交于点G ,则可得结论:①AF DE =;②AF DE ⊥.(不需要证明)(1)如图2,若点E F ,不是正方形ABCD 的边BC CD ,的中点,但满足CE DF =,则上面的结论①,②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点E F ,分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE DF =,此时上面的结论1,2是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.(3)如图4,在(2)的基础上,连接AE 和EF ,若点M N P Q ,,,分别为AE EF FD AD ,,,的中点,请判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程.BE GF AD C 图1BE GF A DC图2BEG F ADC图3B EGFADC图4N M P Q广东省江门市2011—2012学年度第二学期八年级数学(下)期末模拟试卷答案:一、选择题(每小题3分,共30分)1.C ;2.A ;3.B ;4.B ;5.D ;6.D ;7.D ;8.C ;9.C ;10.B. 二、填空题(每小题3分,共18分) 11.0x <;12.(1)(1)y x x +-; 13.100m ; 14.6cm ; 15.-2; 16.12 cm或cm或 cm提示:分三种情况 :(1)当底边在长方形的长边上时,如图1,AB =AC =10 cm ,BE ==6 cm ,BC =2BE =12 cm…2分(2)当腰在长方形的长边上时,如图2(a ),BC =AB =10 cm ,CE =BC -BE =10-6=4 cm , AC ==如图2(b ),BC =AC =10 cm ,BE =BC +CE =10+6=16 cm ,ABCE 图1A CE 图2(a)图2(b)AB==故等腰三角形的底边长为12 cm或cm或 cm三、解答题(共52分)w ww.x kb 1.c om17.(5分)解:去分母,得12(3)x x =-- ························································· 2分126x x =-- 7x = ··········································································································· 4分 经检验: 7x =是原方程的根 ··········································································· 5分 18.(6分)解:解不等式①,得2x -≥; …………………………………………………2分解不等式②,得12x <-. ………………………………………………………………4分在同一条数轴上表示不等式①②的解集,如图:………………………………………5分所以,原不等式组的解集是122x -<-≤ ………………………………………………6分19.(7分)解:原式=2(1)(1)(2)1(1)2x x x x x x x-+-+⋅--…………………………………………2分=111x x ++- =111x x x ++--…………………………………………4分=21xx -…………………………………………5分答案不唯一,只要选择的0,1,2x ≠,其余都可以.………………………………7分 20.(8分)解:(1)证明:∵CF ⊥AB ,ED ⊥AB ∴∠AFC=∠ADE=90° ∴CF ∥DE∴∠1=∠BCF …………………………………………2分又∵∠1=∠2∴∠BCF=∠2…………………………………………3分∴FG ∥BC ……………………………………4分(2)答案不惟一,只要说到其中一对即可. 如①△BDE ∽△BFC ;②△AFG ∽△ABC ;………………………………5分 理由略. ……………………………………8分21.(8分)解法一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ········· 1分 根据题意,得60606501.2x x ⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624> ,∴乙同学获胜. ············································································ 8分 解法二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ··························· 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩, ································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意.x y > ,∴乙同学获胜. ··············································································· 8分22.(9分)解:(1)乙x =90(分);……………………………………………………………2分(2)甲队成绩的极差是18分,乙队成绩的极差是30分;…………………………………………………………4分 (3)从平均分看,两队的平均分相同,实力大体相当;………………………………5分A BCD EF G12从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;……………6分从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;………………………………7分新课 标 第 一网从极差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.……………………8分 综上,选派甲队参赛更能取得好成绩.………………………………………………………9分 23.(9分)解:(1)设生产甲造型玩具x 个,则生产乙造型玩具(2000x -)个,依题意得,0.30.6(2000)9000.50.2(2000)850x x x x +-≤⎧⎨+-≤⎩ 解得5001500x ≤≤.………………………………3分 ∵x 为正整数,∴x 取5001500至,一共有1001种生产方案. ………………………4 (2)1020(2000)y x x =+-=4000010x -.……………………………………7分 (3)选利润最大的方案(500x =)给满分,其他方案如果理由清晰可酌情给分.……9分24.解:(1)菱形的一条对角线所在的直线。