Custom Architectures for Fuzzy and Neural Networks Controllers
- 格式:pdf
- 大小:170.63 KB
- 文档页数:7
高一英语建筑术语单选题50题1.The walls of this building are made of _____.A.steelsB.steelC.stonesD.stone答案:B。
本题考查建筑材料的名词用法。
steel 表示“钢”,是不可数名词,A 选项steels 错误;stone 表示“石头”,通常用作可数名词复数stones 或者不可数名词“stone”表示材料,但是题干中说的是墙的材料,应该用steel,因为钢是一种常用的建筑材料,而且是不可数名词。
2.This bridge is constructed with _____.A.concretesB.concreteC.woodsD.wood答案:B。
concrete 表示“混凝土”,是不可数名词,A 选项concretes 错误;wood 表示“木材”,通常用作不可数名词,但是表示“树林”时是可数名词,题干中说的是桥的建筑材料,应该用concrete,混凝土是建造桥梁常用的材料。
3.The roof of this house is covered with _____.A.tileB.tilesC.glassD.glasses答案:B。
tile 表示“瓦片”,是可数名词,A 选项tile 应该用复数形式;glass 表示“玻璃”,是不可数名词,题干中说的是屋顶覆盖的材料,通常是瓦片,所以用tiles。
4.This building has a foundation made of _____.A.bricksB.brickC.steelsD.steel答案:B。
brick 表示“砖”,是可数名词,但是在这里表示材料,用单数形式;steel 表示“钢”,通常不用来做建筑的基础材料,所以用brick。
5.The walls of this ancient building are made of _____.A.stonesB.stoneC.woodsD.wood答案:A。
建筑常用英语词汇 20090617Above-ground total building area 地上总建筑面积Animation 动画anteroom/foyer 门斗apartment house 公寓式住宅apartment office building 公寓式办公楼architectural morphology 建筑形态学archive management center 档案管理中心Art-nouveau Movement 新艺术运动balcony 阳台Baroque architecture 巴洛克建筑barrier free design 无障碍设计Base Document 甲方提供原始文件basement 地下室bathroom 浴室Bay window 凸窗bedroom 卧室Bird’s View 鸟瞰图boiler room 锅炉间broadcasting room 广播室brutalism 粗野主义building aseismicity 建筑抗震building configuration 建筑造型Building density 建筑密度building energy conservation 建筑节能building engineering 建筑工程building equipment installation 建筑设备安装building floor number 建筑层数building geotechnics 建筑勘探Building height limit 建筑限高building industry 建筑业building maintenance 建筑维护building module 建筑模数building performance 建筑性能Building setback relative to site red lines 建筑退用地红线Building Standards 建筑标准building surveying 建筑测量builidng finishing 建筑装修business center 商务中心business office building 商务写字楼Byzantine architecture 拜占庭建筑CAD Site 原始地形图Car Park Ratio 停车率car park space 停车空间cellar 地窖Chinese restaurant 中餐厅civil air defense 人防classical order 古典柱式Client 甲方coat room, cloak room 衣帽间coffee 咖啡厅color match 配色color system 色彩系统commom room, community room 公共活动室 computer room 电子计算机房Concept & Master Planning 概念及总规划Conceptual Design 概念设计conference room 会议室constructivism 构成主义Contact 联系contextualism 文脉主义Cornice 飞檐corridor 走廊cottage 农舍courtyard house 庭院式住宅critical regionalism 批判地方主义 Cultural Positioning 文化定位deconstruction 解构主义 deconstructivism 反构成主义Dentil 齿饰department 部门Design Basis 设计基础Design Code 设计规范Design Deliverable 设计成果Design Institution 设计院Design Narrative 设计说明Design Principle 设计原则Design Proposal 设计任务书Design Reference设计参考Design Schedule 设计流程表Design Task 设计要求Detail 大样(建筑专用)dining room 餐室Dormer 天窗dormitory 宿舍Double-hung window 双悬窗Drawing 图,图纸Eave 屋檐eclecticism 折中主义Elevation 立面elevator apartment 电梯式公寓enrtance hall 门厅entertainment center 娱乐中心entrance入口environment protection 环保environment 环境environmental art 环境艺术epidemic prevention 防疫Exchange 交流expressionism 表现主义exterior decoration 外部装饰exterior-corridor type apartmnet 外廊式公寓 FAR 容积率Final Design 最终设计fire protection 消防fire-fighting 防火floor 楼层Frieze 横条frontage 屋前空地functional space 功能空间functionalism 功能主义gallery 画廊,游廊General Positioning 总体定位General Site Profile 现场条件Gothic architecture 哥特式建筑Grading Design 竖向规划图Grading Planning 竖向规划Greek architecture 古希腊建筑Green ratio 绿地率Green System Planning 绿地系统规划ground floor 底层Guest Room 客房gymnasium 健身Hand-drawing 手绘hanging cabinet 吊柜highrise building 高层建筑hightech architecture 高技术建筑historical building presvervation 古建筑保护hotel office building 酒店式办公楼house for the lderly 老年公寓Illustrative Site Plan 规划总平面图Image Positioning 形象定位Image 意向图片Incomging 收到independent office 独立办公室information desk 问询处interior decoration 室内装饰Interior 室内International Style 国际风格Islamic architecture 伊斯兰建筑janitor's room 值班室key designer 主要设计师kitchen 厨房Land for industrial use 工业用地land parcel 地块Land Use Planning 用地规划landmark 地标Landscape Analysis Diagram 景观分析图Landscape Design 景观设计large suite 大套间light court/light well 天井living room 起居室Location Map 区位分析图mail/distribution room 收发室maisonette 两层独立公寓mannerism 手法主义Massing model 体块模型Master Plan 总平面图Material 材料,素材medium-sized meeting room 中型会议室Meeting Center 会议中心metabolism 新陈代谢主义mezzanine 夹层Model Company 模型公司Model 模型Modeling 建模modernism 现代主义Moulding 造型multi-family house 多户住宅multi-functional facilities 多功能设施Multifunctional restaurant 多功能餐厅Multi-paned 多格的multiple-use building 综合楼multistory building 多层建筑Muntin 门扇中梃;门中梃national style 民族风格neoclassicism 新古典主义neorationalism 新理性主义nursing home 养老院office building 办公建筑Office Complex 办公综合体one-story house, bungalow 平房open space 开敞空间organic architecture 有机建筑Outgoing 发出Overall Controlling Detailed Planning 控制性详细规划Overall Planning 总规划平面图overhang 骑楼Overhang 突起Pane 窗格pedestrian circulation 人行流线Perspective 透视图phase 1 一期Plan 平面图Planning Principles 规划原则point block 点式住宅post-modernism 后现代主义Presentation汇报professional designer 专业设计师Project assistant 项目助理project manager 项目经理Project Scale 项目规模Project Schedule 项目流程表Projecting 伸出property management room 物业管理用房Publication Center 出版中心Radius 半径reading room 阅览室reception 前台,接待Red Line 用地红线Regulation 规章Renaissance architecture 文艺复兴建筑 Rendering Company 效果图公司Rendering 手绘,效果图residential building 居住建筑rest space 休息空间revivalism 复古主义Rococo architecture 洛可可建筑Roman architecture 古罗马建筑 Romanesque architecture 罗曼式建筑roof slab 楼板row house, terrace house 联排式住宅 sanitation 卫生设施Sash 窗扇Section 剖面图service room 服务间service/residential apartment 酒店式公寓 shopping center 购物中心single family house/SF 独户住宅single-story building 单层建筑Site Condition Analysis 场地条件分析Site Photo 现场照片skip-floor aparment 跃层式公寓skyscraper 摩天楼slab block 板式住宅small-sized meeting room 小型会议室Soft Copy 电子文件solar building 太阳能建筑space configuration 空间构图standard room 标准间stepped house, terraced house 台阶式住宅 storage room 储藏室street-front building perspective 沿街建筑透视图structuralism 结构主义study 书房sub-basement 半地下室substation/transformation substation 变电间 super highrise building 超高层建筑support system 支撑体系surface parking 地面停车Technical Index 技术指标telephone exchange room 电话总机房terrace/deck 平台toilet 厕所top floor 顶层Total Building Area 总建筑面积Total Site Area 总用地面积Traffic Analysis Diagram 交通分析图Training Center 培训中心transportation 运输typical building perspective 典型建筑透视图Unit Type 户型Urban Planning 城市规划vehicle circulation 车行流线Vehicle Entrance 车行入口vernacular architecture 乡土建筑Vertical 垂直的villa 别墅VIP Room 贵宾室wall unit, case unit 壁柜washroom 卫生间water heater room 开水间youth apartment 青年公寓Parapet 女儿墙Parapet Displacement 女儿墙位移Pieced Parapet 镂空女儿墙Parapet Gutter 女儿墙天沟。
中西建筑之韵:异曲同工的艺术之美Western architecture, with its grandeur and elegance, stands as a testament to the aesthetic preferences and cultural values of the Occident. In contrast, Eastern architecture, particularly Chinese architecture, exudes a unique charm that is deeply rooted in its historical and cultural context. While the two share some fundamental principles of design and construction, they differ significantly in terms of their aesthetic approach, material usage, and spatial organization.Western architecture, especially in the classical era, is known for its symmetry, geometric perfection, and the use of durable materials like marble and granite. The Greek temples, Roman palaces, and Gothic cathedrals are allexamples of Western architecture that emphasize verticality, light, and space. These buildings are designed to evoke a sense of awe and grandeur, reflecting the Western ideal of order and harmony with nature.In contrast, Chinese architecture emphasizes horizontal lines, symmetry, and balance with its surrounding environment. The use of wood, brick, and tile as primarymaterials gives Chinese buildings a unique warmth and texture that is lacking in Western structures. Chinese temples, palaces, and gardens are designed to blend harmoniously with their natural surroundings, reflecting the Chinese philosophy of harmony with nature and the universe.Another significant difference lies in the spatial organization of the two styles. Western buildings are often designed with a clear hierarchy of spaces, with the main entrance, hall, and chapel or altar arranged in a linear fashion. This organizational principle reflects the Western ideal of hierarchy and order. In contrast, Chinesebuildings often feature a more open and fluid spatial layout, with courtyards, pavilions, and gardens arranged in a more organic and free-flowing manner. This layout allows for a more interactive and dynamic experience of the space, reflecting the Chinese emphasis on harmony and flow.Despite these differences, however, there are also many similarities between Western and Chinese architecture. Both styles seek to create a sense of balance and harmony within their designs, and both make use of architecture as amedium to express cultural values and ideological beliefs. Furthermore, both Western and Chinese architects have always been innovative and experimental in their approaches to design, constantly pushing the boundaries of what is possible in terms of material usage, spatial organization, and aesthetic expression.In conclusion, while Western and Chinese architecture differ significantly in terms of their aesthetic approach, material usage, and spatial organization, they share a common goal of creating beautiful and harmonious spacesthat reflect the cultural values and beliefs of their respective societies. The diversity and richness of these two styles not only enrich our understanding ofarchitecture as an art form but also serve as a powerful reminder of the infinite possibilities and beauty that can be achieved when human creativity and ingenuity are harnessed for the betterment of society.**中西建筑之韵:异曲同工的艺术之美**西方建筑以其宏伟与优雅著称,体现了西方社会的美学偏好和文化价值观。
介绍丹麦建筑英语作文Danish architecture is known for its simplicity, functionality, and focus on sustainability. The design philosophy of Danish architecture emphasizes clean lines, minimalism, and the use of natural materials such as wood and stone.丹麦建筑以其简约、功能性和可持续性而闻名。
丹麦建筑的设计理念强调简洁的线条、极简主义和对木材和石材等自然材料的运用。
One of the most famous examples of Danish architecture is the Sydney Opera House, designed by Danish architect Jorn Utzon. This iconic building is known for its distinctive sail-like roof and modernist design. It has become a symbol of both Sydney and Danish design excellence.丹麦建筑最著名的例子之一是由丹麦建筑师乔恩·乌松设计的悉尼歌剧院。
这座标志性建筑以其独特的帆船状屋顶和现代主义设计而闻名。
它已成为悉尼和丹麦设计卓越的象征。
In addition to iconic buildings like the Sydney Opera House, Danish architecture also includes a wide range of residential, commercial, and public buildings that embody the principles of Scandinavian design. These buildings often feature open floor plans, large windows to maximize natural light, and a focus on creating cozy, inviting spaces for occupants.除了悉尼歌剧院等标志性建筑外,丹麦建筑还包括一系列体现北欧设计原则的住宅、商业和公共建筑。
第43卷 第6期2020年6月计 算 机 学 报CHINESEJOURNALOFCOMPUTERSVol.43No.6June2020收稿日期:2019 08 30;在线出版日期:2020 03 06.本课题得到国家重点研发计划(2018YFB1702003)、国家自然科学基金(61602104,61972076,U1908212,61871107)及兴辽英才计划(XLYC1902017)资助.常爽爽,博士研究生,主要研究方向为嵌入式实时系统、并行计算.E mail:1610539@stu.neu.edu.cn.赵栩锋,硕士研究生,主要研究方向为物联网、嵌入式实时系统.刘震宇,硕士研究生,主要研究方向为物联网、嵌入式实时系统.邓庆绪(通信作者),博士,教授,中国计算机学会(CCF)会员,主要研究领域为物联网、嵌入式实时系统.E mail:dengqx@mail.neu.edu.cn.基于异构多核的多类型犇犃犌任务的响应时间分析常爽爽 赵栩锋 刘震宇 邓庆绪(东北大学计算机科学与工程学院 沈阳 110004)摘 要 由于异构多核并行架构能够利用不同体系结构的优势来提供更高的性能,近年来受到了广泛的关注.本文是对异构多核平台上多类型DAG(DirectedAcyclicGraph)任务的最坏响应时间进行分析.多类型DAG是一种任务内并行模型,其中包含不同类型的节点,每个节点必须在其指定类型的处理器内核上执行.传统的研究在分析多类型DAG任务的最坏响应时间时高估了节点受到的阻塞,导致得到的响应时间上界过于悲观.为此,我们首先提出了一种新的多类型DAG任务转化算法,该算法通过将节点拆分成单位节点,并在不破坏原有依赖关系的基础上按照单位节点分配策略在单位节点之间增加新的边,构成一个新的多类型DAG任务,从而减少每个节点可能并行执行的节点个数,降低被阻塞时间.在该转化算法的基础上,我们提出了一个新的最坏响应时间分析方法,用来验证支持异构并行计算的多类型DAG任务的可调度性.通过对随机生成的多类型DAG任务进行的实验表明,我们提出的最坏响应时间上界比现有方法的精确度提高20%以上.关键词 异构平台;多核嵌入式系统;实时调度;响应时间分析;多类型DAG任务中图法分类号TP399 犇犗犐号10.11897/SP.J.1016.2020.01052犚犲狊狆狅狀狊犲犜犻犿犲犃狀犪犾狔狊犻狊狅犳犜狔狆犲犱犇犃犌犜犪狊犽狊狅狀犎犲狋犲狉狅犵犲狀犲狅狌狊犕狌犾狋犻 犆狅狉犲狊CHANGShuang Shuang ZHAOXu Feng LIUZhen Yu DENGQingXu(犇犲狆犪狉狋犿犲狀狋狅犳犆狅犿狆狌狋犲狉犛犮犻犲狀犮犲犪狀犱犈狀犵犻狀犲犲狉犻狀犵,犖狅狉狋犺犲犪狊狋犲狉狀犝狀犻狏犲狉狊犻狋狔,犛犺犲狀狔犪狀犵 110004)犃犫狊狋狉犪犮狋 Heterogeneousmulti coresandparallelarchitectureshaverecentlygainedmuchattentionowingtoutilizethestrengthofdifferentarchitecturesforofferinghigherperformance.Thispaperanalyzestheworst caseresponsetimeoftypedDAGtasksonheterogeneousmulti coreplatforms,i.e.,atypedDAGtaskcontainsdifferenttypesofvertices,andtheworkloadofeachvertexmustexecuteonitsparticulartypeofcores.Bindingcodesnippetsofaprogramtoaspecifictypeofcoresisacommonoperationinheterogeneousmulti coresschedulingandcanbeeasilyimplementedinmainstreamparallelprogrammingframeworksandoperatingsystems.Inrecentyears,scholarsdomesticandoverseashavemadegreatprogressintheresearchofheterogeneousparalleltaskschedulingwithreal timeconstraints.However,therearestillmanyproblemswiththeexistingresearchresults.ThetraditionalresearchoverestimatedtheinterferenceoftheverticesintheDAGwhenanalyzingtheworst caseresponsetimeoftypedDAGtasks,leadingtotheupperboundofpessimisticresponsetime.Forthisreason,weproposeatypedDAGtransformationalgorithm,whichcanobtainanewDAGtaskbyaddingextraedgesonthebasisofretainingthedependencybetweentheoriginalvertices,soastoreducethenumberofverticesthatcanbeexecutedinparallelforeachvertexandreducethepossibilityofeachvertexbeingblocked.Themainideaofthealgorithmistodivideverticesintomultipleunit nodesandassignunit nodestodifferentsetsofparallelunit nodesaccordingtotheprincipleofminimizingtheincrementofblockingtime.Whenallunit nodesintheDAGareallocated,theconversionofDAGtaskscanberealizedbyconnectingadjacentsetsofparallelunit nodeswithedges.Basedonthistransformationalgorithm,weproposeanewworst caseresponsetimeanalysismethodtoverifytheschedulabilityoftypedDAGtasksthatsupportheterogeneouscomputing.AcomparisonofrandomlygeneratedDAGtasksshowsthattheaccuracyofournewworst caseresponsetimeismorethan20%higherthantheexistingbounds.Basedontheactualheterogeneoushardwaredeviceplatform,wecarriedoutexperimentsontheactualtypedDAGtasktoevaluatethecorrectnessofthenewworst caseresponsetimeupperboundDTAproposedbyusinthepracticalapplication.Theexperimentalresultsshowthatthetheoreticaltimeobtainedbyourworst caseresponsetimeanalysismethodisalwaysgreaterthantheactualrunningtime,sothenewresponsetimeupperboundDTAproposedbyusissafeandreliable.Theresearchinthispaperhasapositivesignificancetoimprovetheabilitytocomputetheworst caseresponsetimeofthetypedDAGtaskinheterogeneousmulticoresplatform.OurfutureworkwillfocusonextendingtheexistingresponsetimeanalysismethodstoanalyzetheresponsetimeupperboundofmultipletypedDAGtasks.Atthesametime,wewillstudyamoreefficienttypedDAGtasktransformationalgorithm,whichcanrealizeDAGtasktransformationinashortertime,andtheresultisapproximatetotheupperboundofresponsetimeproposedbyus.犓犲狔狑狅狉犱狊 heterogeneousplatform;multi coreembeddedsystem;real timescheduling;responsetimeanalysis;typedDAGtasks1 引 言为了满足日益增长的计算性能需求,并行硬件架构已成为多核嵌入式领域的主流.并行编程模型是利用这些体系结构性能的基础.近年来,国内外学者对具有实时性约束的并行任务调度问题的研究取得了很大的进展[1].一些研究人员开发了多种并行编程范例,如MPI[2]、OpenMP①以及并行编程语言CilkPlus[3].所有这些并行编程范例目前都支持任务内并行,即任务由多个可以同时执行的并行代码部分组成.DAG任务模型是一种很有前景的任务内并行程序模型.它的实时调度与分析在实时高性能计算领域[4 13]得到了广泛的关注.此外,由于异构硬件体系结构能够利用不同硬件特有的处理能力,并能提供比同构体系结构更高的性能和效率,受到人们越来越多的关注.通常情况下,异构硬件架构由性能和功能不对称的设备组成,这些设备将低功耗通用多核处理器(称为主机)与专用的协处理器(例如Cell/BESPUs)或数据并行加速器(例如FPGAs)集成在一起,如NVIDIATegraX1[14]和XilinxUltraScale[15].目前的并行编程语言倾向于支持异构多核.例如,在OpenMP中,proc_bind子句可用于指定线程到某些处理内核的映射.在OpenCL②中,clCreateCommandQueue函数可用于为某些设备创建命令队列.在本文中,我们研究在异构多核处理器上实时调度多类型DAG任务,任务中的每个节点被显式地绑定到特定类型的处理器内核上执行.将程序的代码片段绑定到特定类型的内核是异构多核调度中的一种常见操作,很容易在主流并行编程框架和操作系统中实现.文献[16 18]研究了基于异构平台下的多类型DAG任务的响应时间分析问题.这些研究是在work conserving算法下对多类型DAG任务进行调度,具体的响应时间分析方法如下.文献[16]第一次提出了一般的多类型DAG任务模型的响应时间上界,但是该上界非常悲观.文献[17]中提出了对具有约束的多类型DAG任务模型的响应时间分析策略.文献[18]提出了两个新的响应时间上界,其中一个上界在精度上优于文献[16]中的算法,另一个上界通过更加详细地分析DAG任务图结构信息,显著提高了响应时间的分析精度.然而文献[18]的响应时间分析方法依然非常悲观,因为在分析每条路35016期常爽爽等:基于异构多核的多类型DAG任务的响应时间分析①②Openmpapplicationprograminterface,version5.0.http://www.openmp.org2018OpenCL.https://www.khronos.org/opencl/径的最坏响应时间时,它考虑了路径上节点受到已经完成或尚未执行的同类型不同路径上节点的干扰,这显然是不必要的.文献[19]通过将每个DAG任务分解为一组具有人为设置的释放时间和截止日期的独立子任务,进一步分析了多类型DAG任务的调度问题.本文的目的是对多类型DAG任务进行研究,得到一个更加精确的响应时间上界.针对先前工作中存在的问题,我们提出了一种新的多类型DAG任务转换策略,在保留DAG任务中节点原有依赖关系的基础上,通过增加新的边对原DAG任务进行转换,转化后得到的新的DAG任务中每个节点可能受到阻塞时间的计算会更加精确.基于该DAG转化策略,我们提出了一种新的最坏响应时间分析方法,用于验证支持异构计算的多类型DAG任务的可调度性.通过对随机生成的多类型DAG任务进行的实验表明,我们提出的新的最坏响应时间上界比现有的方法精确度提高20%以上.本文第2节论述相关工作;第3节介绍系统模型;第4节列举现有的最坏响应时间分析方法,并分析这些响应时间上界中存在的问题;第5节提出一种新的DAG转换策略;第6节描述一种新的多类型DAG任务的最坏响应时间分析方法;第7节将我们的方法与现有响应时间分析策略进行实验,验证我们提出的新方法的优越性以及正确性;最后,第8节对全文进行总结,并给出今后的研究方向.2 相关工作为了满足日益增长的处理器性能需求,并行异构硬件体系结构成为嵌入式实时领域的主流.基于DAG建模的应用程序调度问题是并行编程模型的基础,也是实现高性能的关键.文献[20 21]提出了经典的一般DAG任务(任务内部只包含一种类型的节点)的响应时间上界.在文献[20 21]的基础上,大量国内外学者针对一般DAG任务的响应时间上界进行了深入研究.在早期的工作中,对于一般DAG任务模型的调度策略分为直接调度策略和基于模型转换的调度策略.在直接DAG调度策略中,在不需要了解任务内部结构的情况下,直接将优先级分配给节点,包括全局调度策略[9,12,22]、联合调度策略[7,11,23 24]、划分调度策略[8]以及条件节点调度策略[22,25].基于模型转换的调度策略是对每个DAG任务的内部结构进行离线分析.在DAG任务中,任何优先级约束都是通过为每个独立的节点分配中间的释放时间和最后截止期来实现的,从而保证它们的独立执行,因此在下一个节点释放之前,前面的所有节点必须完成调度.该方法将并行DAG任务调度的难点分解为顺序多核调度[3,26 27].文献[16]提出了对多类型DAG任务调度的最坏响应时间分析的早期研究,该文提出的响应时间上界非常悲观,而且存在非自持续性问题,即当内核数量增加时,最坏响应时间反而可能会增加.文献[18]针对该任务模型进行进一步的研究,提出了两个新的最坏响应时间上界.第一个上界在不增加时间复杂度的情况下提高了文献[16]中响应时间上界的精度,并解决了非自持续性问题.第二个上界研究了多类型DAG任务的内部结构信息,进一步提高了响应时间上界的精度,但计算开销比较大.然而,文献[18]中提出的响应时间上界仍然十分悲观,因为当分析每条路径的最坏响应时间时,它考虑了来自已经完成或尚未执行的不同路径上的同类型节点带来的阻塞时间,而这些阻塞不一定发生.文献[17]对具有约束的多类型DAG任务模型进行了响应时间分析,该DAG任务模型有且只有两种类型的节点(其中一种类型有多个节点,这些节点可以在多核主处理器上执行;另一种类型只有一个节点,该节点在一个单核加速处理设备上执行,称为犗犳犳犾狅犪犱节点).文献[17]提出了一个模型转化算法,通过对多类型DAG任务进行转换,使与犗犳犳犾狅犪犱节点潜在并行执行的节点集转化为在DAG图结构中与犗犳犳犾狅犪犱节点并行,并在该转换算法的基础上提出了响应时间上界的分析方法.除此之外,先前也存在大量文献研究不同工作负载在特定处理器上执行的调度问题,例如包含处理集约束[28 29]、区间处理集约束[30 31]和树层次结构处理集约束[32].国内外学者在异构多核处理器上对具有工作负载跟处理器绑定约束的独立任务的调度做了大量的研究,文献[33 34]对这项工作进行了全面的综述.3 系统模型3 1 平台模型本文讨论的问题基于由犓种类型的处理器组成的异构多核平台, ={犆1,…,犆犓},犆犽(犽∈[1,犓])表示第犽种类型的处理器内核集合.我们用犿犽来表示第犽种类型的内核个数,即犿犽=|犆犽|.当4501计 算 机 学 报2020年={犆1,犆2}且犿2=1,其他参数不变时,我们的平台模型退化成文献[17]中研究的模型.3 2 任务模型本文研究的多类型DAG任务模型可以表示为犌=(犞,犈,Γ,犮),其中犞表示所有节点的集合,犈表示所有边的集合.每个节点狏犻∈犞代表一段连续执行的代码.每条边(狏犻,狏犼)∈犈代表节点狏犻和狏犼存在前驱后继关系.类型函数Γ:犞 用来定义每个节点的类型.我们用Γ(狏犻)∈犓来表示节点狏犻的类型,例如Γ(狏犻)=犽表示节点狏犻必须在类型为犽的处理器内核集合犆犽上执行.权重函数犮:犞× +0用来定义每个节点的最坏响应时间,例如,类型为犽的节点狏犻在犆犽上的执行时间最多为犮(狏犻).如果存在一条边(狏犻,狏犼)∈犈,那么称节点狏犻是狏犼的前驱节点,并且狏犼是狏犻的后继节点.这表示狏犼直到狏犻完成以后才可以执行.狆狉犲(狏犻)和狊狌犮(狏犻)分别用来表示节点狏犻的前驱节点集合和后继节点集合.如果在犌中存在一条从狏犻到狏犼的路径,则称狏犻是狏犼的祖先节点,狏犼是狏犻的后代节点.我们用犪狀狊(狏犻)和犱犲狊(狏犻)分别表示狏犻的祖先节点集合和后代节点集合.没有祖先的节点称为源节点狏src,没有后代的节点称为汇聚节点狏snk.为了不失一般性,我们假设犌中有且只有一个源节点和一个汇聚节点.当犌中有多个源节点(汇聚节点)时,可以在犌中加入一个虚拟的执行时间为0的源节点(汇聚节点)使其与所有的源节点(汇聚节点)连接以满足我们的模型.当一条路径犾={狏1,狏2,…,狏狇}包含源节点和汇聚节点时,我们称这条路径为完整路径.我们用犔来表示犌中所有完整路径的集合,犔={犾1,犾2,…,犾狀}.犾max用来表示犌中的最长路径.犾犲狀(犾)表示路径犾的长度,犌中最长路径犾max的长度可以用犾犲狀(犌)表示,计算公式如下:犾犲狀(犾)=∑狏∈犾犮(狏),犾犲狀(犌)=max犾∈犔{犾犲狀(犾)}. 12)如图1所示是一个多类型DAG任务,它包含两种类型的节点,类型1的节点用浅灰色表示,类型2的节点用深灰色表示.每个节点的最坏执行时间用节点旁的数字表示.最长路径为犾max={狏0,狏1,狏4,狏8,狏11,狏12},最长路径长度为犾犲狀(犾max)=10,犾犲狀(犌)=犾犲狀(犾max)=10.3 3 调度模型我们研究的任务模型是在异构平台 上调度多类型DAG任务犌.当节点狏犻所有的前驱节点都执行结束时,我们说狏犻是待执行节点.假设节点狏犻的类型为犽,狏犻必须在处理器内核集合犆犽上执行.在本篇论文中,我们基于work conserving调度算法对多类型DAG任务犌进行响应时间分析,即当类型为犽的节点狏犻是待执行节点时,犆犽中不允许有空闲的内核.该调度策略的伪代码如下.算法1. work conserving调度算法.输入:DAG任务犌输出:任务犌的响应时间1.WHILE犌中存在类型为犽的待执行节点狏犻2. IF犆犽中存在空闲的内核犮犼3. 在犮犼上执行狏犻4. ENDIF5.ENDWHILE本文的目标是找到多类型DAG任务犌的最坏响应时间的安全上界,可以表示为汇聚节点狏snk的完成时间和源节点狏src开始执行时间的差.4 最新研究方法及其悲观性分析本节首先介绍多核响应时间分析方法的基础理论,然后对现有的异构多核的响应时间分析方法进行介绍,最后分析这些方法的悲观性.现有的基于异构平台的多类型DAG任务的响应时间分析方法都是基于work conserving调度算法.该调度算法同样适用于同构多核平台下的单一类型的DAG任务.本文以多类型DAG任务犌作为被分析任务进行阐述.4 1 同构平台下犇犃犌任务的响应时间分析文献[21]提出了犿个内核的同构处理器平台下的基于work conserving调度策略的单类型DAG任务的经典响应时间上界.犚hom(犌) 犾犲狀(犌)+狏狅犾(犌)-犾犲狀(犌)犿(1)式(1)中不等式右侧第2项表示犌中最长路径上节点被阻塞的时间.当最长路径上的节点狏犻的所有前驱节点已经完成但是犆犽中没有空闲的处理器内核时,我们称狏犻被其他节点阻塞.55016期常爽爽等:基于异构多核的多类型DAG任务的响应时间分析4 2 异构平台下犇犃犌任务的响应时间分析文献[16]第一次提出了异构平台 下基于work conserving调度策略的多类型DAG任务犌的响应时间上界,如下所示.犚(犌) 犾犲狀(犌)+∑犽∈犓狏狅犾犽(犌)犿犽-犾犲狀(犌)max犽∈犓{犿犽}(2)狏狅犾犽(犌)表示犌中类型为犽的节点的最坏执行时间之和,狏狅犾犽(犌)=∑Γ(狏犻)=犽犮(狏犻).文献[18]进一步改进了文献[16]的响应时间上界.犚(犌) max犾∈犔{珟犚(犾)}(3)珟犚(犾)表示任务犌中完全路径犾∈犔的响应时间,可以通过两种方式进行计算,分别为式(4)和式(5).珟犚(犾)=犾犲狀(犾)+∑犽∈犓狏狅犾犽(犌)犿犽-∑狏犻∈犾犮(狏犻)犿Γ(狏犻)(4)犿Γ(狏犻)表示可以执行类型为Γ(狏犻)的节点的处理器内核个数.式(3)和式(4)给出的犚(犌)的计算方法可以在多项式时间内完成.珟犚(犾)=犾犲狀(犾)+∑犽∈犓∑狏犻∈IVS(犾,犽)犮(狏犻)犿犽(5)IVS(犾,犽)表示任务犌中类型为犽但是与路径犾上类型为犽的节点不在同一条路径上的节点集合.如式(5)所示,珟犚(犾)包括两个部分:路径犾的长度以及路径犾上所有节点被阻塞的时间之和.文献[18]认为该集合中的节点具有潜在的可能性会与路径犾上类型为犽的节点抢夺处理器的使用权,因此可能会阻塞路径犾上类型为犽的节点的执行.式(3)和式(5)给出的犚(犌)的计算方法可以在伪多项式时间内完成.文献[17]提出了一种针对异构平台下两种类型节点的DAG任务(一种类型有多个节点在多核主处理器上运行,另一种类型只有一个节点在单核加速设备上运行)的最坏响应时间分析方法.作者根据加速设备上运行的节点不会阻塞主处理器上的节点这一特点,提出了一个DAG转化算法使得加速设备上的节点尽可能跟主处理器上的节点并行执行,从而减少主处理器上节点的响应时间,获得更加精确的响应时间上界.4 3 现有的响应时间分析方法中存在的问题尽管现有的研究已经为异构处理器平台上的多类型DAG任务提供了多个有效的响应时间分析方法,但是这些方法仍存在不足之处.例如,文献[17]关注一种特殊的多类型DAG任务的研究,该DAG任务中只有两种类型的节点,并且其中一种类型只有一个节点,因此具有很大的局限性.文献[16]和[18]研究一般的多类型DAG任务模型(参见第3节).文献[18]中提出的第一种响应时间计算方法(3)和(4)在精度上明显优于文献[16]中的式(2),并解决了文献[16]中存在的非自持续性问题.文献[18]中的第二种响应时间计算方法(3)和(5),进一步提高了响应时间的上界的分析精度,但它仍然是非常悲观的.正如式(5)所示,每条路径犾的响应时间由路径犾的长度和路径上节点受到节点集合∪犽∈犓IVS(犾,犽)内节点阻塞的时间之和两部分组成.然而IVS(犾,犽)在式(5)中的定义高估了可能对路径犾中的节点造成阻塞的节点数量,这将在计算路径犾的响应时间时引入过多的阻塞时间.事实上,IVS(犾,犽)中的所有节点并非都可以对路径犾上同类型节点造成阻塞.也就是说,如果狏犼在路径犾上的同类型节点狏犻开始执行之前已经完成,或者狏犼在狏犻完成之后才开始执行,则节点狏犼不会阻塞狏犻.此外,在work conserving调度算法下,如果与狏犻并行执行的节点数小于类型为犽的内核数犿犽,则这些节点可以与狏犻同时执行,不会对狏犻造成阻塞.以图1中的任务为例,因为在文献[18]中,多类型DAG任务由work conserving算法进行调度,图1中DAG任务犌的节点可能的执行顺序如图2所示.图2 犌work conserving行顺序如图1所示,多类型DAG任务犌中存在路径犾1={狏0,狏1,狏4,狏7,狏8,狏11,狏12},根据文献[18]有IVS(犾1,1)={狏3,狏6,狏7}以及IVS(犾1,2)={狏2,狏5,狏9,狏10}.根据路径的响应时间计算式(5)可知珟犚(犾1)=犾犲狀(犾1)+∑狏犻∈IVS(犾1,1)犮(狏犻)犿1+∑狏犼∈IVS(犾1,2)犮(狏犼)犿2=18.5.由于多类型DAG任务犌是由work conserving算法进行调度,如图2所示,路径犾1中的节点狏4开始执行时,IVS(犾1,2)中的节点狏2已经完成,因此狏2不会对狏4造成阻塞.所以更准确的犾1响应时间是犚(犾1) 18.5-犮(狏2)/犿2=16.5.因为文献[18]中的第二种响应时间计算方法式(3)和式(5)是分别计算犌中每条路径的响应时间,随后从中选取最大的响应时6501计 算 机 学 报2020年间的数值作为整个DAG任务的最坏响应时间,所以在计算每条路径的响应时间时引入不必要的阻塞时间会最终导致DAG任务犌的最坏响应时间过于悲观.5 多类型犇犃犌任务转化算法通过上一节的分析,我们可以知道每条路径犾的响应时间计算分为两部分:一部分是路径犾的长度,另一部分是路径犾上的节点被阻塞的时间.因此提高节点受阻塞时间的计算精度是我们工作的重点.现有的异构多核DAG任务响应时间计算方法悲观的主要原因在于高估了每条路径犾上节点受到的阻塞,这些阻塞来自于DAG任务中其他路径上可能会与路径犾上同类型节点竞争处理器内核的节点集合.在这一节我们提出一种多类型DAG任务转化算法,通过对DAG任务的内部结构进行分析,在不破坏节点原有依赖关系的基础上加入新的边,减少DAG任务中每条路径犾上同类型节点竞争处理器内核的节点个数,以减少每条路径犾上节点的被阻塞时间.5 1 节点拆分多类型DAG任务转化算法的第一步是将多类型DAG任务犌中的每个节点(除了狏src和狏snk)拆分为单位执行时间的节点(执行时间为1,简称为单位节点).如图3所示,我们使用狏犻,犼来表示节点狏犻的第犼个单位节点.单位节点的数量等于原节点狏犻的最坏执行时间,并且单位节点之间由表示依赖关系的边连接.一个单位节点只能在前驱节点完成后执行.3 图4 图1中DAG任务犌上节点被拆分后的DAG任务犌′犌的每个节点都可以被分割成与狏src和狏snk相连的单位节点,从而构成一个新的DAG任务犌′.图4为图1中DAG任务的每个节点(除了狏src和狏snk)被拆分为单位节点后的新的多类型DAG任务犌′.节点拆分是为了下一步确定单位节点并行连接的节点集合做准备.由于DAG任务中的节点是以整数时间为单位执行的,因此我们将节点拆分为多个单位节点是合法的.当多类型DAG任务中除了源节点和汇聚节点以外的所有节点的最坏响应时间具有最大公约数犲时,我们可以将犲个单位时间作为最小执行单元进行拆分,这样可以大规模减少拆分后多类型DAG任务犌′的规模.我们根据节点的最坏执行时间,对节点进行拆分.当节点的实际执行时间小于最坏执行时间时,剩余未执行的单位节点的执行时间为零,不会消耗处理器资源.5 2 多类型犇犃犌任务转化策略在前面的步骤中,DAG任务犌通过节点拆分转换为新的DAG任务犌′.接下来,我们提出一个DAG任务转化策略,通过增加新的边来缩小可能会导致每个单位节点被阻塞的节点集合.在这里我们给出一个新的定义———并行节点段.定义1(并行节点段). 假设在犌′中存在犙(犌′)个并行节点段犛γ(0 γ 犙(犌′)),犙(犌′)=犾max-犮(狏src)-犮(狏snk)+2.所有的并行节点段之间是串行关系.每个并行节点段犛γ内包含多个并行的单位节点,犛γ={狏1,1,…,狏狆,狇}.犙(犌′)表示犌′中最长路径上节点(包括单位节点、源节点以及汇聚节点)的个数.如图5所示,由于任务犌′中最长路径上节点个数为9,所以有9个并行节点段.通过DAG任务转化策略,犌′最终会被转化为多个并行节点段犛γ串行相连的形式,来自不同并行节点段的单位节点之间不会相互阻塞.每个犛γ内部的单位节点是并行关系,所以在响应时间计算阶段,我们只需要考虑每个并行节点段内部相同类型单位节点之间的阻塞.因此,下一步我们需要解决的问题是如何将单位节点分配给不同的并行节点段犛γ.5.2.1 多类型DAG任务转化算法算法2给出了将单位节点分配到不同并行节点段的伪代码.分配算法的主要思想是在不违反节点间依赖关系的基础上,为每一个单位节点狏犻,犼分配尽可能大的并行节点段的可分配范围,然后从可分配的并行节点段范围内找到一个最佳的并行节点段犛γ从而完成狏犻,犼的分配.我们通过图5举例描述图4中任务犌′的单位节点分配过程.75016期常爽爽等:基于异构多核的多类型DAG任务的响应时间分析。
Buildings are the architectural wonders that define the skyline of a city,each with its unique character and purpose.They serve as the backbone of human civilization, providing shelter,workspace,and cultural significance.Introduction to BuildingsBuildings are constructed to fulfill various functions,ranging from residential homes to commercial spaces,educational institutions,and religious temples.They are designed to meet the needs of the people who use them,taking into account factors such as location, climate,and cultural preferences.Types of Buildings1.Residential Buildings:These include houses,apartments,and condominiums where people live.They come in various architectural styles,from modern skyscrapers to traditional cottages.mercial Buildings:These are used for business purposes and include office buildings,shopping malls,and hotels.They are often located in central business districts and are designed to accommodate a large number of people.3.Industrial Buildings:These are designed for manufacturing and storage,featuring large open spaces and high ceilings to accommodate machinery and storage racks.cational Institutions:Schools,colleges,and universities are designed to provide a conducive environment for learning,with classrooms,libraries,and laboratories.5.Cultural and Religious Buildings:These include museums,theaters,and places of worship,which are designed to inspire and educate,or to provide a space for spiritual contemplation.Architectural StylesBuildings reflect the architectural styles of their time,from the ancient Egyptian pyramids to the modernist skyscrapers of today.Some notable styles include: Gothic:Characterized by pointed arches,ribbed vaults,and flying buttresses. Baroque:Known for its grandeur,ornate details,and dramatic use of light and shadow. Art Deco:A style popular in the early20th century,featuring geometric patterns and a sense of luxury.Brutalist:Identified by its raw concrete exteriors and a focus on functionality over aesthetics.Sustainable Architecture:A modern approach that emphasizes energy efficiency,use of renewable materials,and minimal environmental impact.Construction MaterialsThe choice of materials in building construction is crucial,affecting the durability,cost, and aesthetics of the mon materials include:Concrete:A versatile and strong material used in the foundation and structural elements of buildings.Steel:Known for its strength and flexibility,used in the framing of highrise buildings. Brick:A traditional material used for its durability and insulation properties. Glass:Used for windows and sometimes as a structural element in modern architecture for its transparency and light transmission.Significance of BuildingsBeyond their functional roles,buildings hold significant cultural and historical value. They are often landmarks that define a citys identity and serve as symbols of its progress and aspirations.They can also be works of art,reflecting the creativity and ingenuity of architects and engineers.ConclusionIn conclusion,buildings are not just physical structures but also represent the aspirations, culture,and history of societies.They are constantly evolving to meet the changing needs of people and the environment,pushing the boundaries of design and technology.As we continue to innovate,the buildings of the future will undoubtedly be as impressive and diverse as those of the past.。
The Unique Architectural Splendor ofSongjiangNestled in the heart of China’s Shanghai, Songjiang District stands out as a cultural gem, renowned for itsrich historical heritage and an array of distinctive architectural wonders. These structures, a blend of ancient elegance and modern sophistication, not only reflect the district’s vibrant past but also contribute to its vibrant present and promising future.One of the most iconic landmarks of Songjiang is the ancient city wall, a testament to the district’s long and illustrious history. This formidable structure, once a bastion of defense, now stands as a silent guardian, whispering tales of ancient battles and triumphs. Its weathered stones and crumbling mortar bear witness to the passage of time, yet retain a certain dignity and grandeur that is both awe-inspiring and humbling.Walking through the narrow lanes of Songjiang, one cannot help but be captivated by the intricate carvings and elegant designs of the traditional courtyard houses. These residences, with their intricate wooden lattices and tiledroofs, exude a sense of tranquility and harmony that is deeply rooted in Chinese culture. The intricate carvings and patterns on the walls and doors are not just aesthetic adornments; they are also a testament to the skilled craftsmanship and artistic vision of the ancient Chinese. In contrast to the serene elegance of the traditional buildings, the modern architectural landmarks of Songjiang exude a sense of dynamism and innovation. The sleek lines and contemporary designs of these structures complement the ancient buildings, creating a unique urban landscape thatis both visually appealing and culturally rich.One such modern marvel is the Songjiang Library, a striking example of contemporary architecture that seamlessly integrates technology and aesthetics. Its sleek glass facade and futuristic design not only make it a visually arresting sight but also reflect the district’s commitment to innovation and education. Inside, the library offers a wide range of resources and amenities, making it a popular destination for locals and visitors alike.Another noteworthy modern structure is the Songjiang Museum, a repository of the district’s rich historical andcultural heritage. The museum’s design, which incorporates elements of traditional Chinese architecture, creates a harmonious blend of old and new that is both educational and enjoyable. Its exhibitions, which cover various aspects of Songjiang’s history and culture, provide visitors with a deeper understanding and appreciation of t he district’s unique identity.The architectural diversity of Songjiang is further enhanced by its parks and gardens, which offer a serene escape from the hustle and bustle of urban life. These green spaces, with their lush vegetation and serene ponds, provide a refreshing contrast to the bustling streets and busy buildings. They are not just places of relaxation and recreation but also serve as important cultural hubs, hosting various events and activities that promote community engagement and cultural exchange.In conclusion, the architectural landscape of Songjiang is a tapestry of diverse styles and eras that reflect the district’s rich cultural heritage and dynamic spirit. From the ancient city wall to the sleek modern structures, each building contributes to the unique identity and charm ofthis vibrant region. As Songjiang continues to evolve and grow, its architectural wonders will continue to inspireand delight both locals and visitors alike.**松江特色建筑英语作文**位于中国上海心脏地带的松江区,以其丰富的历史遗产和一系列独特的建筑奇观而闻名,是一颗璀璨的文化瑰宝。
Custom Architectures for Fuzzy and Neural Networks ControllersAcosta Nelson & Tosini MarceloINCA/INTIA – Departamento de Computación y Sistemas – UNCPBA – TandilEmail: nacosta@.arAbstract: Standard hardware, dedicated microcontroller or application specific circuits can implement fuzzy logic or neural network controllers. This paper presents efficient architecture approaches to develop controllers using specific circuits. A generator uses several tools that allow translating the initial problem specification to a specific circuit implementation, by using HD L descriptions. These HD L description files can be synthesized to get the FPGA configuration bit-stream. Keywords: computer aided control system design, fuzzy & neural networks control, integrated circuit.1. INTRODUCTIONThe term CAD (Computer Aided Design) is applied to a design process based on sophisticated computer graphic techniques used to help the designer in analytic problem resolutions, development, cost estimations, and so on. The graphic power facilitates the scheme description; but the main revolution is the inclusion of some tools such as simulators and module generators. These tools give assistance to all the design processes.ED A (Electronic D esign Automation) is the name of a set of tools to help the electronic design. Hardware design essential problem is the high cost of the development cycle: design, prototype generation, testing, and back to design. To avoid repetition of prototype generation in the design cycle, simulation and verification of circuits can be introduced. These tools make unnecessary building a physical prototype to verify the circuit operation.CAD tools are mainly used for hardware design in the following steps: a) Description of the idea, by using an electric scheme, a block diagram, or an HD L (Hardware D escription Language) description. b) Circuit simulation and verification, with different types of simulation (events, functional, digital or electrical). c) Circuit manufacture. d) PCB (Printed Circuit Boards) manufacture. e) ASIC (Application Specific Integrated Circuits) accomplishment. f) On board test and verification.At the end of the 1980s, the use of development tools (automatic synthesis, place and route) and technologies (microprocessor programmability) produced the drastic project cost reduction. The FPGA (Field Programmable Gate Array) and the HDL allow simplifying the design process.The most used HD Ls are VHD L (Very high speed integrated circuit HDL), Verilog, Handle C and Abel (Advanced Boolean Equation Language). By using HD L, the circuit design shows some advantages: 1) The implementation technology independence facilitates the migration to a newer technology. 2) It increases modular reusability. 3) It facilitates the automatic circuit generation. 4) It makes easy understanding the high-level code.ASIC produces the highest speed circuits, but large series are required for a reasonable cost. Applications (like image processing, real-time control, audio and video compression, data acquisition, and so on) that need high throughput and high number of input/output ports leave processors out of run. The FPGA adopts the advantages imposed by the microprocessors: programming capacity, low development cost, debugging capabilities, and on chip emulation, at a best cost/speed ratio.High-performance low-cost digital controllers are used from domestic equipment to high-complexity industrial control systems.Custom controller designers are using these technologies to develop projects. The development cycle is defined as follows: a) System description (HDL). b) Simulation. c) Design testing.d) Synthesize the design in some specific FPGA device. e) Emulation using a FPGA platform. f) When the controller is made, it can be implemented on ASIC or FPGA.Fuzzy logic (FLC) and neural networks (NNC) controllers can be implemented by standard hardware. To increase the throughput a dedicated microcontroller can be used. Another possibility is to use specific circuits HDL based (ASIC, FPGA, PLD): this approach is considered in this paper. FLC and NNC architecture are shown and analyzed using several examples and two FPGA families.Section 2 formalizes the fuzzy control algorithm, and it deals with the computing scheme by using rule-driven engine approach. Section 3 shows the architecture details. In section 4, the neural networks approach is used to define the architecture controller. Section 5 shows the architecture details. Section 6 shows the conclusions and future works.2. INTRODUCTION TO DIGITAL FLCA fuzzy logic controller (FLC) produces a nonlinear mapping of an input data vector into a scalar output. It contains four components: a) The rules define the controller behavior by using IF-THEN statements. b) The fuzzifier maps crisp values into input fuzzy sets to activate rules. c) The inference engine maps input fuzzy sets into output fuzzy sets by applying the rules. d) The defuzzifier maps output fuzzy values into crisp values.FLC can be implemented by software running on standard hardware or on a dedicated microcontroller [01] [02] [03] [04]. Controllers for high rates can be implemented by specific circuits [05] [06] [07] [08]. In order to process a high number of rules, optimization techniques must be applied; for example: a) reduction of the number of inference computing steps [09]; b) parallel inference execution and c) active rules processing. The Watanabe controller design has a reconfigurable cascadable architecture.In [10] neural networks are used to determine the active rule set in adaptive systems by attaching a weight to each rule. Analog circuits are attractive for fuzzy chips as they implement arithmetic operations easily, but suffer noise disturbance and interference. On the other hand, digital fuzzy controllers arerobust and easy to design, but require large circuit areas to perform arithmetic operations.The architecture goal is to present an alternative scheme to compute the controller functions by using an inference engine that only computes the relevant rules. This approach reduces the number of registers and instructions required; so it minimizes the algorithm computing time.3. FUZZY LOGIC PROCESSORAn FLC (fuzzy logic controller) maps crisp inputs into crisp outputs. It includes four components: rules, fuzzifier, fuzzy-logic inference engine and defuzzifier. The fuzzifier maps the crisp values into fuzzy sets, this operation is necessary to activate the rules. The fuzzy inference engine maps the input fuzzy sets into the output fuzzy sets, it drives the set of rules to determine how to combine them. The defuzzifier maps the fuzzy inference engine output to a crisp value; this value means, in control applications, the control action. The application rules generation is not focused in this work.A. ACTIVE RULESThe “bank of rules” represents a set of control rules. The fuzzy association (A, B) relates the output fuzzy set B (of control values) with the input fuzzy set A (of input values), where the pair represents associations as antecedent-consequent of IF-THEN clauses. Each input variable value is fuzzyfied by applying the membership functions. These output values are different from zero only for a few fuzzy sets, depending on the MF (membership function) shape. Only the non-zero values will fire rules, so most output consequent sets will be empty. By using this principle, it is possible to develop architecture to compute only the fired (not empty) consequent rules. It will drastically reduce the total number of operations, and consequently, the computing time [07].The proposed algorithm is based on the following features:x The MF determines which rule will be activated, so the set of rules are fired by a sensitive context.x The operations use ALU internal registers, which are addressed by index registers. In some applications, this technique allows to reduce the number of I/O control lines.x D ifferent ALUs are used to compute the lattice and arithmetic operations.x Only parts of the decoding functions are accessed.x Only the significant arithmetic and lattice operations are computed.x The control microprogram can be linear (without jumps) to reduce the control area.B. PROPOSED ALGORITHMFirst, the following notations are introduced:x n and m are the number of input and output variables respectively.x i and k are the identification of an input and output variable respectively.x p and r are the number of input and output membership functions.x j is the identification of an input variable MF.x q is the maximum number of simultaneously fired rules. This algorithm works with a unique reset signal to force all the registers in the register banks to zero state: RegV(i,0..log2 p i), IdfV(i,0..log2p i), ADF, SOP(0..log2r k), N, and D. The computing algorithm of the f k functions is: i:0 d i d n-1, j:0 d j d p i-1:IF A ij(x i) z 0 THENRegV i[ ptr i@ = A ij( x i);IdfV i[ ptr i@ = A IDF(i j)( x i );For every k,For every combination(ind1, ind2, ..., ind n),where ind i points to one of the non-zero MF of x i, and,For every output MF number pdf:ADF = FAM k ( IDF[v i]1[ind1@+IDF[v i]2[ind2@+................ +IDF[v i]n[ind n@ );SOP[ ADF@ = max( SOP[ ADF@,min(REG[v i]1[ind1@,REG[v i]2[ind2@,...................,REG[v i]n[ind n@ ) );ind: 0 d ind d q-1, computeVVV ind= B( ADF, SOP[ ind@ );N k = N k + VVV kh;D k = D k + SOP kh;F k = N k / D k;C. FLC ARCHITECTUREThe computing circuit is independent of the MF implementation. In this paper a memory approach is used as an example. An architecture diagram is shown in Fig. 1.Two big blocks construct the architecture diagram: a) A multi-plane fuzzifier for 2 input variables, a plane each. b) An inference and defuzzifier block for a unique output variable. The MIN and Address Maker are multi-plane operations because they need information about all input variables.Note that clock and reset signals are not shown in the architecture diagram. The applications need define: a) the memory block widths (like ADF, D and N), b) the register bank data and address widths (like RegV i, IdfV i and SOP). Architecture details:x Memory blocks:q REG[v i] store the MF value of the input variables.q IDF[v i] store the MF identifiers.q SOP store the inference engine outputs,q ADF is a pointer to the output fuzzy set,q N holds the numerator value, andq D holds the denominator value.x Circuit blocks:q Address Calculation: determines the pointer to REG and IDF register.q MIN and MAX: compute the minimum and maximum values.q Address Maker: determines the active rule for the inference engine.q MF[v i] are the membership functions for each input variable value.q MF-IDF[v i] are the membership function identifiers for each input variable value.q Rule Bank holds the set of rules.q Output-MF is the output MF for the input variable.q ADD and DIVISION operations. Note that the division operation is not detailed.x Control signals:q SelV i is a pointer to REG/IDF registers.q AB_PTR selects the address between SelV i (at inference time) and the computed address (at fuzzifiertime).q IND addresses the SOP registers in the defuzzification stage.q AD F_IND selects the address between IND (at defuzzification time) and ADF (at inference time).D. RESULTSThe FLC architecture has been used to develop a wide variety of applications. The selected implementation platforms were the Virtex or the xc4000 Xilinx FPGA families. The original design was generated in an automatic way by using a FLC generator [06] [11] [12] that produces VHDL in RTL (Register Transfer Level). The Xilinx Foundation v4 was used to generate the configuration bit-stream. In this paper 3 implementations are described.In the Bart Kosko parking a truck in a load zone FLC [13] [14], the main features are: a) 2 input variables (with 7 and 5 MF).b) 1 output variable (with 7 MF). c) 35 rules (with 2 antecedents and 1 consequent). d) 22 microinstructions at a maximum frequency. The FLC runs: a) in the Virtex at 18 MHz, so it produces a throughput of 818 K FIPS (Fuzzy Inferences Per Second) and 28 M FRPS (Fuzzy Rules Per Second). b) In the xc4000 at 12 MHz, 545 K FIPS and 19 M FRPS.In the inverted pendulum FLC [15], the main features are: a) 2 input variables (both with 7 MF). b) 1 output variable (with 7 MF). c) 49 rules. d) 16 microinstructions. The pendulum runs: a) in the Virtex at 21 MHz, 131 K FIPS and 64 MFRPS. b) In the xc4000 at 11 MHz, 687 K FIPS and 33 M FRPS.In the Aptronix autofocus [16] FLC, the main features are: a) 3 input variables (with 3 MF). b) 3 output variables (with 3 MF).c) 20 rules. d) 14 microinstructions. The autofocus runs: a) in the Virtex at 23 MHz, 1642 K FIPS and 32 M FRPS. b) In the xc4000 at 14 MHz, 1 M FIPS and 20 M FRPS.4. INTRODUCTION TO DIGITAL NEURAL NETWORKSArtificial neuronal networks (ANN) can be classified into two groups based on the degree of parallelism obtained in the diverse developments.There are developments with high degree of parallelism that implement the architecture of the network with all their neuronal interconnections. Those developments are limited to small networks consisting generally of one hidden level with less than 10 neurons.On the other hand, there are developments of low (or null) level of parallelism that completely implement the functionality of a single neuron plus a control unit. That unit successively feeds the neuron with sets of weights and input values to obtain a valid output result. This last alternative allows implementing time multiplexed hardware circuits with a high advantage in area to risk of a reduced performance.Time Multiplexed neural networks are commercially available whereas other designs are taken ahead by many research and academic groups.The two main categories consist of neurocomputers based on standard integrated circuits and ASIC. The first ones are accelerator boards that optimize the speed of calculation in conventional computers (PC like or workstation). In these cases, where standard components are used, the designers can be concentrated totally in the development of a particular technology. In the second , several alternatives and technologies of implementation can be chosen for the neuronal accomplishment of chips, like digital, analog or hybrid neurochips.The direct implementation in circuits generally alters the exact operation of the original processing elements (analyzed or simulated). It is due to the limitation in precision. The influence of this limited precision is of great importance for the correct operation of the original paradigm. Because of this many designers have dedicated much time to study these topics. In order to obtain implementations on great scale, several neurochips must be interconnected to create systems of greater complexity, with advanced communication protocols.5. NEURAL NETWORK ARCHITECTUREThe developed ANN has two essential features. By one side, a data route is highly used by segmented components (multiplier, adder, data/results memory), which allows a high performance of the data circuit, with the consequent speed increase. On the other side, the possibility of microprogramming the data route, allows a great flexibility to implement different ANN architectures: feedforward, cyclic, acyclic, and so on. The general circuit building blocks are depicted in Fig. 2 [17].As it may be seen, the proposed ANN datapath is a circular pipeline of a multiplier, an accumulator, an activation function module and data memory; all of them pipelined as well.The multiplier has two 8-bit inputs, one 16-bit output, with a total of 360 registers and 64 basic 1-bit multipliers. Although this 8-bit configuration for internal data can be easily rearranged, a new configuration of more bits will increase the resources (cost) needed for the implementation of the multiplier with a quadratic factor. The 8-bit data route allows a new result in each clock cycle, being of 16 cycles the latency for each computation. Theaccumulator output is wired to the activation function circuit.Fig. 2: Developed ANN building blocks.A. THE ACTIVATION FUNCTIONA common approach for this activation function in ANN is the sigmoid function of eq. (1).(1)In the software implementations there is not a major drawback on computing eq. (1). However, from the hardware standpoint, there is a high cost on implementing both a lookup table for the exponential function, and the division operation. Instead, a usual approximation in the hardware world is [18]:¸¸¹·¨¨©§1121)(x x x y (2)This approach, although simpler than the one of eq. (1), still needs the module and the division computation. In this work a third proposal is used. It consists of an approximation of eq. (1) with several polynomial functions in powers of 2, conforming a piecewise linear function [19] [20]. Particularly, the input for the developed circuit was a 16-bit integer [-32768..32767], and its output is a signed 8-bit integer [-128..127]. Table 1 shows the six input ranges with their corresponding output ranges.INPUT OUTPUT 0..1023 0..31 1024..2047 32..63 2048..4095 64..95 4096..5119 96..111 5120..6143 112..115 6144..7167 116..119 7168..8191 120..123 8192..12287 124..127 12288..32767 127 Table 1: Polynomial functions in power of 2 for theapproximation of the exponential function.In Fig. 3 a comparison among the three described approaches for the activation function is depicted (eq. (1), (2), and Table 1). It may be seen that the third implementation is closer to eq. (1) than the proposal of eq. (2). Then, this option was used for the present application. The selected approach, as well as the remaining presented components were described in VHD L. Then, it is immediate to replace for instance the module in the data route to change the activation function of the ANN. In a following section, it will be shown how easy it is to change the synaptic weights and the data/results memory from the parameters defined for a specific ANN.Fig. 3: Three approaches for the sigmoid activationfunction [eq. (1) (continuous line), eq. (2) (discontinuousline), table1 (doted line)]B. PRECISION ANALYSISAs in any digital circuit, in this case there is a trade off between precision and physical parameters like area and computing speed. Then, it seems interesting to analyze the behavior of the ANN when trained with different data series and different internal precision (number of bits). An exhaustive study of this was left for a near future. Nevertheless, the ANN was studied in simulation using representations for the weights and data of 20, 16, 12 and 8 bits. The results obtained for this last case were considered acceptable for the present application, as shown in Fig. 4.Fig. 4: The simulated ANN output with double precision(in gray) vs. 8 bits precision (in black).C. PROGRAMMING THE ANNThe proposed architecture is programmed according to two main parameters to be selected previously. Once this step is fulfilled, a microprogram should be written to control the computations of the particular design.D. PARAMETER DEFINITIONThe first parameter to consider is the number of cells of the data/results row (L), according to:L = max (N – 1) (3)where N is the number of neurons in two contiguous level. This L row must always be able to store the outputs of the just computed level (data) plus the results of computing each neuron in the present level. The second parameter is the size of the weight’s memory (S wm), which will store all of ANN weights.Example 1: a classical feedforward ANN of nine neurons in the hidden layers and four inputs and three outputs is described according to Fig. 5.E. MICROPROGRAM CREATIONFrom two levels of abstraction, a software tool (assembler) was developed to analyze the precedence relationships in the computations needed in the network under design. The highest level of abstraction generically describes which kind of neural network is under development. The present supported types are feedforward and Hopfield, synchronic and asynchronic [21].Fig. 5: Parameters definition of an ANNExample II: the feedforward ANN of Fig. 5 is defined as:Net <name> Descriptiontype feedforwardInput : 4Output : 3Hidden : 4 , 5End <name>Example III: a given Hopfield ANN (Fig. 6) is defined as:Net <name> Descriptiontype sync HopfieldNodes : 3End <name>Fig. 6. Hopfield ANN.The synchronous or asynchronous feature of the Hopfield ANN is achieved by the microprogram. In the first case the neurons are all updated in each clock cycle. In the second, the neurons are updated sequentially. This high level description only allowed the generation of simple and remarkably regular neural nets, but did not permit to outline more specific details about the neurons interaction of a particular design. Then, a lower level of description was needed, in which neuron dependencies were explicitly stated. This was achieved by programming as shown in Example IV.Example IV: a more detailed description of a feedforward ANN with 4 inputs, 2 outputs and a hidden layer of 3 neurons, in a lower level of abstraction (Fig. 7)Net <name> Descriptiontype FeedforwardNodes: A, B, C, D, E, F, G, H, IWeights: w1..w18Input Nodes: A, B, C, DOutput Nodes : H, IRelationE = A * w1 + B * w2 + C * w3 + D * w4F = A * w5 + B * w6 + C * w7 + D * w8G = A * w9 + B * w10 + C * w11 + D * w12H = E * w13 + F * w14 + G * w15I = E * w16 + F * w17 + G * w18End RelationEnd <name>Fig. 7. Feedforward ANN.From this description, the assembler can settle down the introduced parameters L (equation (3)) and S wm which will be 6 and 18 cells respectively for this example. The microprogram generation is based on these specifications, which map into a set of microinstructions that the control unit successively stores in the corresponding register. This register has 2*L bits, coding one among the four possible operations for each cell of the data/results row. They are presented in Table 2.Rotation (C)The cell receives the row output valueNo operation (N)The cell is not modifiedShift (S)The cell receives the value from its priorone (left)Datum load (L)The cell is loaded with the value from theactivation function or the input data Table 2: Microinstructions of the microprogram.The resulting microprogram of Example VI is partially shown in Table 3. The microprogram puts the resulting values of computing each neuron in the data row, in a position such that this value operates with the corresponding weight when going out of the row. To achieve this, weights are stored in a circular buffer of ROM memory. In this way, the ANN behaves like a systolic system, multiplying a value from the data/results row and a corresponding synaptic weight in each clock cycle. This product (a partial result) is stored until every input to each neuron is processed. Once the output of a processed neuron is obtained, it is crossed through the activation function and the result is stored in the data row, in the cell pointed by the current microinstruction. This procedure is illustrated in Fig. 8.CMicroinst Row state Operation Comments 0 NNNNNL _ _ _ _ _ A _ initial dataload1 NNNNLN _ _ _ _ B A _2 NNNLNN _ _ _ C B A _3 NNLNNN _ _ D C B A _4 NNCSSS _ _ A D C B Acc = A * w1 A is recycled5 NNCSSS _ _ B A D C Acc += B * w2 B is recycled6 NNCSSS _ _ C B A D Acc += C * w3 C is recycled7 NLCSSS _ E D C B A E = Acc += D* w4 D is recycled and E isloaded........ ........ ........11 SLSSSS _ F E D C B F = Acc += A* w4 shift and F is loaded12 SSSSSS _ _ F E D C Computation ofGglobal shift ........ ........ ........Table 3: Part of the microprogram of Example VI.Fig. 8: Data flow in the ANN.F. RESULTSTwo alternatives of the presented architecture were implemented: STAND ARD; the displayed design. OPTIMIZED; optimized version of the design. Redundant multiplexors in data memory are reduced or eliminated. This alternative reduces the size of the data memory and control unit.With the Xilinx Foundation tool an important difference in synthesis and implementation speed was observed. In fact, the F3.1i version was around 40% superior in average to the F2.1i version.With reference to the number of decisions per second (D PS) it was observed that, independently of the circuit frequency, D PS value is inversely proportional to the complexity of the neuronal network (in terms of inputs and hidden neurons).The number of CLBs increases sensibly in circuits with more inputs or hidden neurons. This is due to the increase in the data memory cells but mainly by the increase in complexity in the control unit (as well by the higher number of control signals that must handle).The operating frequency for all the versions tends to diminish when increasing the size of the circuit. This effect is not itself related to the datapath, since it is the same for all implementations. In fact, it is related to two factors: first, the increase of the circuit size which goes in detriment of more optimal locations and connections (place and routing) and forces to use tracks of smaller speed. Secondly, the synthesis of control units of higher number of signals increases the depth of logic in the design increasing the clock period of the circuit.Fig. 9 shows several implementations of the architecture with F3.li version of Xilinx Foundation tool. All circuits have only one hidden level with two neurons and 16-bit precision datapath.Inputs CLB FlopsFrec.(MHz)LogicdeepDPS10 182 270 12,032 10 802133,312 207 280 12,839 12 755235,314 218 288 13,265 10 698157,916 230 296 11,369 11 54138118 222 304 10,199 11 443434,820 257 313 8,773 10 35092022 267 321 9,762 10 361555,624 272 329 9,490 11 327241,426 284 337 10,784 11 347871 Fig. 9: Implementation results of the architecture with severalinputs.6. CONCLUSIONSThis paper shows an efficient digital approach to develop an ANN or an FLC. The development approach to obtain a specific circuit (ASIC, FPGA) is automatically performed according to the following steps: a) Controller definition in a description language. b) Circuit and control program generation. c) Automatic synthesis of the design by using the commercial FPGA development tools. d) FPGA and memory configuration. The FPGA shows to be an efficient development platform, but they need to be in an efficient card that provides: a) Access to external RAM. b) Connection to multiple clocks running at different rates. c) Connectivity to a great number of external lines. d) Low power consumption. e) A prototyping area. As a prototyping platform, the card must have a great number of interconnection lines connected straight to the computer I/O ports.The developed tool has been implemented in Delphi. It parses the input language while loading, and then, the interface lets the user to select which kind of synthesis is needed. This prototype includes generators for: a) VHD L in RTL (automatic synthesis allowed). b) Prototyping languages like VHD L in behavioral descriptions, C and Pascal.As a future work, the synthesis tools will be adapted in order to support: a) Other tools, such as Viewlogic, standard cells library.b) Analogical platforms. c) Multi-resource architectures (multi-ALU pipelined data path) in the FLC. d) Area and speed metric estimation before the place and route process.REFERENCES[01]. “Expert System on a Chip: An Engine for Real-TimeApproximate Reasoning”. Togai M. and Watanabe H. IEEEExpert, vol. 1, Nro. 3, pp: 55-62.[02]. “A VLSI Fuzzy Logic Controller with Reconfigurable,Cascadable Architecture”. Watanabe H, D ettlof W. and Yount K. IEEE Journal on Solid-State Circuits, vol. 25,nro. 2.[03]. “Architecture of a PDM VLSI Fuzzy Logic Controller withPipelining and O ptimized Chip Area”. Ungering A., Thuener K. and Gosser K. Proc. of IEEE International Conference on Fuzzy Systems, pp: 447-452.[04]. “7.5 MFLIPS Fuzzy Microprocessor using SIMD andLogic-in-Memory Structure”. Sasaki M. Ueno F. and InoueT. Proc. of IEEE International Conference on Fuzzy Systems, pp: 527-534.[05]. “Customized Fuzzy Logic Controller Generator”, AcostaN., Deschamps J-P. and Sutter G. Proc. of IFAC-MIM´97,Vienna, Austria, February 1997, pp: 93-98.[06]. “Automatic Program Generator for Customized FuzzyLogic Controllers”, Acosta N., Deschamps J-P. and SutterG. Proceedings of IFAC-AART´97, Vilamoura, Portugal,April 1997, pp: 259-265.[07]. “Hardware design of Asynchronous Fuzzy Controllers”.Costa A., D e Gloria A. and Olivieri M. IEEE Trans. onFuzzy Systems, vol. 4, Nro. 3, August. 1996, pp.: 328-338.[08]. “Dedicated Digital Fuzzy Hardware”. Hung D. L. IEEEMicro, vol. 15, nro. 4, pp: 31-39.[09]. “Algoritmo de optimización de funciones reticularesaplicado al diseño de Controladores Difusos”. DeschampsJ-P and Acosta N. XXV JAIIO, pp: 1.17-1.27. September1996.[10]. “On Fuzzy Associative Memory with Multiple-rule StorageCapacity”. Chung F. and Lee T. IEEE Trans. on FuzzySystems, vol. 4, Nro. 3, August, pp: 375-384.[11]. “O ptimized active rule fuzzy logic custom controller”, Int.Symp. on Engineering of Intelligent Systems (EIS'98),organizado por IFAC (International Federation of Automatic Control), Tennerife, España. February 1998.Acosta N., Deschamps JP. y Garrido J. Pp. 74-79.[12]. “Materialización de Controladores Difusos Activos”,Acosta N. CACIC'2001. October 2001. El Calafate (Arg). [13]. “Adaptative Fuzzy Systems for Backing up a Truck-and-trailer”, Kong S. and Kosko B. IEEE Trans. NeuralNetworks, Vol. 3, Nro. 2, pp.: 211-223, March 1992. [14]. “Neural Network and Fuzzy Systems”, Kosko B. PrenticeHall, chapter 9.[15]. “Robust fuzzy control of nonlinear systems with parametricuncertainties”, H Lee, B Park & G Chen. IEEE Trans. onFuzzy Systems, Vol. 9, Nro. 2, April 2001. Pp: 369-378.[16]. “FuzzyNET”, Aptronix. .[17]. “Hardware Implementation of a segmented data route forNeural Networks”, Tosini, M. VI Workshop Iberchip,IWS´2000, Sao Paulo, Brazil, pp. 292-299, March 2000. [18]. “Using and Designing Massively Parallel Computers forArtificial Neural Networks”, Nordström, T. and Svensson,B. Journal of Parallel and D istributed Processing, vol. 14,no. 3, pp. 260-285, 1992.[19]. “Efficient implementation of piecewise linear activationfunction for digital VLSI neural networks”, Myers, D. J.and Hutchinson, R. A. Electronic Letters, Vol. 25, pp.1662-1663, 1989.[20]. “Simple approximation of sigmoidal functions: realisticdesign of digital neural networks capable of learning”,Alippi, C. and Storti-Gajani, G. Proc. IEEE Int. Symp.Circuits and Systems, pp. 1505-1508, 1991.[21]. “Computers and Symbols Versus Nets and Neurons”,Gurney, K. UCL Press Limited, UK, 1995.。