2011-2015九-十三届希望杯四年级第1试
- 格式:doc
- 大小:475.18 KB
- 文档页数:8
2015年全国数学竞赛试题用7棵树栽6排,使每排3棵,用图来表示。
四年级数学奥数“希望杯”测试题(第一试)学校:班级:姓名:号次:一、我是计算小能手。
(6+6 共12分)四、解答。
(每15分一题共60分)列递等式计算: 1.在12÷( )=( )……()中,可能1.(7777+8888)÷5-(888-777)×3 出现余数多少?2 .100-98+96-94+92-90+…+4-2 2.四位数的四个数字都是偶数,百位数字是2,则这样的四位数有多少个?二、填空。
(7+7+7 共21分)1.故事书共160页,在它的页码中,数字“2”出现了 3.最大的三位数与最小的三位数的差是( )次。
合数还是质数?2.在16时16分,钟表上时针和分针的夹角为()。
3.盒子中有4个球,编号分别为1、2、3、4每次摸出两个球,将其编号相减(大减小),则差是() 4.若P和P+5都是质数,求(24P+1).的可能性大。
(20P+1)的值。
三、我是绘画小高手。
(7分)希望杯试题1 希望杯试题22015年全国数学竞赛试题答案120°+8°-96°=32°四年级数学奥数“希望杯”测试题(第一试)三、略一、50.3000 四、1.0、1、2、3、4、5、12详解: 2.1001、原式=(100+96+92+…+4)-(98+94+90+…+2) 3.合数,详解:999-100=899=29=25×(100+4)÷2-25×(98+2)÷2 ×31=25×(104-100)÷2 4.2009=25×4÷2=502、原式=16665÷5-111×3=3333-333=3000二、36.32°.1详解:2、360°÷12×4=120°360°÷60×16=96°360°÷(12×60)×16=8°。
2010年第八届小学“希望杯”全国数学邀请赛四年级第1试试题1.计算:8×7÷8×7=。
2.将一些半径相同的小圆按如图1所示的规律摆放:第1个图形中有6个小圆,第2个图形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…,依此规律,第6个图形中有个小圆。
3.地球与月球的平均距离大约是384400000米,把这个数改写成用“亿”作单位的数是亿米。
4.如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是。
5.已知8个数的平均数是8,如果把其中一个数改为8后这8个数的平均数变为7,那么这个被改动的数原来是。
6.某校的学生的属相有鼠、牛、龙、蛇、马、羊、猴、鸡、狗、猪。
那么至多选出位学生,就一定能找到属相相同的两位学生。
7.某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变成公鸡只数的4倍。
则养鸡场原来一共养了只鸡。
8.将几个大小相同的正方体木块放成一堆,从正面看到的视图是图2(a),从左向右看到的视图是图2(b),从上向下看到的视图是图2(c),则这堆木块最多共有块。
9.将边长为10厘米的五张正方形纸片如图3那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为厘米。
10.几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16。
如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元年。
11.某年的8月份有5个星期一,4个星期二。
则这年的8月8日是星期。
12.一栋居民楼里的住户每户都订了2份不同的报纸。
如果该居民楼的住户只订了甲、乙、丙三种报纸,其中甲报30份,乙报34份,丙报40份。
那么既订乙报又订丙报的有户。
13.由1,2,3,4,5五个数字组成不同的五位数有120个,从大到小排列起来第95个数是。
2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、填空题:1.(3分)计算:2468×629÷(1234×37)=.2.(3分)有一个除法算式,被除数和除数的和是136,商是7,则除数是.3.(3分)定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值为.4.(3分)买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔支.5.(3分)王雷是国庆节那天出生的,若他年龄的3倍减去8刚好是他出生那月的总天数,则王雷今年岁.6.(3分)数一数,图中共有个三角形.7.(3分)某班30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,后来这4位同学赶到了比赛场地,分别跳了26,27,28,29个.这时全班同学的平均成绩是个.8.(3分)明明临摹一本字帖练习毛笔字,临摹第一遍时,他每天写25个字,临摹第二遍时,他每天多写3个字,结果刚好比第一遍少用了3天,则这本字帖共有字.9.(3分)如图有16个1×1的小正方形组成,图中△ABC的面积是.10.(3分)乌龟和兔子在全长为1000米的赛道上比赛,兔子的速度是乌龟速度的15倍.但兔子在比赛的过程中休息了一会儿,醒来时发现乌龟刚好到达终点,而此时兔子还差100米才到终点.则兔子休息期间乌龟爬行了米.11.(3分)任意一个一位奇数与任意一个一位偶数相乘,不同的乘积有个.12.(3分)一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是平方厘米.13.(3分)爷爷,爸爸,小明的年龄分别是60岁,35岁,11岁,则再过年爷爷的年龄等于小明和爸爸年龄的和.14.(3分)一个长方形的长和宽都增加3厘米后,面积增加了90平方厘米,则原长方形的周长是厘米.15.(3分)甲筐和乙筐内原来分别放有54个和63个鸡蛋,若要使甲筐内的鸡蛋个数变为乙筐内的鸡蛋个数的两倍,那么应从乙筐内取出个鸡蛋放入甲筐.16.(3分)王蕾和姐姐从家步行去体育馆打羽毛球,已知姐姐每分钟比王蕾多走20米,25分钟后姐姐到体育馆,这时姐姐发现没有带球拍,于是立即按原路返回取球拍,在离体育馆300米的地方遇到了王蕾,则王蕾家到体育馆的路程是米.17.(3分)如图,用小正方形摆成下列图形,按摆放规律,第25个图形需要小正方形个.18.(3分)若abc+cba=1069,则这样的abc有个.19.(3分)某地希望杯组委会给参加希望杯考试的考生安排考场,若每个考场安排30名考生,则会有一个考场有26名考生;若每个考场安排26个考生,则会有一个考场有20名考生,并且要比前一种方案多用9个考场,则该地区参加考试的考生有个.20.(3分)如图有3个边长是6的正方形组成,则图中阴影部分的面积是.2015年第十三届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、填空题:1.(3分)计算:2468×629÷(1234×37)=34.【分析】根据除法的性质进行简便计算.【解答】解:2468×629÷(1234×37)=2468×629÷1234÷37=2468÷1234×(629÷37)=2×17=34故答案为:34.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(3分)有一个除法算式,被除数和除数的和是136,商是7,则除数是17.【分析】方法一:被除数和除数的和是136,商是7,说明被除数是除数的7倍,被除数与除数的和就是除数的(7+1)倍,用136除以(7+1)即可求出除数,由此求解;方法二:根据被除数=商×除数,设除数是x,则被除数就是7x,再根据“被除数与除数的和是136”,列出方程并解方程即可.【解答】解:方法一:136÷(7+1)=136÷8=17答:除数是17.方法二:设除数是x,被除数是7x,由题意得:7x+x=1368x=136x=17答:除数是17.故答案为:17.【点评】解决本题可以看成和倍问题进行求解:两数和÷倍数和=1倍的数;也可以设出未知数,根据被除数、除数和商三者之间的关系找出等量关系列出方程求解.3.(3分)定义:a⊕b=a+b+ab,则(2⊕3)⊕4的值为59.【分析】根据题意得出a⊕b等于a加上b再加上a与b的积,由此利用此方法计算(2⊕3)⊕4的值,据此解答.【解答】解:(2⊕3)⊕4=(2+3+2×3)⊕4=11⊕4=11+4+11×4=59故答案为:59.【点评】先理解新运算的计算方法,然后按照先算小括号再算括号外的顺序带入数据计算即可.4.(3分)买一支水彩笔需要1元7角,用15元钱最多可以买这样的水彩笔8支.【分析】1元7角=1.7角,求用15元钱最多可以买这样的水彩笔多少支,就是求15里面有几个1.7,用除法解答即可.【解答】解:1元7角=1.7角15÷1.7≈8(支)答:用15元钱最多可以买这样的水彩笔8支.故答案为:8.【点评】本题考查了有余数除法应用题,要注意得数用“去尾法”求值.5.(3分)王雷是国庆节那天出生的,若他年龄的3倍减去8刚好是他出生那月的总天数,则王雷今年13岁.【分析】因为国庆节在10月,10月有31天,所以根据“他年龄的3倍减去8刚好是他出生那月的总天数,”知道王雷的年龄的3倍再减去8等于31,由此先求出王雷年龄的3倍,再求出王雷的年龄.【解答】解:(31+8)÷3=39÷3=13(岁);答:王雷今年13岁.故答案为:13.【点评】解答此题的关键是知道10月有31天,再根据“王雷的年龄的3倍再减去8等于31”这个数量关系解决问题.6.(3分)数一数,图中共有24个三角形.【分析】不在同一直线上三点可以确定一个三角形,据此即可求解.【解答】解:(5+1+1+1+1)+(4+2+2+1)+3+2+1=9+9+3+2+1=24(个)答:图中共有24个三角形.故答案为:24.【点评】本题主要考查了三角形的认识,按正确的顺序计算三角形的个数是解决本题的关键.7.(3分)某班30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,后来这4位同学赶到了比赛场地,分别跳了26,27,28,29个.这时全班同学的平均成绩是21个.【分析】根据30人参加跳绳比赛,开始时有4人迟到没有参加比赛,这时平均成绩为20个,先算出30﹣4=26人的成绩,(30﹣4)×20=520,然后再加上26、27、28、29,再除以30即可解答.【解答】解:(30﹣4)×20=520(个)520+26+27+28+29=630(个)630÷30=21(个)答:这时全班同学的平均成绩是21个.故答案为:21.【点评】本题考查了平均数的含义以及应用.8.(3分)明明临摹一本字帖练习毛笔字,临摹第一遍时,他每天写25个字,临摹第二遍时,他每天多写3个字,结果刚好比第一遍少用了3天,则这本字帖共有700字.【分析】设临摹第一遍时,用了x天,则临摹第二遍时用了x﹣3天,根据等量关系:临摹第一遍的时间×每天写25个字=临摹第二遍的时间×第二遍时每天写的字,列方程解答即可得临摹第一遍时天数,再求这本字帖共有多少页即可.【解答】解:设临摹第一遍时,用了x天,25x=(25+3)×(x﹣3)25x=28x﹣843x=84x=28,28×25=700(字)答:这本字帖共有700字.故答案为:700.【点评】本题考查了列方程解应用题,关键是根据等量关系:临摹第一遍的时间×每天写25个字=临摹第二遍的时间×第二遍时每天写的字,列方程.9.(3分)如图有16个1×1的小正方形组成,图中△ABC的面积是7.【分析】正方形减去边上三个直角三角形的面积即可求解;正方形的边长4,左上角三角形的底是4,高是2;右下角三角形的底是1,高是4;左下角三角形的底是3,高是2,把这些数据代入正方形和三角形的面积公式求解即可.【解答】解:4×4﹣4×2÷2﹣4×1÷2﹣3×2÷2=16﹣4﹣2﹣3=7答:图中△ABC的面积是7.故答案为:7.【点评】此题解答的关键在于把要求三角形的面积转化成正方形的面积与另外三个三角形的面积差,再分别根据它们的面积公式求解.10.(3分)乌龟和兔子在全长为1000米的赛道上比赛,兔子的速度是乌龟速度的15倍.但兔子在比赛的过程中休息了一会儿,醒来时发现乌龟刚好到达终点,而此时兔子还差100米才到终点.则兔子休息期间乌龟爬行了940米.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。
2013年第11届小学“希望杯”全国数学邀请赛试卷(四年级第1试)小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、以下每题6分,共120分1.(6分)计算:4×37×25=_________.2.(6分)某种速印机每小时可以印3600张纸,那么印240张纸需要_________分钟.3.(6分)若三个连续奇数的和是的111,则最小的奇数是_________.4.(6分)一个数除以3余2,除以4余3,除以5余4,这个数是_________.5.(6分)如图是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是_________.6.(6分)将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是7.(6分)小明今年12岁,爸爸40岁.在小明_________岁的时候,爸爸的年龄是小明的5倍.8.(6分)商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是_________元.9.(6分)如图,把数字4,5,6填入到下面正方体的展开图中,使正方体相对两个面上两个数字的和都相等,则A处应该填_________,B处应该填_________,C处应该填_________.10.(6分)从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是_________,最小的是_________.11.(6分)如图,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是_________平方厘米.12.(6分)2013的质因数中,最大的质因数与最小的质因数的乘积是_________.13.(6分)从边长为5的正方形的四个角截掉四个小长方形,如图,截得的图形的周长是_________.14.(6分)喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是_________.15.(6分)将1到16这16个自然数排成如图的形状,如果每条斜线是的4个数的和相等,那么a﹣b﹣c+d+e+f﹣g=_________.16.(6分)行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正_________(填东、西、南、北)方向_________海里17.(6分)A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC的长度是_________厘米.18.(6分)图中共有三角形_________个.19.(6分)老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备_________箱苹果,_________箱桔子,_________箱香蕉.(答案用整数表示)20.(6分)12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是_________.(12小时制)二、附加题21.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9,A3=3,…,则A1+A2+A3+…+A2013=22.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成_________个正方形.2013年第11届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:4×37×25=3700.考点:运算定律与简便运算.专题:运算定律及简算.分析:根据乘法交换律进行计算即可.解答:解:4×37×25,=4×25×37,=100×37,故答案为:3700.点评:根据题意,找准所运用的运算定律,然后再进行计算即可.2.(6分)某种速印机每小时可以印3600张纸,那么印240张纸需要4分钟.考点:简单的工程问题.专题:工程问题.分析:化1小时=60分钟,先依据工作效率=工作总量÷工作时间,求出速印机的工作效率,再根据工作时间=工作总量÷工作效率即可解答.解答:解:1小时=60分钟,240÷(3600÷60),=240÷60,=4(分钟),答:印240张纸需要4分钟.故答案为:4.点评:本题主要考查学生依据工作时间,工作效率以及工作总量之间数量关系解决问题的能力.3.(6分)若三个连续奇数的和是的111,则最小的奇数是35.考点:奇数与偶数的初步认识.专题:数的整除.分析:先求出三个奇数的平均数求(即中间的那个奇数),因为两个连续的奇数相差“2”,所以中间的数再减去2就是最小的奇数.解答:解:111÷3﹣2,=37﹣2,=35;故答案为:35.点评:此题的关键是求出中间的那个奇数,然后根据两个连续的奇数相差“2”,进行解答.4.(6分)一个数除以3余2,除以4余3,除以5余4,这个数是59.考点:找一个数的倍数的方法.专约数倍数应用题.分析:把“除以3余2,除以4余3,除以5余4”理解为除以3差1,除以4差1,除以5差1,即这个数至少是3、4、5的最小公倍数少1,因为3、4、5三个数两两互质,这三个数的最小公倍数,即这三个数的连乘积;求出3、4、5的最小公倍数,然后减去1即可.解答:解:3×4×5﹣1,=60﹣1,=59;答:这个数是59.故答案为:59.点评:此题只要考查了当三个数两两互质时的最小公倍数的方法:三个数两两互质,这三个数的最小公倍数,即这三个数的连乘积.5.(6分)如图是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是8.考点:格点面积(毕克定理).专平面图形的认识与计算.分析:数出整格部分的个数,再数出不足一个部分的格数,不足一格的按照半格计算即可.解答:解:整格的有5个,不足一格的有6个;5+6÷2=8.答:阴影部分的面积是8.故答案为:8.点评:本题考查了数格子求面积的方法,不足一格的按照半格计算.6.(6分)将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是20厘米,或16厘米.考点:图形的拼组;长方形的周长.专题:平面图形的认识与计算.分析:根据两个新长方形拼组大长方形的方法可得:新长方形长与宽分别为4+4=8厘米、2厘米;或4厘米、4厘米,所以新长方形的周长是(2+4+4)=20cm,或4×4=16cm.解答:解:(4+4+2)×2,=10×2,=20(厘米),答:拼成的新长方形的周长是20厘米或16厘米.故答案为:20;16.点评:关键是知道将两个长方形拼成一个的长方形有两种情况,再根据长方形的周长公式C=(a+b)×2解决问题.7.(6分)小明今年12岁,爸爸40岁.在小明7岁的时候,爸爸的年龄是小明的5倍.考点:年龄问题.专题:年龄问题.分析:根据题意知道父亲和儿子的年龄差(40﹣12)不变,再根据父亲的年龄是儿子的5倍,即将年龄问题转化成差倍问题,因此当父亲的年龄是儿子的5倍时,儿子的年龄即可求出.解答:解:(40﹣12)÷(5﹣1),=28÷4,=7(岁),答:小明7岁时,父亲的年龄是小明年龄的5倍,故答案为:7.点评:解答此题的关键是,不管过多少年,父亲与儿子的年龄差不会变化,再根据差倍公式,即可求出当父亲的年龄是儿子的5倍时,儿子的年龄.8.(6分)商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是99元.考点:整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:商店按每个60元购进了50个足球,全部售出后获利1950元,根据除法的意义可知,每个足球的利润是1950÷50元,又每个成本价是60元,则每个足球的售价是60+1950÷50元.解答:解:60+1950÷50=60+39,=99(元).即每个足球的售价是99元.故答案为:99.点评:在此类问题中,售价=成本价+利润.9.(6分)如图,把数字4,5,6填入到下面正方体的展开图中,使正方体相对两个面上两个数字的和都相等,则A处应该填5,B处应该填4,C处应该填6.考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与2面相对,B面与3面相对,C面与1面相对,使正方体相对两个面上两个数字的和都相等,A 处填5,B个填4,C处填6.解答:解:如图,把它折叠成正方体后,A面与2面相对,B面与3面相对,C面与1面相对,使正方体相对两个面上两个数字的和都相等,A处填5,B个填4,C处填6;故答案为:5,4,6.点评:本题是考查正方体展开图的特征,使正方体相对两个面上两个数字的和都相等,关键是弄清哪两个面相对.10.(6分)从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是98632,最小的是56132.考点:最大与最小.专题:传统应用题专题.分析:要使得到的这个五位数最大,就是使这个数的最高位上的数最大,第二位上的数是除了解最高位和去掉的数字最大的数,依此类推可得出最大的五位数,要使这个五位数最小,就要使这个五位数的最高位是从后面数第五位,最小的一个数(0除外).据此解答.解答:解:根据以上分析知:最大的五位数是:98632,最小的五位数是:56132.故答案为:98632,56132.点评:本题主要考查了学生根据整数比较大小的方法解决问题的能力.11.(6分)如图,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是100平方厘米.考点:长方形、正方形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分是个三角形,可看做以小正方形的边长为底,高也是小正方形的边长,所以面积等于小正方形面积一半,所以小正方形的面积为50×2=100平方厘米.解答:解:据分析可知:小正方形的面积为50×2=100(平方厘米).答:小正方形的面积是100平方厘米.故答案为:100.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.12.(6分)2013的质因数中,最大的质因数与最小的质因数的乘积是183.考点:合数分解质因数.专题:数的整除.分把一个合数写成几个质数连乘积的形式,叫做比这个合析:数分解质因数.首先将2013分解质因数,然后再求出最大的质因数与最小的质因数的乘积即可.解答:解:把2013分解质因数:2013=3×11×61,3×61=183.答:最大的质因数与最小的质因数的乘积是183.故答案为:183.点评:此题考查的目的是掌握分解质因数的方法,一般情况用短除法比较好.13.(6分)从边长为5的正方形的四个角截掉四个小长方形,如图,截得的图形的周长是20.考点:正方形的周长.专题:平面图形的认识与计算.分析:根据图形可知,在大正方形的四个角截掉四个小长方形,虽然面积减少了,但是它的周长不变.所以利用正方形的周长公式解答即可.解解:5×4=20,答:答:截得的图形的周长是20.故答案为:20.点评:解答此题的关键是明白:在大正方形的四个角截掉四个小长方形,虽然面积减少了,但是它的周长不变.14.(6分)喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是41.考点:整数的裂项与拆分;页码问题.专题:传统应用题专题.分析:因为左右两页的页码数是连续两个自然数,所以先把420分解质因数,然后组成相邻两个因数的积:420=2×2×3×5×7=20×21,所以两页的页码数的和是20+21=41;就此解答.解答:解:根据左右两页的页码数是连续两个自然数可得,420=2×2×3×5×7=20×21,所以,两页的页码数的和是:20+21=41.故答案为:41.点评:本题考查了整数拆分问题和页码问题的综合应用,关键是通过分解质因数找到相邻的两个因数.15.(6分)将1到16这16个自然数排成如图的形状,如果每条斜线是的4个数的和相等,那么a﹣b﹣c+d+e+f﹣g= 11.考点:幻方.专题:有规律性排列的数的求和与推导问题.分析:把这个图顺时针旋转45°,就是一个四阶幻方,先求出幻和(每条斜线上4个数的和),为(1+16)×16÷2÷4=34,根据幻和进而可以a、g、f、c、b、d、e分别为8,3,5,14,6,10,11,所以a﹣b﹣c+d+e+f ﹣g=8﹣6﹣14+10+11+5﹣3=11.解答:解:幻和为:(1+16)×16÷2÷4,=17×16÷2÷4,=17×(16÷2÷4),=17×2,=34.a=34﹣13﹣12﹣1=8;g=34﹣13﹣2﹣16=3;f=34﹣16﹣9﹣4=5;c=34﹣1﹣15﹣4=14;b=34﹣12﹣7﹣9=6;d=34﹣15﹣6﹣3=10;e=34﹣2﹣7﹣14=11;所以a﹣b﹣c+d+e+f﹣g=8﹣6﹣14+10+11+5﹣3=11.故答案为:11.点评:本题看成一个四阶幻方,关键是求出幻和,再根据幻和求出未知的数,进而求解.16.(6分)行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正南(填东、西、南、北)方向50海里处.考点:根据方向和距离确定物体的位置.专题:图形与位置.分析:依据题目条件画出示意图,如图所示:海盗船、商船、护航舰所在位置刚好构成等边三角形,护航舰在海盗船的正南方向50海里处.解答:解:因为海盗船、商船、护航舰所在位置刚好构成等边三角形,所以护航舰在海盗船的正南方向50海里处.故答案为:南、50.点评:解答此题的关键是明白:海盗船、商船、护航舰所在位置刚好构成等边三角形,从而问题轻松得解.17.(6分)A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC的长度是12厘米.考点:长度比较.专题:平面图形的认识与计算.分析:如图所示,根据题意,AD=62cm,AB+BC+CD=62=12+18+32;又因为30=12+18,44=12+32,所以BC=12cm.解答:解:根据题干分析可得:AD=62cm,AB+BC+CD=62=12+18+32;又因为30=12+18,44=12+32,所以BC=12cm.答:线段BC的长度是12厘米.故答案为:12.点评:考查了长度比较,注意本题给出的图形中线段BC是直线上最短的一条线段.18.(6分)图中共有三角形28个.考点:组合图形的计数.专题:几何的计算与计数专题.分析:如图一,有6+4+2=12(按包含几部分计数)三角形,图二在图一基础上增加了3×2=6个三角形图三在图二基础上增加了5×2=10个三角形,所以共有三角形12+6+10=28个解答:解:根据题干分析可得:共有三角形12+6+10=28(个),答:一共有28个三角形.故答案为:28.点评:解答此题要注意:在原来图形上增加一条线段,增加的三角形一定包含增加这条线段或这条线段的某一部分.19.(6分)老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备30箱苹果,20箱桔子,15箱香蕉.(答案用整数表示)考点:公约数与公倍数问题.专题:约数倍数应用题.分析:要求每名学生都分到a个苹果,a个桔子,a根香蕉,即苹果、桔子、香蕉总数相等,且总数是20、30、40、50的倍数.先求20、30、40、50的最小公倍数,然后根据苹果、桔子、香蕉每箱的数量,即可求出箱数.解答:解:[20,30,40,50]=600,苹果600÷20=30(箱),桔子600÷30=20(箱),香蕉600÷40=15(箱).答:老师至少要准备30箱苹果,20箱桔子,15箱香蕉.故答案为:30,20,15.点评:此题解答的关键是明确苹果、桔子、香蕉总数相等,然后通过求求20、30、40、50的最小公倍数,进而解决问题.20.(6分)12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是3时.(12小时制)考点:时间与钟面.专题:时钟问题.分析:12点时针和分针重叠,分针比时针走得快,分针与时针的夹角从0度慢慢增加90度,再到180度,又慢慢减少90度,再到0度,至下一次分针与时针重叠.从时针与分针重叠到下一次重叠时,分针与时针成90度夹角,有两个时刻.通过估算,12点到1点,时针和分针2次成90度夹角,1点到2点,时针和分针2次成90度夹角,2点25分多一点时针和分针第5次成90度夹角,3点整时针和分针第6次成90度夹角.据此解答.解答:解:根据以上分析知:12点到1点,时针和分针2次成90度夹角,1点到2点,时针和分针2次成90度夹角,2点25分多一点时针和分针第5次成90度夹角,3点整时针和分针第6次成90度夹角.故答案为:3时.点评:本题的关键是分针与时针每到下次重合时两次成90度的角.二、附加题21.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9,A3=3,…,则A1+A2+A3+…+A2013= 10067.考点:乘积的个位数.专题:综合填空题.分析:几个7相乘的积的个位数字的循环周期是:7、9、3、1四次一个循环周期,那么2013个7相乘的积的个位数是:2013÷4=503…1,即有503个循环周期的个位数字,再加上第一周期的第一个数字7即可.解答:解:7n的个位数以7、9、3、1四个为一周期,2013÷4=503…1,A1+A2+A3+…+A2013=503×(7+9+3+1)+7=503×20+7,=10060+7,=10067.故答案为:10067.点评:此题考查了尾数问题和周期问题.22.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成21个正方形.考点:组合图形的计数.专题:几何的计算与计数专题.分析:如图:第一类1×1 正正方形9个,第二类斜正方形4+2+4+2=12个(如下图所示),共9+12=21个正方形.解答:解:由分析得出:第一类1×1 正正方形9个第二类斜正方形4+2+4+2=12个(如上图所示)共9+12=21个正方形.故答案为:21.点评:本题关键是明确正方形的边长所占的格子,然后分类分别计数.参与本试卷答题和审题的老师有:李斌;王庆;林清涛;齐敬孝;姜运堂;张召伟;苏卫萍;chenyr;似水年华;zlx;王亚彬;nywhr;zhangx;xuetao;dgdyq(排名不分先后)菁优网2014年2月17日。
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:(70÷4+90÷4)÷4=.2.(5分)计算:898+9898+99898+999898=.3.(5分)对运算⊙和㊣,规定:a⊙b=a×b+b,a㊣b=a×b﹣a,那么(2⊙3)⊙(2㊣4)=.4.(5分)若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是.5.(5分)如图中每一横行右面的一个数减去它左面相邻的一个数所得的差都相等,每一数列下面的一个数除以它上面相邻的一个数所得的商都相等,则a+b×c=.6.(5分)如果一个两位数的3倍与4的差是10的倍数,它的4倍与15的差大于60且小于100,则这个两位数是.7.(5分)若四位数的各个数位上的数字都是偶数,并且百位上的数字是2,则这样的四位数有个.8.(5分)将长为12厘米,宽为8厘米的长方形纸片剪去4个同样大小的等腰直角三角形,剩余部分的面积至少是平方厘米.9.(5分)一个除法运算,被除数是10,除数比10小,则可能出现的所有不同的余数的和是.10.(5分)苹果和梨各有若干个,若每袋5个苹果和3个梨,则当梨恰好装完时,还多4个苹果;若每袋装7个苹果和3个梨,则当苹果恰好装完时,梨还多12个,那么苹果和梨共有个.11.(5分)如图,在△ABC中,AB=BC=CA,D、E、F分别是三边的中点,AD、BE、CF交于点O,则图中有个三角形;他们的面积有个不同的值.12.(5分)A、B、C、D四人带着一个手电筒,要通过一个黑暗的只容2人走的隧道,每次先让2人带着手电筒通过,再由一人送回手电筒,又由2人带着手电筒通过…,若A、B、C、D四人单独通过隧道分别需要3、4、5、6分钟,则他们4人都通过至少需要分钟.二、解答题(每小题15分,共60分)13.(15分)摩托车行驶120千米与汽车行驶180千米所用的时间相同,7小时内摩托车行驶的路程比6小时内汽车行驶的路程少80千米,若摩托车先出发2小时,然后汽车从同一出发点开始追赶,那么汽车出发后几小时内可以追上摩托车?14.(15分)将1,10,11,15,18,37,40这7个数分别填入图中的7个圆圈内(每个数都用到),能否使其中两条直线上的三个数的和相等,并且等于另一条直线上的三个数的和的3倍?若可以,请给出一种填法;若不能,请说明理由.15.(15分)100人参加速算测试,共10题.每题答对的人数如下表所示:题号 1 2 3 4 5 6 7 8 9 1093 90 86 91 80 83 72 75 78 59答对人数规定:答对6题或6题以上,为及格,根据上表计算至少有多少人及格.16.(15分)如图,甲乙两只小虫分别从每边长20厘米不透明的正五角星围墙的顶点A、B出发,沿外侧按逆时针方向爬行,甲每秒爬行5厘米,乙每秒爬行4厘米.问:在甲从出发到第一次爬到B的过程中,乙能看到甲的时间有多少秒?2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:(70÷4+90÷4)÷4=10 .【分析】可以先从括号里开始运算,而括号里两个除式,可以化成分数的形式,最后再算结果.【解答】解:根据分析,原式=(70÷4+90÷4)÷4=(70+90)÷4÷4=160÷4÷4=40÷4=10.故答案是:10.【点评】本题考查了四则运算的巧算,突破点是,将括号里的运算进行巧算,再求最后的结果.2.(5分)计算:898+9898+99898+999898=1110592 .【分析】此题一看便知,这式子里的数都接近整数,用凑整法把它变成:(898+2﹣2)+(9898+2﹣2)+(99898+2﹣2)+(999898+2﹣2)=(900﹣2)+(9900﹣2)+(99900﹣2)+(999900﹣2)=900+9900+99900+999900﹣8.再根据特点易想到把这些凑整的数化成乘积的形式,便发现了乘法的分配律的运用,计算就简便了.【解答】898+9898+99898+999898=(900﹣2)+(9900﹣2)+(99900﹣2)+(999900﹣2)=900+9900+99900+999900﹣8=9×100+99×100+999×100+9999×100﹣8=(9+99+999+9999)×100﹣8=(10+100+1000+10000﹣4)×100﹣8=(11110﹣4)×100﹣8=11110×100﹣4×100﹣8=1111000﹣400﹣8=1110600﹣8=1110592【点评】此题是反复运用凑整法和乘法的分配律.并且是在解题过程中不断发现所用的运算定律.3.(5分)对运算⊙和㊣,规定:a⊙b=a×b+b,a㊣b=a×b﹣a,那么(2⊙3)⊙(2㊣4)=60 .【分析】按题意,则2⊙3=2×3+3=9;2㊣4=2×4﹣2=6,则(2⊙3)⊙(2㊣4)=9⊙6=9×6+6=60.【解答】解:根据分析,则2⊙3=2×3+3=9,2㊣4=2×4﹣2=6,则(2⊙3)⊙(2㊣4)=9⊙6=9×6+6=60,故答案是:60.【点评】本题考查了定义新运算,突破点是:分别算出2⊙3和2㊣4,再算出结果.4.(5分)若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是70 .【分析】显然,能被5整除,则个位只能是0或5,而它的97倍是偶数,说明此两位数是一个偶数,故可以断定此两位数个位数字为0,而十位不小于6,只能是6、7、8、9,因不能被4整除,则十位不能是6、8,故十位只能是7或9,又因为不能被3整除,故十位上只能是7.【解答】解:根据分析,能被5整除,则个位只能是0或5,而它的97倍是偶数,说明此两位数是一个偶数,故可以断定此两位数个位数字为0,而十位不小于6,只能是6、7、8、9,因不能被4整除,则十位不能是6、8,故十位只能是7或9,又因为不能被3整除,故十位上只能是7.综上,此两位数是70,故答案是:70.【点评】本题考查了数的整除特征,突破点是:从题中已知条件推测出个位数字和十位数字.5.(5分)如图中每一横行右面的一个数减去它左面相邻的一个数所得的差都相等,每一数列下面的一个数除以它上面相邻的一个数所得的商都相等,则a+b×c=540 .【分析】首先分析题意,横行为等差,竖列为等比数列,找到第一行公差和数列的公比即可.【解答】解:依题意可知:横行为等差,竖列为等比.根据横行为等差数列可知第一行的数字为2,4,6,8.竖行是等比数列,故18÷2=9.所以c是2 的3倍即是6.a是4的27倍.4×27=108.b是8的9倍72.a+b×c=108+72×6=540.故答案为:540【点评】本题考查对幻方的理解和运用,关键问题是找到公差和公比问题解决.6.(5分)如果一个两位数的3倍与4的差是10的倍数,它的4倍与15的差大于60且小于100,则这个两位数是28 .【分析】显然,两位数的3倍与4的差是10的倍数,可知此两位数的三倍得到的数的个位数是4,而乘以3得到个位为4的两位数个位数为8,由它的4倍与15的差大于60且小于100,可求得此两位数的范围,不难求得此两位数.【解答】解:根据分析,两位数的3倍与4的差是10的倍数,可知此两位数的三倍得到的数的个位数是4,而乘以3得到个位为4的两位数个位数为8;由它的4倍与15的差大于60且小于100,可求得此两位数的范围:大于:=,小于:=,综上,此两位数为:28.故答案是:28.【点评】本题考查了因数与倍数,突破点是:根据因数与倍数的性质,以及两位数的范围求得两位数.7.(5分)若四位数的各个数位上的数字都是偶数,并且百位上的数字是2,则这样的四位数有100 个.【分析】四位数的最高位是千位,最高位上不能为0,那么可以是2,4,6,8,而百位上只是2,固定好了,那么十位和个位上可以是0,2,4,6,8,根据排列的特点可知:共有4×5×5个不同的四位数.【解答】解:千位可取2,4,6,8,十位和各位都可以取0,2,4,6,8 所以4×5×5=100(个)故答案为:100.【点评】本题考查每个数位数字的特点,注意千位上不能取0.8.(5分)将长为12厘米,宽为8厘米的长方形纸片剪去4个同样大小的等腰直角三角形,剩余部分的面积至少是24 平方厘米.【分析】长为12厘米,宽为8厘米的长方形纸片,显然最多只能剪下4个直角边为6的等腰直角三角形,故剩下的面积不难求得.【解答】解:根据分析,如图,长为12厘米,宽为8厘米的长方形纸片,最多只能剪下4个直角边为6的等腰直角三角形,故剩下的部分的面积至少=12×(8﹣6)=24.故答案是:24【点评】本题考查剪切和拼接,突破点是:利用长方形的长和宽的值,剪切时取最大值,则剩下的部分面积最小.9.(5分)一个除法运算,被除数是10,除数比10小,则可能出现的所有不同的余数的和是10 .【分析】除数比10小,可以将10除以1~9,得出的余数中有2个是0即除以1、5时余数为0,不同的余数为1、2、3、4,再求和即可.【解答】解:根据分析,10÷6=1…4;10÷7=1…3;10÷8=1…2;10÷9=1…1;而10÷3和10÷9余数都是1,10÷4和10÷8余数都是2,故不同的余数只有:1、2、3、4,可能出现的所有不同的余数的和=1+2+3+4=10.故答案是:10【点评】本题考查带余除法,突破点是:将10除以1~9,得出的余数中有2个是0即除以1、5时余数为0,不同的余数为1、2、3、4,再求和.10.(5分)苹果和梨各有若干个,若每袋5个苹果和3个梨,则当梨恰好装完时,还多4个苹果;若每袋装7个苹果和3个梨,则当苹果恰好装完时,梨还多12个,那么苹果和梨共有132 个.【分析】首先分析根据梨的数量是多12个,证明袋子少了12÷3=4袋.再根据少的4袋苹果数量为20加上剩余的4个就是24个平均每袋多2个共12袋子,即可求解.【解答】解:依题意可知:根据梨的数量是多12个,证明袋子少了12÷3=4袋.苹果差是4×5+4=24个.24÷(7﹣5)=12袋,水果总数为10×12+12=132.故答案为:132.【点评】本题考查对分配盈亏问题的理解和运用,关键问题是找到梨的数量差找到袋子的数量差.问题解决.11.(5分)如图,在△ABC中,AB=BC=CA,D、E、F分别是三边的中点,AD、BE、CF交于点O,则图中有16 个三角形;他们的面积有 4 个不同的值.【分析】要求三角形的个数和不同的面积的取值,可以分情况讨论,从只含有一个小三角形的三角形开始算起,面积的不同取值也不难求得.【解答】解:根据分析,由题可知,AB=BC=CA,D、E、F分别是三边的中点,①只含有1个小三角形的三角形有:6个,且每个三角形的面积均相等,且均等于三角形ABC面积的;②含有2个小三角形的三角形有:3个,且每个三角形的面积均相等,且均等于三角形ABC面积的;③含有3个小三角形的三角形有:6个,且每个三角形的面积均相等,且均等于三角形ABC面积的;④含有6个小三角形的三角形有:1个,即三角形ABC,综上,则图中有16个三角形;他们的面积有4个不同的值.故答案是:16、4【点评】本题考查了三角形的面积,突破点是:根据图形的三角形的特点,分情况讨论,不难求得结果.12.(5分)A、B、C、D四人带着一个手电筒,要通过一个黑暗的只容2人走的隧道,每次先让2人带着手电筒通过,再由一人送回手电筒,又由2人带着手电筒通过…,若A、B、C、D四人单独通过隧道分别需要3、4、5、6分钟,则他们4人都通过至少需要21 分钟.【分析】四人要通过的时间要少,过隧道花费时间少的来回跑,即可得出结论.【解答】解:分两种情况讨论:第一种:A和B过,A回,4+3=7(分钟)C和D过,B回,6+4=10(分钟)A和B过,4(分钟)共用7+10+4=21(分钟);第二种:A和B过,A回,4+3=7(分钟)A和C过,A回,5+3=8(分钟)A和D过,6(分钟)共用7+8+6=21分钟.所以,至少需要21分钟;故答案为21.【点评】此题是最大与最小问题,解本题的关键是安排过隧道花费时间少的送手电.二、解答题(每小题15分,共60分)13.(15分)摩托车行驶120千米与汽车行驶180千米所用的时间相同,7小时内摩托车行驶的路程比6小时内汽车行驶的路程少80千米,若摩托车先出发2小时,然后汽车从同一出发点开始追赶,那么汽车出发后几小时内可以追上摩托车?【分析】首先分析两车的路程比即是速度比,根据路程差除以速度差即可求解.【解答】解:依题意可知:摩托车速度:汽车的速度=120:180=2:3.每一份的路程为:80÷(3×6﹣2×7)=20(千米).摩托车7小时的路程为:20×7×2=280(千米).摩托车的速度为:280÷7=40(千米/小时).汽车6小时的路程为:20×6×3=360(千米).汽车的速度是:360÷6=60(千米/小时).40×2÷(60﹣40)=4(小时)答:那么汽车出发后4小时内可以追上摩托车.【点评】本题考查对追及问题的理解和运用,关键问题是找到路程差与速度差问题解决.14.(15分)将1,10,11,15,18,37,40这7个数分别填入图中的7个圆圈内(每个数都用到),能否使其中两条直线上的三个数的和相等,并且等于另一条直线上的三个数的和的3倍?若可以,请给出一种填法;若不能,请说明理由.【分析】首先根据这7个数字求和为132.再根据这些数字除以7的余数和132除以7的余数组成7的倍数即可,【解答】解:依题意可知:设最小的和为1份,那么其他的为3份,最后加的数字和为7的倍数才行.1+10+11+15+18+37+40=132.这7个数字除以7的余数分别为1,3,4,1,4,2,5.132÷7=18…6.根据中间数字多加2次,那么数字和为7的倍数,那么余数是4的可以构成7的倍数.132+11+11=154.154÷7=21.故答案为:【点评】本题考查对凑数谜的理解和运用,关键是找到数字和是7的倍数,问题解决.15.(15分)100人参加速算测试,共10题.每题答对的人数如下表所示:题号 1 2 3 4 5 6 7 8 9 10答对 93 90 86 91 80 83 72 75 78 59人数规定:答对6题或6题以上,为及格,根据上表计算至少有多少人及格.【分析】先确定出答错的总人次,不及格的至少答错5道,即可得出得出结果.【解答】解:各题答错的总人次数为7+10+14+9+20+17+28+25+22+41=193,每有一个人不及格,则他至少答错5题,193÷5=38…3,所以至多有38人不及格,至少有62人及格.为说明是可以的,注意41正好比38多3,所以这38个人全都在第10题上答错,剩余的答错次数恰好平均分配到其他9题上.答:至少有62人及格.【点评】此题是最大与最小问题,主要考查了数的除法,确定出各题答错的总人次是解本题的关键.16.(15分)如图,甲乙两只小虫分别从每边长20厘米不透明的正五角星围墙的顶点A、B出发,沿外侧按逆时针方向爬行,甲每秒爬行5厘米,乙每秒爬行4厘米.问:在甲从出发到第一次爬到B的过程中,乙能看到甲的时间有多少秒?【分析】设五角星的五个顶点按逆时针方向标为B、B1、B2、B3、B4,形成顶点B﹣﹣顶点B1的区间一,顶点B1﹣﹣顶点B2的区间二,以此类推到区间五.根据题意,乙能看到甲的情况是他们必须在同一时间都行走在同一区间.在区间一看到的时间:20÷5=4(秒);区间二看到的时间:20×2÷4=10(秒),20×3﹣10×5=60﹣50=10(厘米),10÷5=2(秒);区间三的情况:甲到达B3的时间是(10+20+20)÷5=10(秒),乙移动距离10×4=40(厘米),此时乙到达B2,乙能看到甲的时间是0,据此可解答.【解答】解:区间一看到的时间:20÷5=4(秒);区间二看到的时间:20×2÷4=10(秒),20×3﹣10×5=60﹣50=10(厘米),10÷5=2(秒);区间三能看到的时间:0总共乙能看到甲的时间有2+4=6(秒)答:乙能看到甲的时间有6秒.【点评】此题一定要结合生活实际去想去思考(什么情况下乙能看到甲),然后确定解题思路,就能顺利解答,这真是生活中的数学.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:48:13;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=.2.(6分)计算:1+11+21+…+1991+2001+2011=.3.(6分)在小于30的质数中,加3以后是4的倍数的是.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的倍.5.既是6的倍数又是8的倍数的所有两位数的和是.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有人.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是分.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=,∠BOC=.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有个正方形,个等腰直角三角形.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水千克,桶重千克.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需分钟.17.(6分)图中“C”形图形的周长是厘米.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有种不同的填法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是.2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=3000 .【分析】把7777+8888与888﹣777,拆成两个数的乘积,再根据乘法分配律进行计算即可.【解答】解:(1111×7+1111×8)÷5﹣(111×8﹣111×7)×3,=1111×(7+8)÷5﹣111×(8﹣7)×3,=1111×(15÷5)﹣111×1×3,=1111×3﹣111×3,=(1111﹣111)×3,=1000×3,=3000.故答案为:3000.【点评】本题主要考查乘法分配律的灵活运用,根据数字特点找出巧算的方法进行计算即可.2.(6分)计算:1+11+21+…+1991+2001+2011=203212 .【分析】通过观察,相邻两个数的差是10,这是一个等差数列,可以用高斯求和公式进行简算.这一数列共有(2011﹣1)÷10+1=202个数,然后运用公式计算即可.【解答】解:1+11+21+…+1991+2001+2011,=(1+2011)×[(2011﹣1)÷10+1]÷2,=2012×202÷2,=203212.故答案为:203212.【点评】此题的关键是先探索出这是一个等差数列,运用“项数=(末项﹣首项)÷公差+1”算出项数.3.(6分)在小于30的质数中,加3以后是4的倍数的是5,13,17,29 .【分析】根据质数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.30以内的质数有:2,3,5,7,11,13,17,19,23,29;4的倍数特征是个位上的数是偶数;由此解答.【解答】解:5+3=8;13+3=16;17+3=20;29+3=32;8,16,20,32都是4的倍数;故答案为:5,13,17,29.【点评】此题的解答主要明确质数的意义,掌握30以内的10个质数,和4的倍数的特征.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 2 倍.【分析】此题要找出小于100的最大自然数是99,大于300的最小自然数是301,不大于200(即小于或等于200)的最大自然数是200,由此本题可以看做是:“99和301的和是200的多少倍?”.【解答】解:(99+301)÷200,=400÷200,=2;答:是不大于200的最大的自然数的2倍.故答案为:2.【点评】解决此题的关键是,根据题干先得出“小于100的最大的自然数”是99、“大于300的最小的自然数”是301,“不大于200的最大的自然数”是200.5.既是6的倍数又是8的倍数的所有两位数的和是240 .【分析】既是6的倍数,又是8的倍数,先分解质因数,6分为2×3,8分为2×2×2,再找出最小公倍数,两位数的公倍数只有四个数:24,48,72,96,相加即得答案240.【解答】解:根据分析,先分解质因数6=2×3,8=2×2×2,则两者的最小公倍数即为24,符合条件的所有两位数公倍数为:24,48,72,96;所有这些两位数之和:24+48+72+96=240,故答案为:240.【点评】本题考查了公倍数和数的整除运算知识,本题突破点是:找出两者之间的最小公倍数.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有 2 人.【分析】只要从总人数12人中,把会打乒乓球和会下象棋的人数减掉,剩下的就是这个小组中既不会打乒乓球又不会下象棋的人数;此题可以画图分析:5+8=13人,这里重复加了一次既会打乒乓球有会下象棋的3人,所以会打乒乓球和会下象棋的人数为13﹣3=10人,则剩下的12=2人就是这个小组中既不会打乒乓球又不会下象棋的人数.【解答】解:12﹣(5+8﹣3)=2(人),答:这个小组中既不会打乒乓球又不会下象棋的有 2人.故答案为:2.【点评】此题考查了利用容斥原理解决实际问题的灵活应用.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:【分析】(1)根据题干,图中1的位置变化规律是:按顺时针方向依次移动一个格;(2)数字排列规律是:分别按1、3、5、2、4、6的顺序排列的,而且第奇数幅是按顺时针排列,第偶数幅是按逆时针排列;第五幅图是第奇数幅,所以按顺时针排列.【解答】解:根据题干分析可得:(1)图中1的位置变化规律是:按顺时针方向依次移动一个格;所以先确定1的位置如下图所示;(2)第五幅图是第奇数幅,所以按顺时针排列,所以可以在图中添上正确的数字如下图所示:【点评】根据题干得出1的位置变化规律和图中数字1、3、5、2、4、6的排列特点是解决此题的关键.8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是10 .【分析】只要求出被改动的两个数是多少,即能求出这两个被改动的数以外的7个数的乘积是多少.已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,积缩小了800÷200=4(倍),则这个被改动的数也被缩小了4倍,则被改动的这个数为:4×4=16;同理,1200÷200=6,积扩大了6倍,第二个被改动的数也被扩大了6倍,其原来应为:30÷6=5,所以则这两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.【解答】解:第一个数原来为:(800÷200)×4=16;第二个数原来为:30÷(1200÷200)=5;则两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.故答案为:10.【点评】在乘法算式,其中一个因数扩大(或缩小)多少倍,积也相应的扩大(或缩小)多少倍.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是8 .【分析】(1)△ABC的面积是36,BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,所以:△BDC的面积是:36×2÷3=24;(2)△BDC的面积是36×2÷3=24,DE=2EC,根据高一定时,三角形的面积与底成正比的性质即可得出:△BEC的面积:△BDC的面积=1:3,所以△BEC的面积是24÷3=8.【解答】解:因为BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,故△BDC的面积是36×2÷3=24;因为DE=2EC,同理可得:△BEC的面积:△BDC的面积=1:3,故△BEC的面积是24÷3=8.答:△BEC的面积是8.故答案为:8.【点评】此题反复考查了高一定时,三角形的面积与底成正比的性质的灵活应用.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大28 岁.【分析】4年后,李林和他爸爸的年龄之和是50+4×2=58岁,设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据他们的年龄之和是58岁列出方程即可解决问题.【解答】解:设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据题意可得方程:x+3x﹣2=50+4×2,4x=60,x=15,3×15﹣2=43(岁),43﹣15=28(岁),答:李林的爸爸比他大28岁.故答案为:28.【点评】此题也可以这样分析,4年后,李林和爸爸的年龄之和就是58岁,把李林的年龄看做1份,那么爸爸的年龄就是3份少2岁,由此可以求出1份即李林的年龄为:(58+2)÷4=15(岁),由此可得爸爸58﹣15=43岁,则爸爸比李林大28岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是93 分.【分析】根据“平均数×数量=总数”分别计算出A、B、C三个数的和与B、D、E三个数的和与这五个数的和,进而用“A、B、C三个数的和+B、D、E三个数的和﹣五个数的和”进行解答即可.【解答】解:(86×3+95×3)﹣(90×5),=543﹣450,=93(分);故答案为:93.【点评】解答此题的关键:根据平均数和数量、总量之间的关系进行分析解答.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=100°,∠BOC=160°.【分析】由图可知,∠AOC=20°、∠EOD=60°与∠AOE相加等于180°,由此即可求得∠AOE的度数;∠BOC与∠AOC=20°互为补角,根据补角的定义即可解答.【解答】解:∠AOE=180°﹣∠AOC﹣∠EOD=180°﹣20°﹣60°=100°.∠BOC=180°﹣∠AOC=180°﹣20°=160°.故答案为:100°;160°.【点评】本题主要考查角的度量与补角的定义,根据几个角的和差关系进行计算是解题关键.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有 3 个正方形,22 个等腰直角三角形.【分析】根据图形可知,正方形有:ABCD、CEFG、BEGD三个;在正方形ABCD、CEFG和BEGD中,单一三角形是10个,有两个小三角形组成的是8个;由3个三角形组成的等腰直角三角形是4个;由此解答.【解答】解:图中共有正方形3个;等腰直角三角形有:10+8+4=22(个);故答案为:3;22【点评】此题主要考查通过分类、观察、思考探寻事物规律的能力.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 3 千克,桶重 4 千克.【分析】根据题意知道,桶的重量不变,(22﹣16)千克的水就是水原来的(6﹣4)倍,由此即可求出原来的水的千克数,那桶的重量即可求出.【解答】解:桶内原有水:(22﹣16)÷(6﹣4),=6÷2,=3(千克),桶重:16﹣4×3,=16﹣12,=4(千克);答:桶内原有水3千克,桶重4千克.故答案为:3,4.【点评】解答此题的关键是,根据题意,找出对应的数和对应的倍数,由此列式解答即可.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是84 .【分析】设个位数字是x,则十位数字是12﹣x,所以可得:原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据新数比原数小36,列出方程即可解决问题.【解答】解:设个位数字是x,则十位数字是12﹣x,那么原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据题意可得方程:10(12﹣x)+x﹣(10x+12﹣x)=36,18x=72,x=4;12﹣4=8,答:原数是84.故答案为:84.【点评】此题设出个位数字和十位数字,从而得出原两位数和新两位数是解决本题的关键.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需30 分钟.【分析】来回都步行,需要2个半小时说明王强步行单程用:2.5÷2=1.25(小时),又因为步行去公园,回来时坐车,往返用了一个半小时,则坐车单程用:1.5﹣1.25=0.25(小时),则来回都坐车用时:0.25×2=0.5(小时).【解答】解:(1.5﹣2.5÷2)×2,=0.25×2,=0.5(小时);0.5小时=30分钟.故答案为:30.【点评】完成本题的关健是:在求出步行单程所用时间的基础上,求出坐车单程所用时间.17.(6分)图中“C”形图形的周长是32 厘米.【分析】如图,将内部的2厘米边平移到外面红色线段处,这样这个图形的周长就是这个边长为6厘米的正方形的边长与内部横着的两条长为6﹣2=4厘米的线段的长度之和,由此利用正方形周长公式代入数据即可解决问题.【解答】解:根据题干分析可得:6×4+(6﹣2)×2,=24+8,=32(厘米),答:这个图形的周长是32厘米.故答案为:32.【点评】借助平移的性质将图形中的某些线段移动到规则图形的边上,使求这个不规则图形的周长转化成求规则图形的周长是解决此类题目的主要解题思路.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有30 种不同的填法.【分析】此题根据乘法原理进行解答,从6个数中选出5个进行填空,共有6×5种.【解答】解:从6个数中选出5个进行填空,共有:6×5=30(种);故答案为:30.【点评】此题运用了乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是1488 .【分析】据题意可知,这是三个相连的自然数,又7、8、9也是相连的自然数,因此先找到7、8、9的最小公倍数:7×8×9=504,则减9是9的倍数,减8是8的倍数,减7是7的倍数,得到495、496、497是符合要求的.【解答】解:7、8、9的最小公倍数为:7×8×9=504;504﹣7=497,504﹣8=496,504﹣9=495;495+496+497=1488.故填:1488.【点评】任何三个连续自然数(零除外)的最小公倍分别减(或加)这三个数得到的三个连续的自然数分别是这三数的倍数.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是CADBE .【分析】本题可用假设法分两步进行推理:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B 是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.【解答】解:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.即第五名是E;第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.综上可知,第一、二、三、四、五名分别是CADBE.【点评】完成此类题目思路要清晰,根据所给条件中的逻辑关系细心推理,从而得出结论.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:49:14;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十一届小学“希望杯”全国数学邀请赛四年级 第Ⅰ试试题2013年3月17日 上午8:30至10:00以下每题6分,共120分1.计算:4×37×25= 。
2.某种速印机每小时可以印3600张纸,那么印240张纸需要 分钟。
3.若三个连续奇数的和是111,则其中最小的奇数是 。
4.一个数除以3余2,除以4余3,除以5余4,则这样的数中最小的是 。
5.图1是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是 。
6.将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是 厘米,或 厘米。
7.今年,小明12岁,爸爸40岁,在小明 岁的时候,爸爸的年龄是小明的5倍。
8.商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是 元。
9.如图2,将数字4,5,6填入正方体的展开图中,使正方形相对的两个面内数字的和都相等,则A 处应该填 ,B 处应该填 ,C 处应该填 。
10.从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是 ,最小的是 。
11.如图3,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是 平方厘米。
12.2013的质因数中,最大的质因数与最小的质因数的乘积是 。
13.从边长为5的正方形纸片的四个角剪掉四个小长方形后得到图4,得到新图形的周长是 。
图1图2图3图6图4图514.喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是。
15.将1到16这16个自然数排成如图5的形状,如果每条斜线是的4个数的和相等,那么a-b-c+d+e+f-g= 。
16.行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正(填东、西、南、北)方向海里处。
第九届“希望杯”全国数学邀请赛四年级 第1试2011年3月13日以下每题6分,共120分。
1. 计算:(7777+8888)÷5—(888—777)×3= . 2. 计算:1+11+21+…+1991+2001+2011= .3. 在小于30的质数中,加3以后是4的倍数的是 .4. 小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 倍. 5. 既是6的倍数又是8的倍数的所有两位数的和是 .6. 四年级一班2个小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这两个小组中既不会打乒乓球又不会下象棋的有 人. 7. 按照左侧四个图中数的规律,在第五个图中填上适当的数:6135241642534253161642538. 已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200.则这两个被改动的数以外的7个数的乘积是 .9. 如图1,△ABC 的面积为36,点D 在AB 上,BD=2AD ,点E 在DC 上,DE=2EC ,则△BEC 的面积是 .EDCBAO60︒20︒ED C BAFB图1 图2 图310.今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大 岁.11.某次考试,A 、B 、C 、D 、E 五人的平均分是90分.若A 、B 、C 的平均分是86分,B 、D 、E 的平均分是95分,则B 的得分是 .12.如图2,已知直线AB 和CD 交于点O ,若∠AOC=20°,∠EOD=60°,则∠AOE= °,∠BOC= °13.如图3,四边形ABCD 与CEFG 是边长相等的正方形,且B 、C 、G 在一条直线上,则图中共有 个正方形,个等腰直角三角形.14.一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 千克,桶重 千克.15.某个两位数的个位数字和十位数字的和是12,个位数字和十位数字交换后所得两位数比原数小36,则原数是 .16.王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么他来回都坐车,则需 分钟.17.图4中“C ”形图形的周长是 厘米.图418.如图5,从1,2,3,4,5,6,中选出5个数填在图中的空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有 种不同的填法.19.三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是 .20.甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D ,第五名是E .” 乙:“第二名是A ,第四名是C .” 丙:“第三名是D ,第四名是A .” 丁:“第一名是C ,第三名是B .” 戊:“第二名是C ,第四名是B .”若每个人都只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是 .2012年“希望杯”全国数学邀请赛四年级初试试题1. 小慧从开始站立的A 点向西走了15米,到达B 点,接着从B 点向东走了23米,到达C 点,那么从C 点到A 点的距离是______米。
2. 长方形MNPQ 中,MN=3,MQ=4,过它的中心O (对角线MP 和NQ 的交点) 画一条直线,长方形MNPQ 被分成两个相同的图形,它们的形状是_______。
3. 如果a 表示一个三位数,b 表示一个两位数,那么,a+b 最小是( ),a+b 最大是( ),a-b 最小是( ),a-b 最大是( )。
4. 一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是( )分。
5. 如果今天是星期五,那么从今天算起,57天后的第一天是星期( )。
6. 如图1所示,5个相同的两位数AB 相加得两位数MB ,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则AB =( )77. 一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有()种。
8. 某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是()9. 只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等。
那么,比40大并且比50小的质数是(),小于100的最大的质数是().10. 如图2,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有()个,面积为8S的正方形有()个。
C11.在一个长方形内,任意画一条直线,长方形被分成两部分(如图3),如果画三条互不重合的直线,那么长方形至少被分成()部分,最多被分成()部分。
12.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有()块糖果。
13.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角。
那么一杯饮料的原价是()元。
14.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子共有()个.15.小兰将连续偶数2、4、6、8、10、12、14、16、…逐个相加,得结果2012.验算时发现漏加了一个数,那么,这个漏加的数是()。
16. A、B、C、D四个盒子中依次放有8,6,3,1个球,第1个小朋友找到放球最少的盒子,然后从其他盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其他盒子中各取一个球放入这个盒子,….,当第50位小朋友放完后,A盒中球的个数是____.17. 如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是_______。
18. 用步枪射击,发10发子弹,每击中靶心一次奖励2发子弹;用手枪射击,发14发子弹,每击中靶心一次奖励4发子弹。
小王用步枪射击,小李用手枪射击,当他们把发的和奖励的子弹都打完时,两人射击的次数相等,如果小王击中靶心30次,那么小李击中靶心_____次。
19. 东方红小学2012年的升旗时间因日期不同而不同,规定:1月1日到1月10日恒定为早晨7:13;1月11日到6月6日,从早晨7:13逐渐提前到4:46,每天依次提前1分钟;6月7日到6月21日,恒定为早晨4:46。
则今天(3月11日)东方红小学的升旗时间是______点______分。
20. 如图所示的电子时钟可显示从00:00:00到23:59:59的时间,在一昼夜内(24小时)钟表上显示的时间恰由数字1,2,3,4,5,6组成的共有_________秒。
第十一届2013年“希望杯”全国数学邀请赛四年级第Ⅰ试试题2013年3月17日以下每题6分,共120分1.计算:4×37×25=( )。
2.某种速印机每小时可以印3600张纸,那么印240张纸需要( )分钟。
3.若三个连续奇数的和是111,则其中最小的奇数是( )。
4.一个数除以3余2,除以4余3,除以5余4,则这样的数中最小的是( )。
5.图1是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是( )。
6.将两个长4厘米、宽2厘米的长方形拼在一起(彼此不重叠),组成一个新长方形,则新长方形的周长是( )厘米,或( )厘米。
7.今年,小明12岁,爸爸40岁,在小明( )岁的时候,爸爸的年龄是小明的5倍。
8.商店按每个60元购进了50个足球,全部售出后获利1950元,则每个足球的售价是( )元。
9.如图2,将数字4,5,6填入正方体的展开图中,使正方形相对的两个面内数字的和都相等,则A 处应该填( ),B 处应该填( ),C 处应该填( )。
10.从九位数798056132中任意划去4个数字,使剩下的5个数字顺次组成5位数,则所得五位数最大的是( ),最小的是( )。
11.如图3,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是( )平方厘米。
12.2013的质因数中,最大的质因数与最小的质因数的乘积是( )。
13.从边长为5的正方形纸片的四个角剪掉四个小长方形后得到图4,得到新图形的周长是( )。
14.喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是( )。
15.将1到16这16个自然数排成如图5的形状,如果每条斜线是的4个数的和相等,那么a -b -c+d+e+f -g=( )。
16.行驶在索马里海域的商船发现在它北偏西60°方向50海里处有一海盗船,于是商船向在它南偏西60°方向50海里处的护航舰呼救,此时,护航舰在海盗船的正( )(填东、西、南、北)方向( )海里处。
17.A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成六条线段,已知这六条线段的长度分别是12、18、30、32、44、62 (单位:厘米),那么线段BC的长度是()厘米。
18.图6中共有三角形()个。
19.老师为联欢会准备水果,苹果每箱20个,桔子每箱30个,香蕉每箱40根,班里共有50个学生,要求每名学生都分到a个苹果,a个桔子,a根香蕉(a是整数),且没有剩余,那么老师至少要准备()箱苹果,()箱桔子,()箱香蕉。
(答案用整数表示)20.12点的时候时针和分针的夹角是0度,此后,当时针和分针第6次成90度夹角的时刻是()。
(12小时制)附加题1.用An表示7×7×7×7×…×7(n个7相乘)的结果的个位数字,如A1=7,A2=9, A3=3,…,则A1 +A2 +A3 +…+ A2013=()。
2.如图,在5×5的方格纸的20个格点处各钉有1枚钉子,以这些钉子中的某四个为顶点用橡皮筋围成正方形,一共可以围成()个正方形。
第十二届“希望杯”数学四年级第1试试题 2014年3月16日以下每题6分,共120分。
1、过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班级共有名。
2、买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元 __角。