量子物理B班习题课
- 格式:ppt
- 大小:409.50 KB
- 文档页数:14
量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。
但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。
量子力学课后习题详细解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第一章 量子力学基础习题课姓名__________________;班级__________________;学号__________________。
一、是非题:1、微观粒子具有波粒二象性是指光的波性和电子的粒性。
2、波函数平方有物理意义, 但波函数本身是没有物理意义的。
3、对函数 Ψ=cos χ,p x 有确定值, p 2x 没有确定值,只有平均值。
4、在 内找到电子的几率为 。
5、在一维势阱中,当粒子的质量m 和势阱宽度l 愈小时,则能级间隔愈大,量子效应显著。
6、定态就是微观粒子处于静止状态,因此,定态的完全态函数与时间无关。
7、当电子处于 的本征态时,多次测量其能量,结果完全一致。
二、填空题1、首先提出能量量子化假定的科学家是 。
2、在电子衍射实验中, 对一个电子来说,代表 。
3、合格的波函数所应具有的条件为 、 、 。
4、光波粒二象性的关系式为_____________________。
5、一粒子在无限深势阱中运动,当处于基态时,在 处,几率密度最大。
6、实物微粒波动性假设是由 提出的,实物粒子的波 是 波。
7、一组正交、归一的波函数 ,…。
正交性的数学 表达式为 ,归一性的表达式为 。
8、微观体系的零点能是指____________________的能量。
9、若将一维势阱模型处理π电子时,E (乙烯) E (丁二烯)。
10、在量子力学中如对某一微观体系测量其某力学量能得到一确定值,则这个值就是该力学量所对应算符的 ,这个状态就是该力学量的 。
11、在量子力学中,计算力学量的主要途径是求这力学量的平均值,当体系处于它的本征态时这个平均值就是 值。
12、电子在一维势阱中运动n=3,节点数为 。
13、普朗克常数是自然界的一个基本常数,它的数值: 。
14、画出电子在一维势阱中运动的能级图 。
d τ*ψψH ˆ123,,ψψψ2ψ三、计算题1、计算波长λ=600nm 的可见光的光子的能量和质量。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 λνc =, (2)||λνρρλd d v =, (3)有(),118)(|)(||52-⋅=⋅===kThc v v ehc cd c d d dvλνλλπλλρλλλρλρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcd d λλλλλπλρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯≈-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解:根据德布罗意波粒二象性的关系,可知λh P =。
所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0⨯=<<),满足ek m p E 22=, 因此利用非相对论性的电子的能量—动量关系式,有nmm mE c m hc E m h ph e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯====--λ在这里,利用了m eV hc ⋅⨯=-61024.1, eV c m e 621051.0⨯=。
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 λνc =, (2)||λνρρλd d v =, (3)有(),118)(|)(||52-⋅=⋅===kThc v v ehc cd c d d dvλνλλπλλρλλλρλρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcd d λλλλλπλρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯≈-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解:根据德布罗意波粒二象性的关系,可知λh P =。
所考虑的粒子是非相对论性的电子(动能eV c m E e k 621051.0⨯=<<),满足ek m p E 22=, 因此利用非相对论性的电子的能量—动量关系式,有nmm mE c m hc E m h ph e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯====--λ在这里,利用了m eV hc ⋅⨯=-61024.1, eV c m e 621051.0⨯=。
习题13-1设太阳就是黑体,试求地球表面受阳光垂直照射时每平方米得面积上每秒钟得到得辐射能。
如果认为太阳得辐射就是常数,再求太阳在一年内由于辐射而损失得质量。
已知太阳得直径为1、4×109 m ,太阳与地球得距离为1、5×1011 m ,太阳表面得温度为6100K 。
【解】设太阳表面单位面积单位时间发出得热辐射总能量为0E ,地球表面单位面积、单位时间得到得辐射能为1E 。
()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失得质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔得辐出度为22、8 W/cm 2,试求炉内温度。
【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体得温度16000T = K ,问1350λ= nm 与2700λ= nm 得单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 得单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。
第十七章 量子物理基础17–1 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 。
解:将炉壁小孔看成黑体,由斯特藩—玻耳兹曼定律()4T T M B σ=得炉内的温度为3484410416.11067.5108.22)(⨯=⨯⨯==-σT M T B K17–2 人体的温度以36.5︒C 计算,如把人体看作黑体,人体辐射峰值所对应的波长为 。
解:由维恩位移定律b T =m λ得人体辐射峰值所对应的波长为33m 10363.95.30910898.2⨯=⨯==-Tb λnm 17–3 已知某金属的逸出功为A ,用频率为1ν的光照射该金属刚能产生光电效应,则该金属的红限频率0ν= ,遏止电势差Uc = 。
解:由爱因斯坦光电效应方程W m h +=2m 21v ν,A W =,当频率为1ν刚能产生光电效应,则0212m =v m 。
故红限频率 h A /0=ν遏止电势差为()01011ννννν-=-=-=eh e h e h e W e h U c 17–4 氢原子由定态l 跃迁到定态k 可发射一个光子,已知定态l 的电离能为0.85eV ,又已知从基态使氢原子激发到定态k 所需能量为10.2eV ,则在上述跃迁中氢原子所发射的光子的能量为 eV 。
解:氢原子的基态能量为6.130-=E eV ,而从基态使氢原子激发到定态k 所需能量为E ∆=10.2eV ,故定态k 的能量为eV 4.32.106.130-=+-=∆+=E E E k又已知eV 85.0-=l E ,所以从定态l 跃迁到定态k 所发射的光子的能量为eV 55.2=-=k l E E E17–5 一个黑体在温度为T 1时辐射出射度为10mW/cm 2,同一黑体,当它的温度变为2T1时,其辐射出射度为[ ]。
A .10mW/cm 2B .20mW/cm 2C .40mW/cm 2D .80mW/cm 2E .160mW/cm 2解:由斯特藩—玻耳兹曼定律,黑体的总辐射能力和它的绝对温度的四次方成正比,即()4T T M B σ=故应选(E )。
练习二十四 热辐射一、选择题1. 黑体的温度升高一倍,它的辐射出射度(总发射本领)增大 (A) 15倍. (B) 7倍. (C) 3倍. (D) 1倍.3. 在加热黑体过程中,其最大单色辐出度对应的波长由0.8μm 变到0.4μm ,则其辐射出射度增大为原来的(A) 2倍. (B) 4倍. (C) 16倍. (D) 8倍.4. 在图24.1.的四个图中,哪一个图能定性地正确反映黑体单色辐出度M λ(T )随λ和T 的变化关系,(已知T 2 >T 1)5. 普朗克量子假说是为解释(A) 光电效应实验规律而提出来的. (B) 黑体辐射的实验规律而提出来的. (C) 原子光谱的规律性而提出来的.(D) X 射线散射的实验规律而提出来的.二、填空题1. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm . 现测得太阳的λm1= 0.55μm ,北极星的λm2 = 0.35μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1 :T 2 = .2. 一个100W 的白炽灯泡的灯丝表面积为S = 5.3⨯10-5m 2 . 若将点燃的灯丝看作是黑体,可估算出它的工作温度为 .3. 利用普朗克公式()1ed 2d )(/52-=T k hc hc T M λλλλπλ进行积分得 ⎰∞==4d )()(T T M T M σλλ(A)(B)图24.1(C)(D)其中σ为一常量. 式中M(T)的物理意义是.三、计算题1. 地球卫星测得太阳单色辐射出射度的峰值在500nm处, 若把太阳看成黑体,求(1) 太阳表面的温度;(2) 太阳辐射的总功率;(3) 垂直射到地球表面每单位面积的日光功率.(地球与太阳的平均距离为1.5⨯108km,太阳的半径为6.67⨯105km)2. 宇宙大爆炸遗留在宇宙空间的各向同性的均匀背景辐射相当于3K的黑体辐射.求(1) 此辐射的光谱辐射出射度极大值所对应的频率;(2) 地球表面接受此辐射的功率.(地球半径R E=6.37×106m)练习二十五光电效应康普顿效应一、选择题1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是(A) 535nm.(B)500nm.(C)435nm.(D) 355nm.2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射. 若反冲电子的动能为0.1MeV,则散射光波长的改变量∆λ与入射光波长λ0之比值为(A) 0.20.(B) 0.25.(C) 0.30.(D) 0.35.4. 下面这此材料的逸出功为:铍,3.9eV;钯,5.0eV;铯,1.9eV;钨,4.5eV.要制造能在可见光(频率范围为3.9⨯1014Hz-7.5⨯1014Hz)下工作的光电管,在这此材料中应选:(A) 钨. (B) 钯.(C) 铯. (D) 铍.5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此过程,在以下几种理解中,正确的是:(A)光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程.(B)两种效应都相当于电子与光子的弹性碰撞过程.(C)两种效应都属于电子吸收光子的过程.(D)两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律.二、填空题1. 光子的波长为λ,则其能量E = ;动量的大小为p = ; 质量为 .2. 已知钾的逸出功为2.0eV, 如果用波长为λ=3.60⨯10-7m 的光照射在钾上,则光电效应的遏止电压的绝对值|U a | = ,从钾表面发射的电子的最大速度v m = .3. 康普顿散射中,当散射光子与入射光子方向成夹角θ = 时,光子的频率减少得最多;当θ = 时,光子的频率保持不变.三、计算题1. 波长为λ的单色光照射某金属表面发生光电效应,已知金属材料的逸出功为A ,求遏止电势差;今让发射出的光电子经狭缝S 后垂直进入磁感应强度为B 的均匀磁场, 如图25.1所示,求电子在该磁场中作圆周运动的最大半径R .(电子电量绝对值为e ,质量为m )2. 用波长λ0 =0.1nm 的光子做康普顿实验.(1)散射角ϕ= 90︒的康普顿散射波长是多少?(2)分配给反冲电子的动能有多大?练习二十六 德布罗意波 不确定关系一、选择题1. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.04nm ,则U 约为:(A) 150V . (B) 330V . (C) 630V . (D) 940V .2. 波长λ =500nm 的光沿x 轴正向传播,若光的波长的不确定量Δλ=10-4nm, 则利用不确定关系式∆x ∆p x ≥h 可得光子的坐标的不确定量至少为(A) 25cm . (B) 50cm . (C) 250cm .(D) 500cm .3. 如图26.1所示,一束动量为p 的电子,通过缝宽为a 的狭缝,在距离狭缝为L 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于:(A) 2a 2/L .图25.1(B) 2ha /p . (C) 2ha /(Lp ). (D) 2Lh /(ap ).4. 静止质量不为零的微观粒子作高速运动,这时粒子物质波波长λ与速度v 有如下关系: (A) 2211cv -∝λ. (B) λ ∝ 1/v .(C) λ ∝ v .(D) 22v c -∝λ.5. 关于不确定关系∆x ∆p ≥ћ有以下几种理解: (1) 粒子的动量不可能确定; (2) 粒子的坐标不可能确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:(A) (1)、(2). (B) (3)、(4). (C) (2)、(4). (D) (4)、(1). 二、填空题1. 氢原子在温度为300K 时,其方均根速率所对应的德布罗意波长是 ;质量为m =10-3kg,速度v =1m/s 运动的小球的德布罗意波长是 .2. 电子的康普顿波长为λc =h /(m e c )(其中m e 为电子静止质量, c 为光速, h 为普朗克恒量). 当电子的动能等于它的静止能量时,它的德布罗意波长λ= λc .3. 在电子单缝衍射实验中,若缝宽为a = 0.1nm ,电子束垂直射在单缝上,则衍射的电子横向动量的最小不确定量∆p y = N·s .三、计算题1. α 粒子在磁感应强度为B =0.025T 的均匀磁场中沿半径为R =0.83cm 的圆形轨道上运动. (1)试计算其德布罗意波长(α 粒子的质量m α=6.64⨯10-27kg);(2)若使质量m =0.1g 的小球以与α粒子相同的速率运动,则其波长为多少. 2. 质量为m e 的电子被电势差U 12=106V 的电场加速. (1)如果考虑相对论效应,计算其德布罗意波的波长λ0;(2)若不考虑相对论,计算其德布罗意波的波长λ.其相对误差(λ-λ0)/λ0是多少?练习二十七氢原子理论薛定谔方程一、选择题1. 已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56eV.(B) 3.41eV.(C) 4.25eV.(D) 9.95eV.2. 氢原子光谱的巴耳末系中波长最长的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为(A) 9/8.(B) 19/9.(C) 27/20.(D) 20/27.3. 根据氢原子理论,氢原子在n =5的轨道上的动量矩与在第一激发态的轨道动量矩之比为:(A) 5/2.(B) 5/3.(C) 5/4.(D) 5.4.将波函数在空间各点的振幅同时增大D倍,则粒子在空间的分布几率将(A) 增大D2.倍(B) 增大2D.倍(C) 增大D.倍(D) 不变.5.一维无限深势阱中,已知势阱宽度为a . 应用不确定关系估计势阱中质量为m的粒子的零点能量为:(A) ћ/(ma2)(B) ћ2/(2ma2)(C) ћ2/(2ma).(D) ћ/(2ma2).二、填空题2. 设描述微观粒子运动的波函数为ψ(r, t),则ψψ﹡表示,ψ(r, t)须满足的条件是,E3 E2其归一化条件是 .3. 粒子在一维无限深势阱中运动(势阱宽度为a ),其波函数为ψ(x )=axa π3sin 2 . (0 < x < a ) 粒子出现的概率最大的各个位置是x = .三、计算题1. 当氢原子从某初始状态跃迁到激发能为∆E = 10.19eV 的状态时,发射出光子的波长是λ = 486nm ,试求该初始状态的能量和主量子数.2.一粒子被限制在相距为l 的两个不可穿透的壁之间,如图27.2所示. 描写粒子状态的波函数为ψ = cx ( l -x ),其中c 为待定常量,求在0~ l /3区间发现粒子的概率.练习二十八 近代物理习题课一、选择题1. 如图28.1所示,一维势阱中的粒子可以有若干能态,如果势阱的宽度L 缓慢地减小,则(A) 每个能级的能量减小. (B) 能级数增加.(C) 每个能级的能量保持不变. (D) 相邻能级间的能量差增加.2. 根据量子力学原理,氢原子中电子绕核运动动量矩的最小值为 (A)2ћ.(B) ћ. (C) ћ /2. (D) 0.4. 设某微观粒子运动时的能量是静止能量得k 倍,则其运动速度的大小为 (A) c /(k -1).图28.1图27.2(B) c 21k -/k . (C) c 12-k /k . (D) c ()2+k k /(k+1).5. 把表面洁净的紫铜块、黑铁块和白铝块放入同一恒温炉膛中加热达到热平衡. 炉中这三块金属对某红光的单色辐出度(单色发射本领)和单色吸收比(单色吸收率)之比依次用M 1/a 1、M 2/a 2和 M 3/a 3表示,则有(A) M 1/a 1>M 2/a 2>M 3/a 3. (B) M 1/a 1=M 2/a 2=M 3/a 3. (C) M 3/a 3>M 2/a 2>M 1/a 1. (D) M 2/a 2>M 1/a 1>M 3/a 3.二、填空题1. 氢原子基态的电离能是 eV . 电离能为0.544eV 的激发态氢原子,其电子处在n = 的轨道上运动.2. 分别以频率ν1、ν2的单色光照射某一光电管,若ν1>ν2(ν1、ν2均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1 E 2(填<、=、>),为阻止光电子到达阳极,所加的遏止电压|U a 1| |U a 1|(填<、=、>),所产生的饱和光电流I S 1 I S 2(填<、=、>).3. 夜间地面降温主要是由于地面的热辐射.如果晴天夜里地面的温度为27℃,按黑体辐射计算,1m 2地面散失热量的速率为 .三、计算题1. 氢原子光谱的巴耳末线系中,有一光谱线的波长为λ = 434nm ,试求: (1) 与这一谱线相应的光子能量为多少电子伏特.(2) 该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少.(3) 最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线(不必计算波长值). 请在氢原子能级图中表示出来,并说明波长最短的是哪条谱线.2.铀核的线度为7.2×10-15m .试用不确定关系估算核中α粒子(m α=6.7×10-27kg)的动量值和动能值.。
量子物理课堂习题 Lecture 1: 旧量子论 1. 求氘原子Hα
线n=2到 n=3的波数
2. Ce的逸出功是1.9eV, 求阈值频率和波长 3. 对于氢原子、一次电离的氦离子 He+和两次电离的锂粒子 Li++,分别计算它们的: a) 第一、第二波尔轨道半径及电子在这些轨道上的速度 b) 电子在基态的结合能 c) 第一激发态退激到基态所放光子的波长
Lecture 2:波粒二象性不确定性原理 1. 已知琴弦振动的驻波条件为𝑛𝜆2=𝑎(n=1,2,…, a 为弦长)。按照“定态即驻波”的说法,束缚在长宽高分别为 a,b,c 的三维势箱中的粒子(质量为 m)的定态能量取值是多少? 2. 一原子的激发态发射波长为 600nm 的光谱线,测得波长的精度为∆𝜆/𝜆=10−7,试问该原子态的寿命为多长? 3. 1,3—丁二烯分子长度a≈7Å,试用测不准关系估计其基电子态能级的大小(量级)
Lecture 3: 波函数薛定谔方程 1. 下列哪些函数不是品优函数,说明理由:𝑓(𝑥)= 𝑥2,𝑒−|𝑥|,sin(𝑥),𝑒−𝑥2 2. 试写出下列体系的定态薛定谔方程:(a)He 原子(b)H2 分子 3. 写出一个被束缚在半径为a的圆周上运动的粒子的 Schrödinger 方程,并求其解
Lecture 4: 势箱模型 1. (2.7)Consider a particle with quantum number n moving in a one-dimensional box of length 𝑙. (a) Determine the probability of finding the particle in the left quarter of the box. (b)For what value of n is this probability a maximum? (c) What is the limit of this probability for 𝑛→∞? (d) What principle is illustrated in (c)? 2. (2.17)A crude treatment of the pi electrons of a conjugated molecule regards these electrons as moving in the particle-in-a-box potential of Fig. 2.1, where the box length is somewhat more than the length of the conjugated chain. The Pauli exclusion principle (Chapter 10) allows no more than two electrons to occupy each box level. (These two have opposite spins.) For 1,3-butadiene, CH2 =CHCH=CH2, take the box length as 7.0 A and use