2008—2017年上海历年数学中考真题
- 格式:doc
- 大小:2.29 MB
- 文档页数:48
上海市2016年初中毕业统一学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】由a 与3互为倒数,得a 是13,故选:D .【提示】根据乘积为1的两个数互为倒数,可得答案.【考点】倒数的概念2.【答案】A【解析】与2a b 是同类项的为22a b ,故选A .【提示】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【考点】同类项的概念3.【答案】C【解析】∵抛物线22y x =+向下平移1个单位,∴抛物线的解析式为221y x =+-,即21y x =+.【提示】根据向下平移,纵坐标相减,即可得到答案.【考点】抛物线的平移4.【答案】C【解析】(223241056)20⨯+⨯+⨯+⨯÷(464030)2080204=+++÷=÷=.【考点】平均数的概念5.【答案】A 【解析】如图所示:Q 在ABC △中,AB AC =,AD 是角平分线,BD DC ∴=,111,,,,222AB AC DC BC AC AD DC BC AD a b =∴=∴=+=+=+u u u u u r u u u r u u u r u u u r u u u r Q【考点】平面向量6.【答案】B【解析】连接AD ,∴5AD =,∵A e 的半径长为3,D e 与A e 相交,∴532r -=>,∵7BC =,∴4BD =,∵点B 在D e 外,∴4r <,∴D e 的半径r 的取值范围是2<r <4.【考点】圆与圆的位置关系第Ⅱ卷二、填空题7.【答案】2a【解析】32a a a ÷=【提示】根据同底数幂相除,底数不变指数相减进行计算即可求解.【考点】同底数幂的除法8.【答案】2x ≠ 【解析】函数32y x =-的定义域是:2x ≠. 【提示】直接利用分式有意义的条件得出答案.【考点】函数定义域的确定9.【答案】5x =【解析】方程两边平方得,14x -=,解得:5x =,把5x =代入方程,则5x =是原方程的解.【提示】利用两边平方的方法解出方程,检验即可.【考点】无理方程的解法10.【答案】2-【解析】原式=12(3)1322⨯+-=-=-. 【提示】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【考点】代数式求值11.【答案】1x <【解析】2510x x ⎧⎨-⎩<<,解①得52x <,解②得1x <,则不等式组的解集是1x <. 【考点】解一元一次不等式组12.【答案】94【解析】因为意愿二次方程有两个相等的实数根,2=(3)41940k k ∆--⨯⨯=-=.【考点】一元一次方程中待定系数取值范围的确定13.【答案】0k >【解析】∵反比例函数(0)k y k x=≠,如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小.∴k 的取值范围是:0k >.【提示】直接利用当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当0k >,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大,进而得出答案.【考点】反比例函数的性质14.【答案】13【解析】掷一次骰子,向上的一面出现的点数是3的倍数的概率2163==. 【提示】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【考点】概率公式15.【答案】14【解析】如图所示: 2111,,,,,()224ADE ABC AD DB AE EC DE BC DE BC ADE ABC S S ==∴=∴∴==Q :△△∥△△:.【考点】三角形中位线定理及相似三角形16.【答案】6000【解析】所有的调查对象为4800÷40%=12000,公交前往的人数为12000×50%=6000.【提示】根据自驾车人数除以百分比,可得答案.【考点】统计图的意义的运用17.【答案】208【解析】由题意可得:90AD =Q ,30BAD ∠=︒,9051.9BD ∴==≈,60DAC ∠=︒Q ,90155.7CD ∴=≈,208BC BD CD ∴=+≈.【考点】直角三角形的应用18.【解析】设AB x =,则CD x =,2AC x '=+,AD BC Q ∥,C D A D BC A C ''∴=',即222x x =+,解得:121,1x x ==(舍去),1,,tan ,tan '2BC AB CD ABA BA C BA C ABA A C ∴∠'=∠'∴∠'==∴∠'Q ∥=.三、解答题19.【答案】6【解析】原式1296=--=-【提示】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【考点】实数的运算20.【答案】1x =-【解析】去分母得2244x x +-=-,移项、合并同类项得220x x --=,解得:122,1x x ==-,经检验12x =是增根,舍去;21x =-是原方程的根,所以原方程的根是1x =-.【提示】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【考点】分式方程21.【答案】(1)(2)12【解析】(1)2,3,2,90,3,45,AD CD AC AD Rt ABC ACB AC BC A AB ==∴=∠=︒==∴∠=︒=Q Q 在△中,,90,45,cos45DE AB AED ADE A AE AD BE AB =⊥∴∠=︒∠=∠=︒∴=︒==gAE -=(2)过点E 作,EH BC ⊥垂足为点H ,如图所示:90,45,Rt BEH EHB B ∠=︒∠=︒Q 在△中,•cos452,EH BH BE ∴==︒==3BC =Q ,1CH ∴=,1,cot 2CH Rt CHE ECB EH ∠==在△中,即ECB ∠的余切值为12.【考点】三角函数,勾股定理及利用三角函数解决数学问题22.【答案】(1)9090(16)B y x x =-≤≤(2)150(千克)【解析】解:(1)设B y 关于x 的函数解析式为(0)B y kx b k =+≠,将点(1,0),(3,180)代入得:03180k b k b +=⎧⎨+=⎩,解得:90,90k b ==-.所以函数解析式为909016B y x x =-≤≤(). (2)设A y 关于x 的解析式为1A y k x =,根据题意得:13180k =,解得:160k =,所以60A y x =.当5x =时,605300A y =⨯=(千克);6x =时,90690450B y =⨯-=(千克).450300150-=(千克)【考点】一次函数的应用23.【答案】(1)证明: »»O AB ACAB ACB ACBAE BCEAC ACBB EACBD AEABD ABD AD CE=∴=∴∠=∠∴∠=∠∴∠=∠=∴≅=e Q Q Q 在中,∥△△,(2)连接AO 并延长,交边BC 于点H ,»»,,,,,,,,,AB AC r OA AH BC BH CH AD AG DH HG BH DH CH GH BD CG BD AE CG AE CG AE ==∴⊥∴==∴=∴===∴=Q Q Q Q ﹣﹣,即∥ ∴四边形AGCE 是平行四边形.【考点】圆的性质,全等三角形的判定及性质,平行四边形的判定24.【答案】(1)245y x x -=-(2)18(3)3(0,)2【解析】(1)Q 抛物线25y ax bx =+-与y 轴交于点C , (0,5)551C OC OC OBOB ∴∴==∴=Q -又点B 在x 轴的负半轴上,(1,0)B ∴-,Q 抛物线经过点(4,5)A -和点(1,0)B -,Q 1645550a b a b +-=-⎧⎨--+⎩, 解得14a b =⎧⎨=-⎩, ∴这条抛物线的表达式为245y x x -=-.(2)由245y x x -=-,得顶点D 的坐标为(2,9)-,连接AC ,Q 点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,114510448,2218ABC ACD ABC ACD ABCD S S S S S =⨯⨯==⨯⨯=∴=+=四△△△形△又,边 (3)过点C 作CH AB ⊥,垂足为点H ,110,2ABC S AB CH AB CH =⨯⨯==∴=Q △,90,2tan 3,90,23,,,32Rt BCH BHC BC BH CH CBH BH BO Rt BOE BOE tan BEO EO BO BEO ABC EO EO ∠=︒===∴∠==∠=︒∠=∠=∠∴==Q Q 在△中.在△中,得 ∴点E 的坐标为3(0,)2.【考点】二次函数,勾股定理,三角函数的综合应用25.【答案】(1)过点D 作DH AB ⊥于H ,如图1,12DH BC CD BH ∴===,,在Rt ADH △中,9AH ==,16977BH AB AH CD ∴=-=-=∴= (2)当EA EG =时,则AGE GAE ∠=∠,AGE DAB ∠=∠Q ,GAE DAB ∴∠=∠,∴G 点与D 点重合,即ED EA =,作EM AD ⊥于M ,如图1,则11522AM AD ==,MAE HAD ∴∠=∠,Rt AME Rt AHD ∴:△△,::AE AD AM AH ∴=,即15:1592AE =:,解得252AE =; 当GA GE =时,则AGE AEG ∠=∠,AGE DAB ∠=∠Q ,而AGE ADG DAG ∠=∠+∠,DAB GAE DAG ∠=∠+∠,GAE ADG ∴∠=∠,AEG ADG ∴∠=∠,15AE AD ∴==.综上所述,AEC △是以EG 为腰的等腰三角形时,线段AE 的长为252或15; (3)作DH AB ⊥于H ,如图2,则9AH =,9HE AE AH x =-=-,在Rt ADE △中,DE =, AGE DAB ∠=∠Q ,AEG DEA ∠=∠,EAG EDA ∴=△△,::EG AE AE ED ∴=,即:EG x x =2EG ∴=,2DG DE EG ∴=-=DF AE ∴∥,DGF EGA ∴:△△,::F AE DG EG ∴=,即22:y x ⎫=, 2251825(9)2x y x x -∴=<<. 【考点】梯形的性质,相似三角形的判定及性质,等腰三角形的分类讨论,勾股定理,三角函数。
2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是()A.0 B. C.﹣2 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,﹣2,是有理数,数无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2aa2=2a3.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2aa2=2×1aa2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.不等式组的解集是x>3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.方程=1的解是x=2.【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.如果反比例函数y= (k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y= (k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:= .故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.,∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120万元.【分析】利用一月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是×360=120(万元).故答案是:120.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设= ,= ,那么向量用向量、表示为+2 .【分析】根据= + ,只要求出即可解决问题.【解答】解:∵AB∥CD,∴= = ,∴ED=2AE,∵= ,∴=2 ,∴= + = +2 .【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.一副三角尺按如图的位置摆放(顶点 C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC 是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴ =cos30°= ,∴λ6= ,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.计算: +(﹣1)2﹣9 +()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3 +2﹣2 +1﹣3+2= +2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:﹣ =1.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB= 计算即可;(2)由EF∥AD,BE=2AE,可得 = = = ,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB= = =3 ,∴sinB= = = .(2)∵EF∥AD,BE=2AE,∴= = = ,∴= = ,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE= = =5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD 是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180× =45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣ =1,即 =1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB= =m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x= 或x= .∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=ACCD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD= OA= ,∴AD= = ,∴BC=AC=2AD= .(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴= = ,∴= = ,∴AD= ,AB= ,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2= ADOH,S1=S△OAC= ACOH,S3= CDOH,∴(ADOH)2= ACOH CDOH,∴AD2=ACCD,∵AC=AB.CD=AC﹣AD= ﹣,∴()2= (﹣),整理得x2+x﹣1=0,解得x= 或,经检验:x= 是分式方程的根,且符合题意,∴OD= .【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2017年上海市中考数学试卷(含)解析.年上海市中考数学试卷2017分)一、选择题(本大题共6小题,每小题4分,共24)1.(4 分)下列实数中,无理数是(..﹣B2 D. CA.0)分)下列方程中,没有实数根的是( 2.(422222x+2=0﹣﹣2x+1=0 DA.x.﹣2x=0Bx.﹣2x﹣1=0 C.xx)的图象经过第一、二、≠0、b是常数,k3.(4分)如果一次函数y=kx+b(k)b应满足的条件是(四象限,那么k、0<,且b.0 Ck>0,且b<0 D.k<0k>A.k0,且b>0 B.<0,且b>) 1、5、6、0、6、、8的中位数和众数分别是( 4.(4分)数据28和和D.58 C.5和6 .A0和6 B.0)5. 4分)下列图形中,既是轴对称又是中心对称图形的是((.等腰梯形 D C.平行四边形 A.菱形B.等边三角形是它的两条对角线,那么下列条件中,、BD4分)已知平行四边形ABCD,AC.6()能判断这个平行四边形为矩形的是(ABDBAC=∠DACBAC=A.∠∠DCA B.∠BAC=∠.∠D.∠BAC=∠ADBC分)分,共48二、填空题(本大题共12小题,每小题42.7.(4分)计算:2a?a=的解集是.8.(4分)不等式组. 9.(4=1分)方程的解是10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那(填“增大”么在这个函数图象所在的每个象限内,y的值随x的值增大而.或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓第2页(共27页)立方米.微克度将是 /个白球,它们除颜色外其个红球、52.(4分)不透明的布袋里有个黄球、312.它都相同,那么从布袋中任意摸出一球恰好为红球的概率是,那么)(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 13.(只需写一个)这个二次函数的解析式可以是.分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所14.(4 示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.,=,设相交于点E=,,分)如图,已知4AB∥CDCD=2AB,AD、BC15.(.表示为用向量、那么向量叠重合,边CAFE与边与(16.4分)一副三角尺按如图的位置摆放(顶点C F n°将三角尺、顶点合,B、CD在一条直线上).DEF绕着点F按顺时针方向旋转. n 的值是 ABEF)<后(0n<180 ,如果∥,那么为圆ABC=4,.分别以点、BAC=3ABCRt4.17(分)如图,已知△,∠C=90°,的半径内,点在⊙心画圆.如果点CAB内切,那么⊙A与⊙外,且⊙在⊙ABB. r 长的取值范围是3第27页(共页))的最短对角线与最长≥4分)我们规定:一个正n边形(n为整数,n18.(4.= λ,那么λ对角线长度的比值叫做这个正n边形的“特征值”,记为6n分)小题,共787三、解答题(本大题共2﹣1分)计算:1910).﹣9+()(.+(﹣1分)解方程:20﹣=1..(10米,中长18ABC,水平横梁BC21.(10分)如图,一座钢结构桥梁的框架是△.BC的中点,且AD⊥高AD6米,其中D是BC柱的值;1)求sinB(,垂足为⊥BC,且AB上,BE=2AEEFEF(2)现需要加装支架DE、,其中点E在的长.,求支架DE点F乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲、(10分)22.(平方米)是一次函数关系,x甲公司方案:每月的养护费用y(元)与绿化面积如图所示.元;绿化面5500 1000平方米时,每月收取费用乙公司方案:绿化面积不超过4元的基础上,超过部分每平方米收取平方米时,积超过1000每月在收取5500元.;(不要求写出定义域)x的函数解析式:y(1)求如图所示的与平方米,试通过计算说明:选择哪家1200)如果某学校目前的绿化面积是(2公司的服务,每月的绿化养护费用较少. 274第页(共页)上BDE是对角线BC,AD=CD,23.(12分)已知:如图,四边形ABCD中,AD∥.EA=EC一点,且是菱形;)求证:四边形ABCD(1是正方形.,求证:四边形ABCDBCE=2:3BE=BC(2)如果,且∠CBE:∠2+bx+cy=﹣x分)已知在平面直角坐标系.(12xOy中(如图),已知抛物线24.,顶点为B,对称轴是直线2,2)x=1经过点A(的坐标;B(1)求这条抛物线的表达式和点mAM,用含在对称轴上,且位于顶点上方,设它的纵坐标为)点Mm,联结(2的余切值;AMB的代数式表示∠轴上.原抛物线在x3)将该抛物线向上或向下平移,使得新抛物线的顶点C(的坐标.Q,如果OP=OQ,求点上一点P平移后的对应点为点Q,AB=AC是⊙O的两条弦,且AC11425.(分)如图,已知⊙O的半径长为,AB、.OA,联结、OCDACBO的延长线交于点页)27页(共5第;∽△ABD(1)求证:△OAD(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S、S、S,如果S是S和S的比322131的长.例中项,求OD页)27页(共6第年上海市中考数学试卷2017参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是().C.﹣.0 B2 D. A【分析】根据无理数、有理数的定义即可判定选择项.,是有理数,0,﹣2【解答】解:是无理数,.故选:B【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,π,无限不循环小数为无理数.如,0.8080080008…(每两个8之间依次多)等形式.01个2.(4分)下列方程中,没有实数根的是()2222﹣x2x=0﹣2x+2=0AB.x﹣2x﹣1=0 C.x﹣2x+1=0 D.x.【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.2﹣4×1×2)0=4>0,方程有两个不相等的实数根,所(﹣【解答】解:A、△=以A选项错误;2B、△=(﹣2)﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;2﹣4×1×1=0=(﹣2),方程有两个相等的实数根,所以C选项错误;C、△2﹣4×1×2=﹣42D、△=(﹣)<0,方程没有实数根,所以D选项正确..D 故选2+bx+c=0(aax【点评】本题考查了根的判别式:一元二次方程≠0)的根与△ 7第27页(共页)2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,=b时,方程无实数根.方程有两个相等的实数根;当△<03.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k >0,且b<0 D.k<0,且b<0根据一次函数的性质得出即可.【分析】【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,.故选B【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,,位于中间位置的数为5,5故中位数为次,最多,出现了2数据6故这组数据的众数是6,中位数是5,.故选C【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.第8页(共27页)) 4分)下列图形中,既是轴对称又是中心对称图形的是( 5.(.等腰梯形 C.平行四边形 DA.菱形 B.等边三角形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.、菱形既是轴对称又是中心对称图形,故本选项正确;A【解答】解:、等边三角形是轴对称,不是中心对称图形,故本选项错误;B、平行四边形不是轴对称,是中心对称图形,故本选项错误;C、等腰梯形是轴对称,不是中心对称图形,故本选项错误.D.A故选【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋度后两部分重合.180转6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()ABDBAC=∠DACC.∠BAC=∠ADBDCAB.∠BAC=∠A.∠BAC=D.∠∠由矩形和菱形的判定方法即可得出答案.【分析】【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;是矩形;,不能判断四边形ABCD、∠BAC=∠ADBD.C故选:【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)23.分)计算:2a?a2a= 47.(【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的指数分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.322.=2×1a?a=2a【解答】解:2a?a页)27页(共9第3.故答案为:2a本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.【点评】分)不等式组4的解集是. x>3 .8(【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.,>36,得:x解:解不等式【解答】2x>,x,得:>2解不等式x﹣2>0,>3则不等式组的解集为x.3故答案为:x>【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(x=2 .4分)方程=1的解是【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】,解:,2x﹣3=1两边平方得,;解得,x=2是方程的根;x=2经检验,.故答案为x=2【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那页(共10第27页)(填“增的值增大而y么在这个函数图象所在的每个象限内,的值随x.减小大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),,03=6>∴k=2×∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓立方米./ 40.5 微克度将是2,再根据有理数的)1﹣10%【分析】根据增长率问题的关系式得到算式50×(混合运算的顺序和计算法则计算即可求解.解:依题意有【解答】2)10%50×(1﹣20.9=50×0.81=50×./立方米)=40.5(微克答:今年PM2.5的年均浓度将是40.5微克/立方米..40.5故答案为:【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其.它都相同,那么从布袋中任意摸出一球恰好为红球的概率是【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概第11页(共27页)率.个白球,它们除颜53个红球、【解答】解:∵在不透明的袋中装有2个黄球、色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.=故答案为:.所求情况数与总情况此题考查了概率公式的应用.解题时注意:概率=【点评】数之比.,那么)0.(4分)已知一个二次函数的图象开口向上,顶点坐标为(,﹣1 13 2﹣1 y=2x.这个二次函数的解析式可以是(只需写一个)2﹣1,由开口向上知a根据顶点坐标知其解析式满足y=ax>0,据此写【分析】出一个即可.【解答】解:∵抛物线的顶点坐标为(0,﹣1),2﹣1,∴该抛武线的解析式为y=ax又∵二次函数的图象开口向上,,a∴>02﹣1y=2x,∴这个二次函数的解析式可以是2﹣1y=2x.故答案为:【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.第12页(共27页)利用二月份的产值除以对应的百分比求得第一季度的总产值,然后求【分析】得平均数.,(万元)25%45%﹣)=240【解答】解:第一季度的总产值是72÷(1﹣.(万元)则该企业第一季度月产值的平均值是×240=80.故答案是:80本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个【点评】扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表,用圆)示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1的扇形面积表示各部分占总数的百分数.,设相交于点E,AD、BC,CD=,15.(4分)如图,已知AB∥,=CD=2AB那么向量表示为+2用向量、.即可解决问题.+,只要求出【分析】根据=,CD解:∵AB∥【解答】,==∴,∴ED=2AE,=∵=2,∴=∴+2.+=第13页(共27页)本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三【点评】角形法则求向量,属于基础题.叠CA与边FE(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边16.n°F按顺时针方向旋转D在一条直线上).将三角尺DEF绕着点B合,顶点、C、.n 45 的值是,那么n后(0<<180 ),如果EF∥AB分两种情形讨论,分别画出图形求解即可.【分析】∠A=45°,时,∠ACE=EF ∥AB解:①如图【解答】1中,.EF∥AB∴旋转角n=45时,∠A=180°,时,∠ACE+AB②如图2中,EF∥∴∠ACE=135°,135=225∴旋转角n=360﹣,<180<∵0n∴此种情形不合题意,45故答案为 2714第页(共页)本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类【点评】讨论的思想思考问题,属于中考常考题型.为圆B,BC=4.分别以点A、,∠C=90°,17.(4分)如图,已知Rt△ABCAC=3的半径与⊙A内切,那么⊙BA心画圆.如果点C在⊙A内,点B在⊙外,且⊙B.r <长r10 <的取值范围是 8上,再根据图B在⊙Ar的值:即当C在⊙A上和当先计算两个分界处【分析】的取值.r形确定内切时,B与⊙AA1【解答】解:如图,当C在⊙上,⊙,AC=AD=3的半径为:⊙A;B⊙的半径为:r=AB+AD=5+3=8页(共第1527页)内切时,与⊙AA2,当B在⊙上,⊙B如图,A的半径为:AB=AD=5⊙;的半径为:r=2AB=10⊙B.10的取值范围是:8<r<∴⊙B的半径长r.10r <<故答案为:8本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确【点评】,所以当3在⊙A上时,半径为两圆内切时,两圆的圆心连线过切点,注意当C半径小,所以当⊙AB在⊙A上时,半径为5内;当时,⊙A半径大于3C在⊙A外.时,B在⊙A于518.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长第页(共1627页).边形的“特征值”,记为λ= λ,那么对角线长度的比值叫做这个正n6n【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.是正六边形的最短的对角线,ECBE是正六边形最长的对角线,易知是等边三角形,∵△OBC∴∠OBC=∠OCB=∠BOC=60°,,∵OE=OC∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∠OCE=30°,∴∠OEC=∴∠BCE=90°,是直角三角形,∴△BEC,=cos30°=∴,∴λ=6.故答案为【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)第17页(共27页)12﹣.﹣(919.(10+分)计算:+)(﹣1)【分析】根据负整数指数幂和分数指数幂的意义计算.3+2﹣2解:原式+2=3﹣+1【解答】.=+2【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.分)解方程:(1020.﹣=1.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.2﹣3x,3﹣x=x)得到【解答】解:两边乘x(x﹣32,﹣3=0﹣2x∴x∴(x﹣3)(x+1)=0,,1∴x=3或﹣经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.的值;sinB1)求((2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.18第27页(共页)计算即可;AB,再根据sinB=1)在Rt△ABD中,利用勾股定理求出【分析】(=,求出=EFBE=2AE)由EF∥AD,、,可得DF=即可利用勾股定理(2解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,AB==,=3∴=∴sinB==.,,BE=2AEEF∥AD(2)∵,∴====,=∴,,BF=6∴EF=4,DF=3∴.=DEF中,=5DE=在Rt△【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家第19页(共27页)公司的服务,每月的绿化养护费用较少.)利用待定系数法即可解决问题;(1【分析】(2)绿化面积是1200平方米时,求出两家的费用即可判断;,则有1)设y=kx+b【解答】解:,(解得,.∴y=5x+400(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为元,200=63005500+4×6400<∵6300∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.第20页(共27页)【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角×=45°,易得∠ABE=45°,和定理可得∠CBE=180可得∠ABC=90°,由正方形是正方形.的判定定理可得四边形ABCD【解答】证明:(1)在△ADE与△CDE 中,,∴△ADE≌△CDE,,∠CDE∴∠ADE=,BC∵AD∥,ADE=∠CBD∴∠,∠CBDCDE=∴∠,∴BC=CD,AD=CD∵,BC=AD∴为平行四边形,∴四边形ABCD,∵AD=CD∴四边形ABCD是菱形;BE=BC)∵(2∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,×∴∠=45°,CBE=180是菱形,ABCD∵四边形∴∠ABE=45°, 2721第页(共页)∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.2+bx+cxy=﹣分)已知在平面直角坐标系(12xOy中(如图),已知抛物线24.经过点A(2,2),对称轴是直线x=1,顶点为B.的坐标;B1)求这条抛物线的表达式和点((2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的余切值;的代数式表示∠AMB(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入2的值;c+2x+c可求得y=﹣x(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将的坐标.Qx的值,则可得到点的纵坐标代入平移后的解析式可求得对应的点Q,x=11【解答】解:()∵抛物线的对称轴为.b=2∴x==1﹣,解得,即=12.﹣y=x+2x+c∴页)27页(共22第.,解得:c=22)代入得:﹣4+4+c=2将A(2,2.﹣x+2x+2∴抛物线的解析式为y=2.+3y=﹣(x﹣1)配方得:∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).,),2,C(1,∵M(1m).2MC=m﹣∴.﹣∠2AMB==m∴cot轴上,,平移后抛物线的顶点坐标在x1,3)(3)∵抛物线的顶点坐标为(个单位.3∴抛物线向下平移了2+2x﹣1,PQ=3.∴平移后抛物线的解析式为y=﹣x,OP=OQ∵∴点O在PQ的垂直平分线上.又∵QP ∥y轴,∴点Q与点P关于x轴对称..的纵坐标为﹣∴点Q22x=﹣x,解得:+2x﹣1=x将y=﹣或x=.代入y=﹣1+2x﹣得:﹣)或(的坐标为(∴点Q.,﹣),﹣【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是第23页(共27页)解题的关键.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.;ABDOAD∽△(1)求证:△(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S、S、S,如果S是S和S的比332211的长.例中项,求OD【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,;ABDOAD∽△由∠ADO=∠ADB,即可证明△(2)如图2中,当△OCD是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证2=AC?CD,列出方程即可解决问题;明AD中,)证明:如图1【解答】(1中,和△AOC在△AOB,∴△AOB≌△AOC,,∠∴∠C=B 24第27页(共页),∵OA=OC∴∠OAC=∠C=∠B,,∠ADB∵∠ADO=.∽△ABD∴△OAD中,①当∠ODC=90°时,2(2)如图,OA=OC⊥AC,∵BD,AD=DC∴,BA=BC=AC∴是等边三角形,ABC∴△在Rt△OAD中,∵OA=1,∠OAD=30°,,∴OA=OD=,AD==∴.∴BC=AC=2AD=BC==,②∠COD=90°,∠BOC=90°,③∠OCD显然≠90°,不需要讨论..综上所述,或BC=(3)如图3中,作OH⊥AC于H,设OD=x.第25页(共27页),∽△DBA∵△DAO,∴==,∴==AB=AD=,,∴的比例中项,SS是S和∵3212,=SS?S∴321?CD?OH,?AC?OH,SAD?OH,=S=S==∵S3△OAC212?CD?OH,=∴(AD?OH)?AC?OH?2=AC?CD,AD∴AD=AC=AB﹣,.CD=AC﹣∵2,?(﹣∴())=2,+x﹣整理得x1=0,x=解得或是分式方程的根,且符合题意,x=经检验:.OD=∴(也可以利用角平分线的性质定理:,黄金分割点的性质解决这个问==题)本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定【点评】和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题. 2726第页(共页)第27页(共27页)。
2017年上海宝山中考数学真题及答案一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0 B.C.﹣2 D.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<04.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2= .8.(4分)不等式组的解集是.9.(4分)方程=1的解是.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣9+()﹣1.20.(10分)解方程:﹣=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案:一、选择题(本大题共6小题,每小题4分,共24分)1.【解答】解:0,﹣2,是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.【解答】解:2a•a2=2×1a•a2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.【解答】解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是×240=80(万元).故答案是:80.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.【解答】解:∵AB∥CD,∴==,∴ED=2AE,∵=,∴=2,∴=+=+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360﹣135=225,∵0<n<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=3,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴=cos30°=,∴λ6=,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.②∠COD=90°,∠BOC=90°,BC==,③∠OCD显然≠90°,不需要讨论.综上所述,BC=或.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.(也可以利用角平分线的性质定理:==,黄金分割点的性质解决这个问题)【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2017年上海市初中毕业统一学业考试数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1、B ;考察方向:基础概念。
知识内容:本题考查无理数的定义,选项设置分别为“自然数/整数”、“无理数”、“负数/整数”、“分数”2、D ;考察方向:基础知识和基本技能/理解初中数学有关基础知识知识内容:方程与代数/一元二次方程根的判别式方法:本题考查一元二次方程的根与判别式的关系。
经计算,D 选项:40∆=-<。
本题也可通过配方的方式,得到答案。
3、B ;考察方向:基础概念,函数图像。
方法:数形结合。
知识内容:本题考查一次函数图像性质,经过二、四象限,可知0k <,经过一、二象限,可知0b >。
4、C ;考察方向:基础概念。
方法:数据重排。
知识内容:本题考查统计量基本概念,将数据重排:0,1,2,5,6,6,8,可看出中位数为5,众数为6。
点评:A 选项如果不进行重排,可作为干扰项;但如果本题能将D 选项改成“6和5”,那就会从审题上进一步提高干扰难度(看错中位数和众数的顺序)。
5、A ;考察方向:基础概念。
知识内容:本题考查轴对称基本概念,同时要求学生掌握各类四边形的基本形状特征。
6、C ;考察方向:几何图形性质判定。
方法:直接法。
知识内容:本题考查轴对称基本性质的应用--特殊的平行四边形,A 选项对任意平行四边形均成立;B 选项可得到对角线评分一组对角,因此是菱形;C 选项可判定对角线的一半相等,因此对角线相等,从而是矩形,正确。
D 选项比较有挑战性,若能用直接法判定C 选项,D 可直接跳过,而D 选项,由BAC ADB ∠=∠可推知BAO BDA ,∴212BA BD BD BD =⋅⇒=,因此,在画图的时候,可先画线段BD ,然后以B 为半径做圆,在圆上任取不与BD 相交的点,都可作为A 点,因此D 无法断定为矩形。
二、填空题:(本大题共12题,每题4分,满分48分)7、32a ;考察方向:基础计算。
2017 年上海市中考数学试卷参照答案与试题分析一、(本大共 6 小,每小 4 分,共 24 分)1.以下数中,无理数是()A. 0 B.C. 2 D.【剖析】依据无理数、有理数的定即可判断.【解答】解: 0, 2,是有理数,数无理数,故: B.【点】此主要考了无理数的定,注意根号的要开不尽刚刚是无理数,无穷不循小数无理数.如π,,⋯(每两个 8 之挨次多 1 个 0)等形式.2.以下方程中,没有数根的是()A. x22x=0B. x22x 1=0C.x22x+1=0 D.x22x+2=0【剖析】分算各方程的判式的,而后依据判式的意判断方程根的情况即可.【解答】解: A 、△ =( 2)24×1×0=4>0,方程有两个不相等的数根,因此 A ;B、△ =( 2)24× 1×( 1) =8>0,方程有两个不相等的数根,因此B;C、△=(2)2 4× 1× 1=0,方程有两个相等的数根,因此 C ;D、△=(2)2 4×1×2= 4< 0,方程没有数根,因此 D 正确.故 D.【点】本考了根的判式:一元二次方程ax2+bx+c=0(a≠0)的根与△ =b2 4ac 有以下关系:当△> 0 ,方程有两个不相等的数根;当△ =0 ,方程有两个相等的数根;当△< 0 ,方程无数根.3.假如一次函数 y=kx +b( k、 b 是常数, k≠0)的图象经过第一、二、四象限,那么 k、b 应知足的条件是()A. k>0,且 b>0 B.k<0,且 b> 0 C.k>0,且 b<0 D.k<0,且 b<0【剖析】依据一次函数的性质得出即可.【解答】解:∵一次函数 y=kx +b(k、b 是常数, k≠ 0)的图象经过第一、二、四象限,∴k< 0, b> 0,应选 B.【评论】本题考察了一次函数的性质和图象,能熟记一次函数的性质是解本题的重点.4.数据 2、5、6、0、6、1、8 的中位数和众数分别是()A. 0 和 6 B.0 和 8 C.5 和 6 D.5 和 8【剖析】将题目中的数据依照从小到大摆列,进而能够获得这组数据的众数和中位数,本题得以解决.【解答】解:将 2、 5、 6、 0、 6、 1、 8 依照从小到大摆列是:0,1,2,5,6,6,8,位于中间地点的数为5,故中位数为 5,数据 6 出现了 2 次,最多,故这组数据的众数是6,中位数是 5,应选 C.【评论】本题考察众数和中位数,解题的重点是明确众数和中位数的定义,会找一组数据的众数和中位数.5.以下图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【剖析】依据轴对称图形和中心对称图形对各选项剖析判断即可得解.【解答】解: A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.应选 A .【评论】本题考察了中心对称图形与轴对称图形的观点.轴对称图形的重点是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.6.已知平行四边形ABCD , AC 、BD 是它的两条对角线,那么以下条件中,能判断这个平行四边形为矩形的是()A.∠ BAC= ∠ DCA B.∠ BAC= ∠DAC C.∠ BAC= ∠ABD D.∠BAC= ∠ADB 【剖析】由矩形和菱形的判断方法即可得出答案.【解答】解: A、∠ BAC= ∠DCA ,不可以判断四边形ABCD 是矩形;B、∠ BAC= ∠DAC ,能判断四边形 ABCD 是菱形;不可以判断四边形 ABCD 是矩形;C、∠ BAC= ∠ ABD ,能得出对角线相等,能判断四边形 ABCD 是矩形;D、∠ BAC= ∠ ADB ,不可以判断四边形 ABCD 是矩形;应选: C.【评论】本题考察了矩形的判断、平行四边形的性质、菱形的判断;娴熟掌握矩形的判断是解决问题的重点.二、填空题(本大题共12 小题,每题 4 分,共 48 分).7.计算: 2aa2= 2a3【剖析】依据单项式与单项式相乘,把他们的系数分别相乘,同样字母的幂分别相加,其他字母连同他的指数不变,作为积的因式,计算即可.【解答】解: 2aa2=2×1aa2=2a3.故答案为: 2a3.【评论】本题考察了单项式与单项式相乘,娴熟掌握运算法例是解题的重点.8.不等式组的解集是x>3.【剖析】分别求出每一个不等式的解集,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确立不等式组的解集.【解答】解:解不等式 2x>6,得: x>3,解不等式 x﹣2> 0,得: x>2,则不等式组的解集为x>3,故答案为: x>3.【评论】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.9.方程=1 的解是x=2.【剖析】依据无理方程的解法,第一,两边平方,解出 x 的值,而后,验根解答出即可.【解答】解:,两边平方得, 2x﹣3=1,解得, x=2;经查验, x=2 是方程的根;故答案为 x=2.【评论】本题考察了无理方程的解法,解无理方程的基本思想是把无理方程转变为有理方程来解,在变形时要注意依据方程的结构特色选择解题方法,解无理方程,常常会产生增根,应注意验根.10.假如反比率函数 y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随 x 的值增大而减小.(填“增大”或“减小”)【剖析】先依据题意得出 k 的值,再由反比率函数的性质即可得出结论.【解答】解:∵反比率函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y 的值随 x 的值增大而减小.故答案为:减小.【评论】本题考察的是反比率函数的性质,熟知反比率函数的增减性是解答本题的重点.11.某市前年 PM2.5 的年均浓度为 50 微克 /立方米,昨年比前年降落了 10%,假如今年 PM2.5 的年均浓度比昨年也降落 10%,那么今年 PM2.5 的年均浓度将是微克/立方米.【剖析】依据增加率问题的关系式获得算式50×(1﹣10%)2,再依占有理数的混淆运算的次序和计算法例计算即可求解.【解答】解:依题意有50×( 1﹣10%)2=50×2=50×(微克 /立方米).答:今年 PM2.5 的年均浓度将是 40.5 微克 /立方米.故答案为:.【评论】考察了有理数的混淆运算,重点是娴熟掌握增加率问题的关系式.12.不透明的布袋里有 2 个黄球、 3 个红球、 5 个白球,它们除颜色外其他都相同,那么从布袋中随意摸出一球恰巧为红球的概率是.【剖析】由在不透明的袋中装有 2 个黄球、 3 个红球、 5 个白球,它们除颜色外其他都同样,直接利用概率公式求解,即可获得随意摸出一球恰巧为红球的概率.【解答】解:∵在不透明的袋中装有 2 个黄球、 3 个红球、 5 个白球,它们除颜色外其他都同样,∴从这不透明的袋里随机摸出一个球,所摸到的球恰巧为红球的概率是:=.故答案为:.【评论】本题考察了概率公式的应用.解题时注意:概率 =所讨状况数与总状况数之比.13.已知一个二次函数的图象张口向上,极点坐标为(0,﹣ 1 ),那么这个二次函数的分析式能够是y=2x2﹣1.,∴该抛武线的分析式为y=ax2﹣1,又∵二次函数的图象张口向上,∴a>0,∴这个二次函数的分析式能够是y=2x2﹣1,故答案为: y=2x2﹣1.【评论】本题主要考察待定系数法求函数分析式,娴熟掌握抛物线的极点式是解题的重点.14.某公司今年第一季度各月份产值占这个季度总产值的百分比方下图,又知二月份产值是 72 万元,那么该公司第一季度月产值的均匀数是120万元.【剖析】利用一月份的产值除以对应的百分比求得第一季度的总产值,而后求得均匀数.【解答】解:第一季度的总产值是72÷( 1﹣45%﹣25%) =360(万元),则该公司第一季度月产值的均匀值是× 360=120(万元).故答案是: 120.【评论】本题考察了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数目占总数的百分数.经过扇形统计图能够很清楚地表示出各部分数目同总数之间的关系.用整个圆的面积表示总数(单位 1),用圆的扇形面积表示各部分占总数的百分数.15.如图,已知 AB ∥CD,CD=2AB ,AD 、 BC 订交于点 E,设= ,= ,那么向量用向量、表示为+2.【剖析】依据=+ ,只需求出即可解决问题.【解答】解:∵ AB ∥ CD,∴== ,∴ ED=2AE ,∵=,∴=2,∴=+ =+2.【评论】本题考察平面向量、平行线的性质等知识,解题的重点是娴熟掌握三角形法例求向量,属于基础题.16.一副三角尺按如图的地点摆放(极点 C 与 F 重合,边 CA 与边 FE 叠合,极点 B、C、 D 在一条直线上).将三角尺DEF 绕着点 F 按顺时针方向旋转n°后( 0<n<180 ),假如 EF∥AB ,那么 n 的值是45.【剖析】分两种情况议论,分别画出图形求解即可.【解答】解:①如图 1 中, EF∥AB 时,∠ ACE=∠ A=45°,∴旋转角 n=45 时, EF∥AB .②如图 2 中, EF∥AB 时,∠ ACE+∠ A=180°,∴∠ ACE=135°∴旋转角 n=360°﹣135°=225°,∵0< n°<180,∴此种情况不合题意,故答案为 45【评论】本题考察旋转变换、平行线的性质等知识,解题的重点是学会用分类议论的思想思虑问题,属于中考常考题型.17.如图,已知Rt△ABC ,∠C=90 °,AC=3 ,BC=4.分别以点A、B 为圆心画圆.假如点 C 在⊙ A 内,点 B 在⊙ A 外,且⊙ B 与⊙ A 内切,那么⊙ B 的半径长 r 的取值范围是 8<r<10 .【剖析】先计算两个分界处 r 的值:即当 C 在⊙ A 上和当 B 在⊙ A 上,再依据图形确立 r 的取值.【解答】解:如图 1,当 C 在⊙ A 上,⊙ B 与⊙ A 内切时,⊙A 的半径为: AC=AD=4 ,⊙B 的半径为: r=AB +AD=5 +3=8;如图 2,当 B 在⊙ A 上,⊙ B 与⊙ A 内切时,⊙A 的半径为: AB=AD=5 ,⊙B 的半径为: r=2AB=10 ;∴⊙ B 的半径长 r 的取值范围是: 8< r<10.故答案为: 8<r< 10.【评论】本题考察了圆与圆的地点关系和点与圆的地点关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当 C 在⊙ A 上时,半径为 3,因此当⊙A 半径大于 3 时, C 在⊙ A 内;当B 在⊙ A 上时,半径为 5,因此当⊙ A 半径小于 5 时, B 在⊙ A 外.18.我们规定:一个正n 边形( n 为整数, n≥ 4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特色值”,记为λ,那么λ=.n6【剖析】如图,正六边形 ABCDEF 中,对角线 BE、CF 交于点 O,连结 EC.易知BE 是正六边形最长的对角线, EC 的正六边形的最短的对角线,只需证明△ BEC 是直角三角形即可解决问题.【解答】解:如图,正六边形 ABCDEF 中,对角线 BE、CF 交于点 O,连结 EC.易知 BE 是正六边形最长的对角线,EC 的正六边形的最短的对角线,∵△ OBC 是等边三角形,∴∠ OBC=∠ OCB=∠BOC=60°,∵OE=OC,∴∠ OEC=∠ OCE,∵∠ BOC=∠ OEC+∠ OCE,∴∠ OEC=∠ OCE=30°,∴∠ BCE=90°,∴△ BEC 是直角三角形,∴=cos30°=,∴λ=,6故答案为.【评论】本题考察正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的重点是理解题意,学会增添常用协助线,结构特别三角形解决问题.三、解答题(本大题共7 小题,共 78 分)19.计算:+(﹣1)2﹣9+()﹣1.【剖析】依据负整数指数幂和分数指数幂的意义计算.【解答】解:原式 =3 +2﹣2+1﹣3+2=+2.【评论】本题考察了二次根式的混淆运算:先把二次根式化为最简二次根式,而后进行二次根式的乘除运算,再归并即可.在二次根式的混淆运算中,如能联合题目特色,灵巧运用二次根式的性质,选择适合的解题门路,常常能事半功倍.20.解方程:﹣=1.【剖析】两边乘 x( x﹣ 3)把分式方程转变为整式方程即可解决问题.【解答】解:两边乘 x(x﹣3)获得 3﹣x=x2﹣3x,∴x2﹣2x﹣ 3=0,∴( x﹣3)( x+1)=0,∴x=3 或﹣ 1,经查验 x=3 是原方程的增根,∴原方程的解为x=﹣1.【评论】本题考察解分式方程,解题的重点是娴熟掌握解分式方程的步骤,注意解分式方程一定查验.21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁 BC 长 18 米,中柱 AD 高6 米,此中 D 是 BC 的中点,且 AD ⊥BC.( 1)求 sinB 的值;( 2)现需要加装支架 DE、EF,此中点 E 在 AB 上, BE=2AE ,且 EF⊥BC,垂足为点 F,求支架 DE 的长.【剖析】( 1)在 Rt△ABD 中,利用勾股定理求出AB ,再依据 sinB=计算即可;( 2)由 EF∥AD ,BE=2AE ,可得= = =,求出EF、DF即可利用勾股定理解决问题;【解答】解:( 1)在 Rt△ ABD 中,∵ BD=DC=9 , AD=6 ,∴ AB=∴ sinB=====3.,(2)∵ EF∥ AD ,BE=2AE ,∴= = = ,∴= = ,∴EF=4,BF=6,∴DF=3,在 Rt△DEF 中, DE===5.【评论】本题考察解直角三角形的应用,平行线分线段成比率定理等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.22.甲、乙两家绿化保养公司各自推出了校园绿化保养服务的收费方案.甲公司方案:每个月的保养花费y(元)与绿化面积x(平方米)是一次函数关系,以下图.乙公司方案:绿化面积不超出 1000 平方米时,每个月收取花费 5500 元;绿化面积超出 1000 平方米时,每个月在收取 5500 元的基础上,超出部分每平方米收取 4 元.(1)求以下图的 y 与 x 的函数分析式:(不要求写出定义域);(2)假如某学校当前的绿化面积是 1200 平方米,试经过计算说明:选择哪家公司的服务,每个月的绿化保养花费较少.【剖析】(1)利用待定系数法即可解决问题;( 2)绿化面积是 1200 平方米时,求出两家的花费即可判断;【解答】解:( 1)设 y=kx +b,则有,解得,∴y=5x+400.( 2)绿化面积是1200 平方米时,甲公司的花费为6400 元,乙公司的花费为5500+4× 200=6300元,∵6300< 6400∴选择乙公司的服务,每个月的绿化保养花费较少.【评论】本题主要考察一次函数的应用.本题属于图象信息辨别和方案选择问题.正确识图是解好题目的重点.23.已知:如图,四边形 ABCD 中, AD ∥BC,AD=CD ,E 是对角线 BD 上一点,且 EA=EC.(1)求证:四边形 ABCD 是菱形;(2)假如 BE=BC,且∠ CBE:∠ BCE=2:3,求证:四边形 ABCD 是正方形.【剖析】(1)第一证得△ADE ≌△CDE,由全等三角形的性质可得∠ADE= ∠CDE,由 AD ∥ BC 可得∠ ADE= ∠ CBD ,易得∠ CDB= ∠CBD ,可得 BC=CD ,易得AD=BC,利用平行线的判断定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC 可得△BEC 为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠ CBE=180× =45°,易得∠ ABE=45°,可得∠ ABC=90°,由正方形的判断定理可得四边形ABCD 是正方形.【解答】证明:( 1)在△ ADE 与△ CDE 中,,∴△ ADE ≌△ CDE,∴∠ ADE= ∠ CDE,∵AD∥ BC,∴∠ ADE= ∠ CBD,∴∠ CDE=∠ CBD,∴BC=CD,∵ AD=CD ,∴BC=AD ,∴四边形 ABCD 为平行四边形,∵AD=CD ,∴四边形 ABCD 是菱形;(2)∵ BE=BC∴∠ BCE=∠ BEC,∵∠ CBE:∠ BCE=2:3,∴∠ CBE=180×=45°,∵四边形 ABCD 是菱形,∴∠ ABE=45°,∴∠ ABC=90°,∴四边形 ABCD 是正方形.【评论】本题主要考察了正方形与菱形的判断及性质定理,娴熟掌握定理是解答本题的重点.+bx+c经过点A 24.已知在平面直角坐标系xOy 中(如图),已知抛物线 y=﹣x2( 2, 2),对称轴是直线x=1,极点为B.( 1)求这条抛物线的表达式和点 B 的坐标;( 2)点M在对称轴上,且位于极点上方,设它的纵坐标为m,联络AM ,用含m 的代数式表示∠ AMB 的余切值;( 3)将该抛物线向上或向下平移,使得新抛物线的极点 C 在 x 轴上.原抛物线上一点 P 平移后的对应点为点Q,假如 OP=OQ,求点 Q 的坐标.【剖析】(1)依照抛物线的对称轴方程可求得 b 的值,而后将点 A 的坐标代入y=﹣x2+2x+c 可求得 c 的值;(2)过点 A 作 AC ⊥BM ,垂足为 C,进而可获得 AC=1,MC=m ﹣ 2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的极点在 x 轴上可求得平移的方向和距离,故此 QP=3,而后由点 QO=PO,QP∥y 轴可获得点 Q 和 P 对于 x 对称,可求得点 Q 的纵坐标,将点 Q 的纵坐标代入平移后的分析式可求得对应的x 的值,则可获得点Q 的坐标.【解答】解:( 1)∵抛物线的对称轴为x=1,∴ x=﹣=1,即=1,解得 b=2.∴ y=﹣x2+2x+c.将A (2,2)代入得:﹣ 4+4+c=2,解得: c=2.∴抛物线的分析式为 y=﹣x2+2x+2.配方得: y=﹣( x﹣ 1)2+3.∴抛物线的极点坐标为(1, 3).( 2)以下图:过点 A 作 AC ⊥BM ,垂足为 C,则 AC=1,C(1,2).∵M (1,m),C(1,2),∴ MC=m﹣ 2.∴ cot∠AMB= =m﹣2.(3)∵抛物线的极点坐标为( 1,3),平移后抛物线的极点坐标在 x 轴上,∴抛物线向下平移了 3 个单位.∴平移后抛物线的分析式为 y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点 O 在 PQ 的垂直均分线上.又∵ QP∥y 轴,∴点 Q 与点 P 对于 x 轴对称.∴点 Q 的纵坐标为﹣.将 y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点 Q 的坐标为(,﹣)或(,﹣).【评论】本题主要考察的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的分析式、锐角三角函数的定义、二次函数的平移规律、线段垂直均分线的性质,发现点 Q 与点 P 对于 x 轴对称,进而获得点 Q 的纵坐标是解题的重点.25.如图,已知⊙ O 的半径长为 1,AB 、AC 是⊙ O 的两条弦,且 AB=AC ,BO 的延伸线交 AC 于点 D,联络 OA 、 OC.(1)求证:△ OAD ∽△ ABD ;(2)当△ OCD 是直角三角形时,求 B、 C 两点的距离;(3)记△ AOB 、△ AOD 、△ COD 的面积分别为 S1、S2、S3,假如S2是S1和S3的比率中项,求OD 的长.【剖析】( 1)由△ AOB ≌△ AOC ,推出∠ C=∠B ,由 OA=OC ,推出∠ OAC=∠C=∠ B,由∠ ADO= ∠ADB ,即可证明△ OAD ∽△ ABD ;(2)如图 2 中,当△ OCD 是直角三角形时,能够证明△ ABC 是等边三角形即可解决问题;(3)如图 3 中,作 OH⊥AC 于 H,设 OD=x.想方法用 x 表示 AD 、AB 、CD,再证明 AD 2=ACCD ,列出方程即可解决问题;【解答】(1)证明:如图 1 中,在△ AOB 和△ AOC 中,,∴△ AOB ≌△ AOC ,∴∠ C=∠B,∵OA=OC,∴∠ OAC=∠ C=∠ B,∵∠ ADO= ∠ADB ,∴△ OAD ∽△ ABD .( 2)如图 2 中,∵BD⊥AC,OA=OC ,∴ AD=DC ,∴BA=BC=AC ,∴△ ABC 是等边三角形,在Rt△OAD 中,∵ OA=1 ,∠ OAD=30°,∴ OD= OA= ,∴ AD==,∴ BC=AC=2AD=.(3)如图 3 中,作 OH⊥AC 于 H,设 OD=x .∵△ DAO ∽△ DBA ,∴= = ,∴= = ,∴ AD=,AB=,∵S2是S1和S3的比率中项,∴ S22=S1S3,∵S2= ADOH , S1=S△OAC = ACOH , S3= CDOH ,∴(ADOH )2= ACOH CDOH ,∴AD2=ACCD ,∵ AC=AB .CD=AC ﹣AD=﹣,∴()2=(﹣),整理得 x2+x﹣1=0,解得 x=或,经查验: x=是分式方程的根,且切合题意,∴ OD=.【评论】本题考察圆综合题、全等三角形的判断和性质、相像三角形的判断和性质、比率中项等知识,解题的重点是灵巧运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2017年上海市中考真题一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是()A.0 B.2C.﹣2 D.2 72.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b 应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0 4.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2a﹒a2=.8.不等式组2620xx>⎧⎨->⎩的解集是.9.方程23x-=1的解是.10.如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.15.如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E ,设AE a =u u u r r ,BE b =u u u r r,那么向量CD uuu r 用向量a r 、b r表示为 .16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是 .17.如图,已知Rt △ABC ,∠C=90°,AC=3,BC=4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18.我们规定:一个正n 边形(n 为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= . 三、解答题(本大题共7小题,共78分)19.计算:18 +(2﹣1)2﹣129 +(12)﹣1.20.解方程:231133x x x -=--.21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE=2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案一、选择题(本大题共6小题,每小题4分,共24分)1.【答案】B【解析】试题分析:0,﹣2,27是有理数,2是无理数,故选B.考点:无理数的定.2.【答案】D【解析】考点:根的判别式3.【答案】B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象4.【答案】C【解析】试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.考点:1.众数;2.中位数.5.【答案】A考点:中心对称图形与轴对称图形.6.【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.二、填空题(本大题共12小题,每小题4分,共48分)7.【答案】2a3【解析】试题分析:2a﹒a2=2a3.考点:单项式的乘法.8.【答案】x>3考点:解一元一次不等式组.9.【答案】x=2【解析】试题分析:23x =1,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.考点:解无理方程.10.【答案】减小【解析】试题分析:∵反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.考点:反比例函数的性质.11.【答案】40.5考点:有理数的混合运算.12.【答案】3 10【解析】试题分析:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:3235++=310考点:概率公式. 13.【答案】y=2x 2﹣1 【解析】试题分析:由题意设该抛武线的解析式为y=ax 2﹣1, 又∵二次函数的图象开口向上, ∴a >0,∴这个二次函数的解析式可以是y=2x 2﹣1, 故答案为:y=2x 2﹣1.考点:待定系数法求函数解析式 14. 【答案】120 考点:扇形统计图 15.【答案】2b a +r r【解析】试题分析:∵AB ∥CD ,∴12AB AE CD ED ==∴ED=2AE , ∵AE a =u u u r r ,∴2ED a =u u u r r ,∴CD uuu r =CE ED +u u u r u u u r =2b a +r r .考点:1.平面向量;2.平行线的性质 16. 【答案】45 【解析】试题分析:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45考点:1.旋转变换;2.平行线的性质17.【答案】8<r<10【解析】试题分析:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.18.【答案】3 2【解析】试题分析:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴ECBE=cos30°=32,∴λ6=3 2.考点:1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数三、解答题(本大题共7小题,共78分)19.【答案】2+2【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算.试题解析:原式=32+2﹣22+1﹣3+2=2+2.考点:二次根式的混合运算20.【答案】x=﹣1【解析】∴原方程的解为x=﹣1.考点:解分式方程21.【答案】(1)sinB=21313;(2)DE =5.【解析】考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.【解析】∴选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.23.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×14=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.考点:1.正方形的判定与性质;2.菱形的判定及性质.24.【答案】(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3).(2)cot∠AMB=m﹣2.(3)点Q的坐标为(262+,﹣32)或(262-,﹣32).【解析】∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB=CMAC=m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣32.将y=﹣32代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣32,解得:x=262+或x=262-.∴点Q的坐标为(262+,﹣32)或(262-,﹣32).考点:二次函数的综合应用.25.【答案】(1)证明见解析;(2)BC=3.(3)OD=5-12.【解析】试题解析:(1)如图1中,在△AOB和△AOC中,OA OAAB ACOB OC=⎧⎪=⎨⎪=⎩,∴△AOB≌△AOC,∴∠C=∠B,(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴AD OD OADB AD AB==,∴11AD xx AD AB==+,∴AD=()1x x+,AB=()1x xx+,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2=12ADOH,S1=S△OAC=12AC﹒OH,S3=12CD﹒OH,∴(12AD﹒OH)2=12AC﹒OH﹒12CD﹒OH,∴AD2=ACCD,考点:1.圆综合题;2.全等三角形的判定和性质;3.相似三角形的判定和性质;4.比例中项.。
2017年市中考一、选择题(本大题共6题,每题4分,满分24分)1、下列实数中,无理数是()°0 B、近、 C -2 D、二72、下列方程中,没有实数根的是()A . x2—2x = 0 B、x2 -2x — 1 = 0 C、疋一2x + l=0 D > x2—2x + 2 = O3、如果一次函数y = kx+b (k. b是常数,kHO)的图像经过第一、二、四象限,那么。
应满足的条件是()A、£>0且b>0B、 RvO且b>0C、k>0且b<0D、kvO且b<04、数据2、5、6、0、6、1、8的中位数和众数分别是()A、0 和6 B . 0 和8 C、5 和6 D、5 和85、下列图形中,既是轴对称图形又是中心对称图形的是()A、菱形B、等边三角形C、平行四边形D、等腰梯形6、已知平行四边形ABCD, AC.是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A. ZBAC=ADCA B、ZBAC=ZDAC C. ZBAC=ZABD D、ZBAC=ZADB二、填空题(本大题共12题,每题4分,满分48分)7,计算:2a-a2 = _______________2x > 68、不等式组{的解集是_________________人一2>09、方程』2x-3 = 1的根是_______________10、如果反比例函数y = £ (£是常数,R H O)的图像经过点(2,3),那么这个函数图像所在的每个象限,xy的值随x的值增大而 _______________ (填“增大”或“减小”)11、某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降了10%,那么今年PM2.5的年均浓度是________________ 微克/立方米12、不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是___________13、已知一个二次函数的图像开口向上,顶点坐标为(0-1),那么这个二次函数的解析式可以是_____________ (只需写一个)14、某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 __________________ 万元向量a 、&表示为 ____________________________16、一副三角尺按如图所示的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点、B 、C 、D 在一条直线上),将三角尺DEF 绕着点F 按顺时针方向旋转〃。
上海市2017年中考数学真题试题一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( )A .0B C .﹣2 D .27【答案】B 【解析】试题分析:0,﹣2,27是无理数, 故选B .考点:无理数的定.2.下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x+1=0D .x 2﹣2x +2=0【答案】D 【解析】考点:根的判别式3.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <0 【答案】B 【解析】试题分析:∵一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限, ∴k <0,b >0, 故选B .考点:一次函数的性质和图象4.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【答案】C【解析】试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.考点:1.众数;2.中位数.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形【答案】A【解析】考点:中心对称图形与轴对称图形.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABC D是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BA C=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2a﹒a2= .【答案】2a3【解析】试题分析:2a﹒a2=2a3.考点:单项式的乘法.8.不等式组2620xx>⎧⎨->⎩的解集是.【答案】x>3【解析】考点:解一元一次不等式组.9的解是.【答案】x=2【解析】=1,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.考点:解无理方程.10.如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)【答案】减小【解析】试题分析:∵反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.考点:反比例函数的性质.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.【答案】40.5【解析】考点:有理数的混合运算.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【答案】3 10【解析】试题分析:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:3235++=310考点:概率公式.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.【答案】y=2x2﹣1【解析】试题分析:由题意设该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.考点:待定系数法求函数解析式14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.【答案】120【解析】考点:扇形统计图15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设AE a=,BE b=,那么向量CD用向量a、b表示为.【答案】2b a+【解析】试题分析:∵AB∥CD,∴12AB AECD ED==∴ED=2AE,∵AE a=,∴2ED a=,∴CD=CE ED+ =2b a+.考点:1.平面向量;2.平行线的性质16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.【答案】45【解析】试题分析:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45考点:1.旋转变换;2.平行线的性质17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B 在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.【答案】8<r<10【解析】试题分析:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .【答案】2【解析】试题分析:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC 是直角三角形,∴EC BE∴λ6=2. 考点:1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数 三、解答题(本大题共7小题,共78分)19﹣1)2﹣129 +(12)﹣1.+2 【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算.试题解析:原式+2﹣+1﹣+2. 考点:二次根式的混合运算 20.解方程:231133x x x -=--.【答案】x=﹣1 【解析】∴原方程的解为x=﹣1. 考点:解分式方程21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE=2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.;(2)DE =5.【答案】(1)sinB=13【解析】考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.【解析】∴选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×1 4=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.考点:1.正方形的判定与性质;2.菱形的判定及性质.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【答案】(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3).(2)cot∠AMB=m﹣2.(3)点Q 32,﹣32).【解析】∴抛物线的解析式为y=﹣x 2+2x+2.配方得:y=﹣(x ﹣1)2+3.∴抛物线的顶点坐标为(1,3). (2)如图所示:过点A 作AC ⊥BM ,垂足为C ,则AC=1,C (1,2).∵M (1,m ),C (1,2),∴MC=m ﹣2.∴cot ∠AMB=CMAC=m ﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x 轴上, ∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x 2+2x ﹣1,PQ=3. ∵OP=OQ ,∴点O 在PQ 的垂直平分线上. 又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称.∴点Q的纵坐标为﹣32.将y=﹣32代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣32,解得:x=22+或x=22-.∴点Q 3232).考点:二次函数的综合应用.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【答案】(1)证明见解析;(2).(3)OD=2.【解析】试题解析:(1)如图1中,在△AOB和△AOC中,OA OAAB ACOB OC=⎧⎪=⎨⎪=⎩,∴△AOB≌△AOC,∴∠C=∠B,(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴AD OD OADB AD AB== ,∴11AD xx AD AB==+,∴,,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2=12ADOH,S1=S△OAC=12AC﹒OH,S3=12CD﹒OH,∴(12AD﹒OH)2=12AC﹒OH﹒12CD﹒OH,∴AD2=ACCD,考点:1.圆综合题;2.全等三角形的判定和性质;3.相似三角形的判定和性质;4.比例中项.。
第 1 页 2008—2017年上海历年数学中考真题 2008年上海市初中毕业统一学业考试数学卷 ...................................................................................................... 1 2009年上海市初中毕业统一学业考试数学卷 ...................................................................................................... 6 2010年上海市初中毕业统一学业考试数学卷 .....................................................................................................11 2011年上海市初中毕业统一学业考试数学卷 .................................................................................................... 15 2012年上海市初中毕业统一学业考试数学卷 .................................................................................................... 20 2013年上海市初中毕业统一学业考试数学试卷 ................................................................................................ 25 2014年上海市初中毕业统一学业考试数学试卷 ................................................................................................ 30 2015年上海市初中毕业统一学业考试数学试卷 ................................................................................................ 35 2016年上海市初中毕业统一学业考试数学卷 .................................................................................................... 40 2017年上海市初中毕业统一学业考试数学卷…………………………………………..………………………45
2008年上海市初中毕业统一学业考试数学卷
一、选择题:(本大题含Ⅰ、Ⅱ两组,每组各6题,每题4分,满分24分) 1.计算23aa的结果是( )
A.5a B.6a C.25a D.26a
2.如果2x是方程112xa的根,那么a的值是( ) A.0 B.2 C.2 D.6 3.在平面直角坐标系中,直线1yx经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
4.计算32aa的结果是( )
A.a B.a C.a D.a 5.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌恰好是黑桃的概率是( )
A.12 B.13 C.23 D.1
6.如图2,在平行四边形ABCD中,如果ABa,ADb, 那么ab等于( ) A.BD B.AC C.DB D.CA 二、填空题:(本大题共12题,每题4分,满分48分) 7.不等式30x的解集是 .
8.分解因式:24x .
D C
B A 图2 第 2 页
9.用换元法解分式方程21221xxxx时,如果设21xyx,并将原方程化为关于y的整式方程,那么这个整式方程是 . 10.方程32x的根是 .
11.已知函数()1fxx,那么(2)f . 12.在平面直角坐标系中,如果双曲线(0)kykx经过点(21),,那么k . 13.在图3中,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 . 14.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有 名学生“不知道”.
15.如图4,已知ab∥,140,那么2的度数等于 . 16.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是 .
17.如图5,平行四边形23BEBC,那ABCD中,E是边BC
上的点,AE交BD于点F,如果
么BFFD . 18.在ABC△中,5ABAC,3cos5B(如图6).如果圆O的半径为10,且经过点BC,,那么线段AO的长等于 .
三、解答题(本大题共7题,满分78分) 19.(本题满分10分)
计算:13(36)821.
20.(本题满分10分) 解方程:2654111xxxxx
O 1 2 3 4 A x
y
图3 1 2 1 2 a
b 图4 E C D A F B
图5
A
B C 图6 第 3 页
21.(本题满分10分,第(1)小题满分3分,第(2)小题满分7分) “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图7所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.
(1)请你帮助小王在图8中把图形补画完整; (2)由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i是坡面CE的坡度),求r的值.
22.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分) 某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图9,图10.
根据上述信息,回答下列问题: (1)该地区2004至2007年四年的年旅游收入的平均数是 亿元; (2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是 万; (3)根据第(2)小题中的信息,把图10补画完整.
图7 O C A
D E H
图8
2004 2005 2006 2007 年份
年旅游收入 (亿元) 90
70 50 30 10
图9
旅游收入图
图10 第 4 页
23.(本题满分12分,每小题满分各6分) 如图11,已知平行四边形ABCD中,对角线ACBD,交于点O,E是BD延长线上的点,且ACE△是等边三角形. (1)求证:四边形ABCD是菱形; (2)若2AEDEAD,求证:四边形ABCD是正方形.
24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 如图12,在平面直角坐标系中,O为坐标原点.二次函数23yxbx的图像经过点(10)A,,顶点为B. (1)求这个二次函数的解析式,并写出顶点B的坐标;
(2)如果点C的坐标为(40),,AEBC,垂足为点E,点D在直线AE上,1DE,求点D的坐标.
E C D
B A
O
图11
1 1
1 O x
y
图12 A 第 5 页
25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分) 已知24ABAD,,90DAB,ADBC∥(如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点. (1)设BEx,ABM△的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以AND,,为顶点的三角形与BME△相似,求线段BE的长.
B A D M E C 图13 B
A D C 备用图 第 6 页
2009年上海市初中毕业统一学业考试数学卷 一、选择题:(本大题共6题,每题4分,满分24分) 1.计算32()a的结果是( )
A.5a B.6a C.8a D.9a 2.不等式组1021xx,的解集是( ) A.1x B.3x C.13x D.31x 3.用换元法解分式方程13101xxxx时,如果设1xyx,将原方程化为关于y的整式方程,那么这个整式方程是( ) A.230yy B.2310yy
C.2310yy D.2310yy 4.抛物线22()yxmn(mn,是常数)的顶点坐标是( ) A.()mn, B.()mn, C.()mn, D.()mn, 5.下列正多边形中,中心角等于内角的是( ) A.正六边形 B.正五边形 C.正四边形 C.正三边形 6.如图1,已知ABCDEF∥∥,那么下列结论正确的是( )
A.ADBCDFCE B.BCDFCEAD
C.CDBCEFBE D.CDADEFAF
二、填空题:(本大题共12题,每题4分,满分48分) 7.分母有理化:15 .
8.方程11x的根是 . 9.如果关于x的方程20xxk(k为常数)有两个相等的实数根,那么k . 10.已知函数1()1fxx,那么(3)f . 11.反比例函数2yx图像的两支分别在第 象限. 12.将抛物线22yx向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 . 13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 .
A B D C
E F
图1