01大学物理实验 伏安特性曲线
- 格式:ppt
- 大小:304.50 KB
- 文档页数:15
竭诚为您提供优质文档/双击可除电学元件的伏安特性研究实验报告篇一:电学元件的伏安特性实验报告v1实验报告预习报告【实验目的】l.学习使用基本电学仪器及线路连接方法。
2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。
3.学习根据仪表等级正确记录有效数字及计算仪表误差。
准确度等级见书66页。
100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA)3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V)【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。
从书中学习使用以上仪器的基础知识。
【实验原理】给一个电学元件通直流电,测出元件两端的电压和通过它的电流,通常以电压为横坐标、电流为纵坐标画出元件的电流和电压关系曲线,称做该元件的伏安特性曲线。
这种研究元件特性的方法叫做伏安法。
用伏安法测量电阻时,线路有两种接法,即电流表内接和电流表外接。
电流表内接,测得电阻Rx永远大于真值Rx,适于测量大电阻。
电流表外接时测得的电阻值永远小于真值,适于测量小电阻。
不同的线路会引入不同的线路误差,在实验中要根据被测电阻的大小适当地选择测量线路,减少线路误差,以求提高测量准确度。
二极管是常用的非线性元件,欧姆定律虽然不适用,电阻不再为常量,而是与元件上的电压或电流有关的变量。
钨丝灯泡也是非线性元件,加在灯泡上电压与通过灯丝的电流之间的关系为I?KV常数。
n,其中K、n是与该灯泡有关的实验数据实验1电流表内接:实验4小灯泡电流表内接实验5二极管正向偏压电流表外接二极管反向偏压电流表内接实验报告电学元件的伏安特性伏安法既可以测量线性元件的阻值,又可以测量非线性元件的伏安特性,具有测量范围宽、适应性广等优点,因此被广泛使用。
【实验目的】l.学习使用基本电学仪器及线路连接方法(:电学元件的伏安特性研究实验报告)。
课程名称:大学物理实验(一)实验名称:光敏电阻特性研究二、实验原理1.光敏电阻:基于内光电效应的一种光传感器探头,用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)图1 光敏电阻外观图2 光敏电阻符号图3 光敏电阻光照特性2.光敏电阻的结构和基本特性:光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可达1~10 M欧,在强光条件(100 LX流明)下,它阻值(亮阻)仅有几百至数千欧。
3.光敏电阻的原理:图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图6 光敏电阻伏安特性表5.光敏电阻光照特性:光敏电阻又称光导管,在特定波长的光照射下,其阻值会迅速减小。
原因:光照后产生的载流子都参与导电,从而使光敏电阻的阻值迅速下降(百兆欧到百欧)。
6.光敏电阻其他特性参数:1)暗电流、暗电阻:在一定的电压下,没有光照时,流过的电流称为暗电流。
外加电压与暗电流之比称为暗电阻。
2)灵敏度:灵敏度是指暗电阻与受光照射时的亮电阻的相对变化值。
3)光谱响应:是指光敏电阻在不同波长的光照下的灵敏度。
电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的使用方法。
二、实验原理及说明(1)元件的伏安特性。
如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式确定:R=u/i=(mu/mi)tgα,期中mu和mi分别是电压和电流在u-i平面坐标上的比例。
三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习使用基本电学仪器及线路连接方法。
2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。
3.学习根据仪表等级正确记录有效数字及计算仪表误差。
准确度等级见书66页。
100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。
第2节 欧姆定律 伏安特性曲线
1.部分电路欧姆定律
2.伏安特性曲线
2.伏安特性曲线
一、部分电路欧姆定律与伏安特性曲线
2.伏安特性曲线
2.伏安特性曲线
2.伏安特性曲线
一、部分电路欧姆定律与伏安特性曲线
3.对伏安特性曲线的理解
1.闭合电路欧姆定律
1.闭合电路欧姆定律
1.闭合电路欧姆定律
2.路端电压U与电流I的关系
2.路端电压U与电流I的关系
2.路端电压U与电流I的关系
3.两种等效电源原理
3.两种等效电源原理
二、闭合电路欧姆定律
3.两种等效电源原理
1.计算灯泡的实际功率
1.计算灯泡的实际功率
1.计算灯泡的实际功率
2. 的两种物理意义
2. 的两种物理意义
2. 的两种物理意义
三、伏安特性曲线与欧姆定律的应用
2. 的两种物理意义
BC
四、闭合电路中功率与效率问题
1.纯电阻电路
1.纯电阻电路
四、闭合电路中功率与效率问题
1.纯电阻电路
1.纯电阻电路
1.纯电阻电路
1.纯电阻电路
四、闭合电路中功率与效率问题
1.纯电阻电路
AD
四、闭合电路中功率与效率问题
1.纯电阻电路
AB
D
2.非纯电阻电路(电动机)
2.非纯电阻电路(电动机)
2.非纯电阻电路(电动机)
四、闭合电路中功率与效率问题
2.非纯电阻电路(电动机)
A。
高考物理伏安特性曲线
要正确理解伏安特性曲线电压随电流变化的U-I图线与”伏安特性曲线I-U图线,历来一直高考重点要考的内容(其中电学实验测电源的电动势、内阻,测小灯泡的功率,测金属丝的电阻率等等都是必考内容)。
这里特别的是有两点(1)首先要认识图线的两个坐标轴所表示的意义、图线的斜率所表示的意义等,特别注意的是纵坐标的起始点有可能不是从零开始的。
(2)线路产的连接无非为四种电流表内接分压、电流表外接分压、电流表内接限流、电流表外接限流。
一般来说,采用分压接法用的比较多。
至于电流表内外接法则取决于与之相连的电阻,显然电阻越大,内接误差越小,反之亦然。
(3)另外,对仪表的选择首先要注意量程,再考虑读数的精确。