2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷
- 格式:docx
- 大小:263.81 KB
- 文档页数:16
2023-2024学年福建省泉州市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的化简结果是()A.4B.C.16D.2.如图,这是一块三角尺ABC,其中,,则的结果为()A.1B.C.D.23.下列选项中,属于随机事件的是()A.在一个只有红球的口袋中,摸出白球B.a是负数,则C.某同学练习投篮,其中一次投中篮筐D.两个等边三角形相似4.如图,若线段DE为的中位线,则的值为()A.B.C.D.5.用配方法解方程,配方正确的是()A. B. C. D.6.若函数是关于x的二次函数,则m的取值范围是()A. B. C. D.7.如图,在中,阅读以下作图步骤:①分别以点A,B为圆心,大于的长为半径作弧,两弧交于点M,N;②作直线MN交边AB于点D;③连接根据以上作图,一定可以得到的结论是A.,B.,C.,D.,8.如图,在一个不透明的纸箱中,装有4张标有数字的卡片,卡片除所标数字不同外无其他差别,现从中任取一张卡片,将其数字记为k ,则使一元二次方程有实数根的概率是()A.B.1C.D.9.廊桥是我国古老的文化遗产,抛物线形的廊桥示意图如图所示.已知抛物线的函数表达式为,为增加安全性,在该抛物线上同一高度且水平距离为8米的C ,D 两处安装警示灯,则警示灯D 距离水面AB 的距离为() A.米 B.米C.米D.米10.甲、乙两人沿着如图所示的平行四边形空地边缘进行跑步比赛,两人同时从点B 出发,沿着平行四边形边缘顺时针跑步,且甲的速度是乙的速度的2倍.当甲到达点E ,乙到达点F 时,甲、乙的影子太阳光照射刚好在同一条直线上,此时,点B 处一根杆子的影子太阳光照射刚好在对角线BD 上,则CE 的长为()A.4mB.8mC.12mD.16m二、填空题:本题共6小题,每小题4分,共24分。
11.在二次根式中,x 的取值范围是______.12.若关于x 的方程的一个根是1,则______.13.若关于x的二次函数的图象经过点,且函数有最小值,则m的值为______.14.文房四宝是我国传统文化中的文书工具,即笔、墨、纸、砚.某礼品店将传统与现代相结合,推出文房四宝盲盒,盲盒外观和重量均相同,且内含对应文房四宝之一的卡片,若从一套四个盲盒笔、墨、纸、砚盲盒各一个中随机选两个,则恰好抽中内含笔和纸的盲盒的概率是______.15.夹文件的一种燕尾夹如图1所示,图2是在闭合状态下的示意图,经测量知,,,则在闭合状态下,点B,D之间的距离是______16.如图,在中,D,E分别在BC,AC上,AD与BE交于点F,若,则______.三、解答题:本题共9小题,共86分。
福建省泉州市2020年(春秋版)九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八下·福州期中) 用配方法解方程,变形结果正确的是()A .B .C .D .2. (2分) (2016九上·北京期中) 已知3x=5y(y≠0),那么下列比例式中正确的是()A . =B . =C . =D . =3. (2分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A . 289(1-x)2=256B . 256(1-x)2=289C . 289(1-2x)=256D . 256(1-2x)=2894. (2分)据查2013年“五一”期间,南昌到九江部分火车时刻表如下:车次K302K1192K392K744发车时间10:3810:5111:3511:41到站时间12:4112:2113:1013:01若希望乘车时间越短越好,则在已知四趟火车中选择的车次是()A . K302B . K1192C . K392D . K7445. (2分)(2020·梁子湖模拟) 已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,-4),下列说法正确的是()A . 反比例函数y2的解析式是B . 两个函数图象的另一交点坐标为(2,4)C . 当x<-2或0<x<2时,y1>y2D . 正比例函数y1与反比例函数y2都随x的增大而减小6. (2分)(2019·玉田模拟) 如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .7. (2分)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=5,则AD:DB=()A . 3:2B . 3:5C . 2:5D . 2:38. (2分)如图,△A′B′C′和△ABC是以点O为位似中心的位似图形,若位似比A′O:AO=3:1,且△A′B′C′的周长是12,则△ABC的周长是()A . 4B . 36C . 9D .9. (2分)在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cosα的值是()A .B .C .D .10. (2分)下列函数中,开口方向向上的是()A . y=ax2B . y=﹣2x2C .D .11. (2分) (2018八下·道里期末) 若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A . k≥﹣1B . k>﹣1C . k≥﹣1且k≠0D . k≠012. (2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A .B .C .D .二、填空题 (共6题;共8分)13. (1分) (2019九上·抚顺月考) 一元二次方程的解为________.14. (1分) (2019九上·宁波期末) 矩形的两边长分别为和6(),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,则 ________.15. (1分) (2020九上·来宾期末) 如图,已知点C为反比例函数y= 图象上的一点,过点C向坐标轴引垂线,垂足为A、B,那么四边形AOBC的面积为________。
A.人教版九年级第一学期期末模拟数学试卷【含答案】一.选择题(共14 小题,满分42 分,每小题3 分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5 2.下列计算正确的是()A.+ =B.3 ﹣=3C.÷2=D.=23.如果与最简二次根式是同类二次根式,则a的值是()A.a=7 B.a=﹣2 C.a=1 D.a=﹣1 4.方程x2=4x 的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 5.已知关于x的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=36.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15 场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.77.将函数y=2(x+1)2﹣3 的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)8.在正方形网格中,△ABC 在网格中的位置如图,则c os B 的值为()B.C.D.29.河堤横断面如图所示,河堤高B C=6m,迎水坡A B 的坡比为1:,则A B 的长为()A.12 m B.4 m C.5 m D.6 m10.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是()A.B.C.D.11.如图,在R t△ABC 中,∠ACB=90°,点D,E 分别是A B,BC 的中点,点F是B D 的中点.若AB=10,则E F=()A.2.5 B.3 C.4 D.512.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE∥BD,且交AB 于点E,GF∥AC,且交C D 于点F,则下列结论一定正确的是()A.=B.=C.=D.=13.如图,AB 是圆O 的直径,弦AC,BD 相交于点E,AC=BD,若∠BEC=60°,C 是的中点,则t an∠ACD 值是()A.B.C.D.14.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)15.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为把△ABO 缩小,则点A的对应点A'的坐标是.16.已知关于x的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2个交点,则m=.17.如图,在⊙O 中,半径O C 与弦A N 垂直于点D,且A B=16,OC=10,则C D 的长是.18.如图,点D 在△ABC 的边AC 上,若要使△ABD 与△ACB 相似,可添加的一个条件是(只需写出一个).三.解答题(共6 小题,满分62 分)19.完成下列各题:(1)解方程:x2﹣4x+3=0;(2)计算:cos60°+ sin45°﹣3tan30°.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为2 亿元,2017 年利润为2.88 亿元.(1)求该企业从2015 年到2017 年利润的年平均增长率;(2)若2018 年保持前两年利润的年平均增长率不变,该企业2018 年的利润能否超过3.5 亿元?21.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2 的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.如图1,2 分别是某款篮球架的实物图与示意图,已知AB⊥BC 于点B,底座BC 的长为1 米,底座BC 与支架AC 所成的角∠ACB=60°,点H 在支架AF 上,篮板底部支架EH∥BC,EF⊥EH 于点E,已知A H HF 长米,HE 长1米.(1)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H 分别是AB、BC、CD、DA 边的中点,连接EG,HF 交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1 中正方形ABCD 分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC 中,∠ACB=90°,AC=4,BC=3,小明发现△ABC 也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC 的相似比为;(3)现有一个矩形A BCD是自相似图形,其中长A D=a,宽A B=b(a>b).请从下列A、B 两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD 纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD 纵向分割成n 个全等矩形,且与原矩形都相似,则a =(用含n,b的式子表示);B:①如图4﹣1,若将矩形A BCD 先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b 的式子表示).24.如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c 交x 轴于点A,点A 的坐标为(4,0).(1)用含a 的代数式表示c.(2)当a=时,求x为何值时y取得最小值,并求出y的最小值.(3)当a=时,求0≤x≤6 时y的取值范围.(4)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a 的取值范围.参考答案一.选【解答】解:择题(共14 小题,满分42 分,每小题3 分)1.∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.2.【解答】解:A、与不能合并,所以A选项错误;B、原式=2 ,所以B选项错误;C、原式=,所以C选项错误;D、原式==2 ,所以D选项正确.故选:D.3.【解答】解:∵与最简二次根式是同类二次根式,=2 ,∴5+a=3,解得:a=﹣2,故选:B.4.【解答】解:方程整理得:x(x﹣4)=0,可得x=0 或x﹣4=0,解得:x1=0,x2=4,故选:C.5.【解答】∵关于x 的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3 或x=﹣2,故选:A.6.【解答】解:设共有x 个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.7.【解答】解:y=2(x+1)2﹣3 的图象向右平移2 个单位,再向上平移5 个单位,得y=2(x+1﹣2)2﹣3+5,化简,得y=2(x﹣1)2+2,抛物线的顶点为(1,2),故选:D.8.【解答】解:在直角△ABD 中,BD=2,AD=4,则A B===2 ,则c os B===.故选:A.9.【解答】解:∵BC=6 米,迎水坡A B 的坡比为1:,∴,解得,AC=6 ,∴AB==12,故选:A.10【解答】解:∵共6 个数,大于3 的有3 个,∴P(大于3)==;故选:D.11【解答】解:在Rt△ABC 中,∵AD=BD=5,∴CD=AB=5,∵BF=DF,BE=EC,∴EF=CD=2.5.故选:A.12【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.13【解答】解:连接AD、BC.∵AB 是圆O 的直径,∴∠ADB=∠ACB=90°.在Rt△ADB 与Rt△BCA 中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC 是等腰三角形,∵∠BEC=60°是△DEC 的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.14【解答】解:由二次函数开口向上可得:a>0,对称轴在y 轴左侧,故a,b 同号,则b >0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选:C.二.填空题(共4 小题,满分16 分,每小题 4 分)15【解答】解:∵以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).16【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1 或0或.17【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:418【解答】解:要使△ABC 与△ABD 相似,还需具备的一个条件是∠ABD=∠C 或∠ADB =∠ABC 等,故答案为:∠ABD=∠C.三.解答题(共6 小题,满分62 分)19.【解答】解:(1)∵x2﹣4x+3=0,(x﹣3)=0,则x﹣1∴(x﹣1)=0 或x﹣3=0,解得:x1=1,x2=3;(2)原式=+ ×﹣3×=+ ﹣=1﹣.20【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018 年仍保持相同的年平均增长率,那么2018 年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018 年的利润不能超过3.5 亿元.21【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2 的有2 种结果,所以转出的数字是﹣2 的概率为= ;(2)列表如下:由表可知共有 36 种等可能结果,其中数字之积为正数的有 20 种结果, 所以这两次分别转出的数字之积为正数的概率为= .22【解答】解:(1)在 R t △EFH 中,cos ∠FHE = =,∴∠FHE =45°,答:篮板底部支架 HE 与支架 AF 所成的角∠FHE 的度数为 45°;(2)延长 FE 交 CB 的延长线于 M ,过点 A 作 AG ⊥FM 于 G ,过点 H 作 HN ⊥AG 于 N ,则四边形 ABMG 和四边形 HNGE 是矩形,∴GM =AB ,HN =EG , 在 R t △ABC 中,∵tan ∠ACB =,∴AB=BC tan60°=1× =,∴GM=AB=,在Rt△ANH 中,∠F AN=∠FHE=45°,∴HN=AH sin45°=× =,∴EM=EG+GM=+ ,答:篮板底部点E到地面的距离是(+ )米.23【解答】解:(1)∵点H是A D的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2 块矩形全等,横向3 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或b;②如图3,由①②可知纵向m 块矩形全等,横向n 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或24.【解答】解:(1)将A(4,0)代入y=ax2﹣5ax+c,得:16a﹣20a+c=0,解得:c=4a.(2)当a=时,c=2,∴抛物线的解析式为y=x2﹣x+2=(x﹣)2﹣.∵a=>0,∴当x=时,y 取得最小值,最小值为﹣.(3)当a=﹣时,c=﹣2,∴抛物线的解析式为y=﹣x2+ x﹣2=﹣(x﹣)2+ .∵a=﹣<0,∴当x=时,y 取得最大值,最大值为;当x=0 时,y=﹣2;当x=6 时,y=﹣×62+ ×6﹣2=﹣5.∴当0≤x≤6 时,y 的取值范围是﹣5≤y≤.(4)∵抛物线的解析式为y=ax2﹣5ax+4a=a(x﹣)2﹣a,∴抛物线的对称轴为直线x=,顶点坐标为(,﹣a).设线段AB 的中点为O,以AB 为直径作圆,设抛物线对称轴与⊙O 交于点C,D,过点O作OH⊥CD 于点H,如图所示.∵点A的坐标为(4,0),点B的坐标(0,3),∴AB=5,点O的坐标为(2,),点H的坐标为(,).在Rt△COH 中,OC=AB=,OH=,∴CH=,∴点C的坐标为(人教版九年级数学上册期末考试试题(含答案)一、选择题(每小题3分,共24分)1.下列根式中,能与合并的二次根式为()A.B.C.D.2.甲、乙两地的实际距离是20千米,在比例尺为1:500000的地图上甲乙两地的距离()A.40cm B.400cm C.0.4cm D.4cm3.点(5,﹣2)关于x轴的对称点是()A.(5,﹣2)B.(5,2)C.(﹣5,2)D.(﹣5.﹣2)4.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤15.随机掷一枚质地均匀的硬币一次,正面朝上的概率是()A.1B.C.D.06.如图,△ABC的顶点是正方形网格的格点,则sin A是()A.B.C.D.7.某药品经过两次降价,每瓶零售价由156元降为118元.已知两次降价的百分率相同每次降价的百分率为x,根据题意列方程得()A.156(1+x)2=118B.156(1﹣x2)=118C.156(1﹣2x)=118D.156(1﹣x)2=1188.如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于()A.8B.3C.2D.6二、填空题(每小题3分,共18分)9.﹣=.10.已知=,则的值为.11.关于x的方程x2﹣kx+2=0有一个根是1,则k的值为.12.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.13.如图,在平面直角坐标系中,已知正方形ABCD,点A(2,0),B(0,4),那么点C的坐标是.14.在平面直角坐标系中,某二次函数图象的顶点坐标为(2,﹣1),此函数图象与x轴相交于P、Q两点,且PQ=6,若此函数图象通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d中为正值的是(选填“a”、“b”“c”或“d”)三、解答题(本大题10小题,共78分)15.计算:(+)×16.计算:tan60°﹣cos45°•sin45°+sin30°.17.解方程(1)x2﹣x=0(2)x2﹣2x﹣3=018.张明和王华两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.请用树状图(或列表)的方法,求王华胜出的概率.19.“会如”海鲜商场经销一种成本为每千克40元的海产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种海产品的销售情况,解答下列问题:(1)当销售单价定位55元时,计算:月销售量=千克,月销售利润=元;(不要求写出过程,直接写出计算结果即可)(2)若该商场想使每月销售利润达到8000元,销售单价应定为多少元?20.如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于点E.BC=1.8cm,BD=0.5m,∠A=45°,∠F=29°.(1)求滑道DF的长(结果精确到0.1m).(2)求踏梯AB底端A与滑道DF底端F的距离AF(结果精确到0.1m).参考数据:sin29°=0.48,cos29°=0.87,tan29°=0.55.21.方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.(2)写出点A′的坐标;(3)△OA′B'的面积为.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC =(用含a的代数式表示)23.已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.(1)如图,当AP=3cm时,求y的值;(2)设AP=xcm,试用含x的代数式表示y(cm2);(3)当y=2cm2时,试确定点P的位置.24.如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴交于O、A两点,与直线y=x 交于O、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点O、B重合,过点P作y轴的平行线交射线OB于点Q,以PQ为边作R△PQN,点N 与点B始终在PQ同侧,且PN=1.设点P的横坐标为m(m>0),PQ长度为d.(1)用含m的代数式表示点P的坐标.(2)求d与m之间的函数关系式.(3)当△PQN是等腰直角三角形时,求m的值.(4)直接写出△PQN的边与抛物线有两个交点时m的取值范围.2018-2019学年吉林省长春市新区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.【分析】分别化简二次根式进而得出能否与合并.【解答】解:A、=2,故不能与合并,不合题意;B、=,不能与合并,不合题意;C、=2,能与合并,符合题意,D、=3,不能与合并,不合题意;故选:C.【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.2.【分析】根据实际距离×比例尺=图上距离,代入数据计算即可.【解答】解:20千米=2000000厘米,2000000×=4(cm).故选:D.【点评】本题考查了比例线段,能够根据比例尺灵活计算,注意单位的换算问题.3.【分析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.【解答】解:(5,﹣2)关于x轴的对称点为(5,2),故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.4.【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:A.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.5.【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【解答】解:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P=,(正面朝上)故选:B.【点评】此题考查了概率公式,概率=发生的情况数÷所有等可能情况数.6.【分析】连接CE,则CE⊥AB,根据勾股定理求出CA,在Rt△AEC中,根据锐角三角函数定义求出即可.【解答】解:如图所示:连接CE,则CE⊥AB.∵根据图形可知:BC=2,BE=EC=,∠EBC=∠ECB=45°∴∠BEC=∠AEC=90°∵AC==,∴sin A===,故选:B.【点评】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.7.【分析】设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:156(1﹣x)2=118.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM 是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故选:B.【点评】本题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.二、填空题(每小题3分,共18分)9.【分析】直接进行开平方的运算即可.【解答】解:﹣=﹣4.故答案为:﹣4.【点评】本题考查了算术平方根的知识,属于基础题,关键是掌握算术平方根的定义及开平方的运算.10.【分析】依据=,即可得到﹣1=,进而得出的值.【解答】解:∵=,∴﹣1=,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.11.【分析】根据一元二次方程的定义,把x=1代入方程x2﹣kx+2=0得关于k的方程,然后解关于k的方程即可.【解答】解:根据题意将x=1代入方程,得:1﹣k+2=0,解得:k=3,故答案为:3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【分析】由DE∥BC,AD:AB=3:4,根据平行线分线段成比例定理,可得AE:AC =AD:AB=2:3,继而求得答案.【解答】解:∵DE∥BC,=,∴AE:AC=AD:AB=2:3,∴AE:EC=2:1.∵AE=4,∴CE=2,故答案为:2.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握数形结合思想的应用,注意掌握线段的对应关系.13.【分析】如图,作CE⊥y轴于点E,根据已知条件得到OA=2,OB=4,根据四边形ABCD是正方形,得到∠ABC=90°,BC=BA,根据余角的性质得到∠CBE=∠BAO,根据全等三角形的性质得到BE=OA=2,CE=OB=4,求得OE=OB﹣BE=4﹣2=2,于是得到结论.【解答】解:如图,作CE⊥y轴于点E,∵A(2,0),B(0,4),∴OA=2,OB=4,∵四边形ABCD是正方形,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBE=90°,∴∠CBE=∠BAO,在△ABO和△BCE中,∴△ABO≌△BCE(AAS),∴BE=OA=2,CE=OB=4,∴OE=OB﹣BE=4﹣2=2,∴C点坐标为(﹣4,2).故答案为:(﹣4,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是作CE⊥y轴于点E后求出CE 和OE的长.14.【分析】根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决.【解答】解:∵二次函数图象的顶点坐标为(2,﹣1),此函数图象与x轴相交于P、Q 两点,且PQ=6,∴该函数图象开口向上,对称轴为直线x=2,与x轴的交点坐标为(﹣1,0),(5,0),∵此函数图象通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,∴a<0,b<0,c=0,d>0,故答案为:d.【点评】本替考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(本大题10小题,共78分)15.【分析】先化简二次根式,再利用乘法分配律计算可得.【解答】解:原式=(2+2)×=6+2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=﹣×+=.【点评】此题主要考查了实数运算,正确记忆相关数据是解题关键.17.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得:x1=0,x2=1;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得:x1=3,x2=﹣1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.【分析】采用树状图法或者列表法列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表如下由表知,共有9种等可能结果,其中王华胜出的有3种等可能结果,所以王华胜出的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】(1)根据月销售量为=500﹣(销售单价﹣50)×10,即可得出结论,再根据月销售利润=销售每千克的利润×销售数量,代入数据即可得出结论;(2)根据月销售利润=销售每千克的利润×销售数量,即可得出有关x的一元二次方程,解一元二次方程即可得出x的值.【解答】解:(1)当销售单价定为每千克55元时,月销售量为500﹣(55﹣50)×10=450(千克),月销售利润为(55﹣40)×450=6750(元).故答案为:450;6750.(2)根据题意得:(x﹣40)[500﹣(x﹣50)×10]=8000时,有﹣10x2+1400x﹣40000=8000,解得:x1=80,x2=60.答:销售单价定为60元或80元.【点评】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或列式计算)是解题的关键.20.【分析】(1)在Rt△DEF中,用正弦函数求解即可;(2)分别在Rt△ABC、Rt△DEF中,通过解直角三角形求出AC、EF的长,进而由AF =AC+BD+EF求得AF的长.【解答】解:(1)在Rt△DEF中,∠DEF=90°,DE=BC=1.8,∠F=29°.∵sin F=,∴DF==≈≈3.8(m);答:滑道DF的长约为3.8m;(2)∵cos F=,∴EF=DF•cos29°≈3.75×0.87≈3.26.在Rt△ABC中,∠ACB=90°,∵∠A=45°,∴AC=BC=1.8.又∵CE=BD=0.5,∴AF=AC+CE+EF≈1.8+0.5+3.26≈5.6(m).答:踏梯AB底端A与滑道DF底端F的距离AF约为5.6m.【点评】此题主要考查了解直角三角形的应用、三角函数的运用能力;熟练掌握三角函数是解决问题的关键.21.【分析】(1)根据位似中心的位置以及位似比的大小作出△OA′B′;(2)根据三角形的位置得出点A′的坐标即可;(3)根据△OA′B'的位置,运用割补法求得△OA′B'的面积即可.【解答】解:(1)如图所示,△OA′B′即为所求.(2)由图知,点A′的坐标为(﹣6,﹣2),故答案为:(﹣6,﹣2).(3)△OA′B'的面积为6×4﹣×2×4﹣×2×4﹣×2×6=10,故答案为:10.【点评】本题考查了利用位似变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∴△DFC≌△DEB,∴DF=DE,CF=BE,在Rt△ADF和Rt△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.【分析】(1)先根据AP的长,求出PQ的值,然后看看正方形与矩形是否重合,若重合求出重合部分的线段的长,然后根据矩形的面积计算公式进行求解即可.(2)要分四种情况进行讨论:①当N在D点或D点左侧时,当正方形PQMN的边MN与矩形EDBF的边ED重合时,利用相似三角形的性质可得出x=,即0<x≤时,此时正方形与矩形没有重合,因此y=0;②当N在D点右侧,而P点在D点左侧或与D点重合时,即<x≤4,此时正方形与矩形重合的面积应该是以DN为长,NM为宽的矩形,DN=PN﹣PD=PN﹣(AD﹣AP)=x﹣(4﹣x)=x﹣4.而NM=PQ=x,因此重合部分的面积应该是y=(x﹣4)×x=x2﹣2x;③当P在D点右侧,而N点在B点左侧或与B点重合时,即4<x≤时,此时正方形重合部分的面积应该是以正方形边长为长,DE为宽的矩形的面积,PN=x,DE=2,因此此时重合部分的面积是y=x×2=x;④当P在B左侧时,而N点在AB延长线上时,即<x<8时,此时重合部分的面积应该是以DE长为宽,PA长为长的矩形的面积.BP=AB﹣AP=8﹣x,BF=DE=2,因此此时重合部分的面积应该是y=(8﹣x)×2=16﹣2x.(3)将y=2代入(2)的式子中,看看求出的x哪个符合条件即可.【解答】解:(1)∵在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,∴tan A==,∵D是AB中点,∴DE是△ABC的中位线,∴AD=BD=4cm,DE=2cm,∴Rt△APQ中,AP=3cm,∴PQ=AP•tan A=3×=1.5cm,∴DN=AN﹣AD=AP+PN﹣AD=3+1.5﹣4=0.5,∴重合部分的面积应该是y=DN×MN=1.5×0.5=0.75cm2;(2)当0<x≤,y=0;当<x≤4,y=,当4<x≤,y=x;当<x<8,y=16﹣2x;(3)当<x≤4时,如果y=2,2=,解得x=或x=(舍去);当4<x≤时,如果y=2,x=2,也不符合题意,当<x<8时,如果y=2,2=16﹣2x,解得x=7,因此当AP=7cm时,y=2cm2.∴当x=7cm或x=cm时,y=2cm2.【点评】本题主要考查了直角三角形的性质,正方形的性质,中位线定理以及解直角三角形的应用等知识点,要注意(2)(3)中,正方形的位置不同时,函数解析式是不同的,要分类讨论,不要漏解.24.【分析】(1)把把x=m代入y=﹣x2+3x即可;(2)分类用两点纵坐标之差即可表示;(3)由△PQN是等腰直角三角形得出PQ=PN=1,列方程求解即可;(4)把点P在OB上侧和下侧分类研究即可;【解答】解:(1)把x=m代入y=﹣x2+3x,y=﹣m2+3m∴P(m,﹣m2+3m)(2)①当0<m<2时,d=﹣m2+3m﹣m=﹣m2+2m,②当m>2时,d=m﹣(﹣m2+3m)=m2﹣2m(3)当△PQN是等腰直角三角形,∴PQ=PN=1,①当0<m<2时,﹣m2+2m=1,解得m1=m2=1.②当m>2时,m2﹣2m=1,解得m1=1+,m2=1﹣(舍)(4)m=1或m>2.当点P在OB上侧时,当△PQN是直角三角形,PN平行于x轴,所以P和N关于对称轴x=对称,又因为PN=1,所以m=1;当点P在OB下方时,因为点N与点B始终在PQ左侧,所以这时△PQN的边与抛物线始终有两个交点,所以m>2.所以m=1或m>2.【点评】此题主要考查二次函数的综合问题,会表示函数图象上点的坐标,会运用方程解决点的存在问题是解题的人教版九年级数学上册期末考试试题(含答案)。
泉州市2019-2020学年度上学期初三教学质量检测初三数学参考答案及评分标准一、选择题(每小题4分,共40分)1.D2.C3.C4.B5.A6.D7.B8.D9.C 10.A 二、填空题(每小题4分,共24分)11. 25 12. 11−=x ,22=x 13. 1514. 15.2216.52或171718.三、解答题(共86分)17.(本小题8分) 解:原式=22224⨯−+……………………………………………………………………………6分 =224−+…………………………………………………………………………………7分4=………………………………………………………………………………………………8分18.(本小题8分) 解: ∵313121=−−=+x x ,3201921−=x x ,……………………………………………………4分 ∴()()2221++x x ()422121+++=x x x x ……………………………………………………………6分32005431232019−=+⨯+−=. ………………………………………………8分 19.(本小题8分)解:325)40)(301200=−−−x x (……………………………………………………………………5分 整理得:0325702=+−x x ,解得:(舍去)65,521==x x , ………………………………………………………………………7分答:改造后x 的值为5m. ………………………………………………………………………………8分 20.(本小题8分)(1)证明: ()()222211241241−=+−=−++=−+=∆k k k k k k k k ,…………………………3分∴()012≥−=∆k ………………………………………………………………………4分21.(本小题8分)(1)如图,点E 是所求作的.………………………………………………………………………………………………………4分AB DC E(2)如图, ∵四边形ABCD 为矩形,∴︒=∠90ABC ,AB ∥CD ,∴︒=∠=∠30AED EAB .…………………………………………5分AE AB =,点F 为边BE 的中点,∴AF 平分EAB ∠,即︒=∠15EAF (三线合一). ……………6分 AE AB =,︒=∠30EAB , ∴︒=︒−︒=∠75230180ABE ,……………………………………………………………………7分 ∴︒=︒−︒=∠157590EBC ,∴EBC EAF ∠=∠.………………………………………………………………………………8分22.(本小题10分)解:作AB CH ⊥于点H ,……………………………………1分在等腰ABC Rt ∆中,AB HB CH 21==,……………………2分 ∵EF ∥AB ,∴︒=∠=∠30EFD CDH .……………………………………3分 在CHD Rt ∆中, 设x HB CH ==,HDCH CDH =∠tan ,HD x=︒30tan ,x HD 3=,…………………………5分∵BD HB HD =−,∴3333−=−x x ,解得:3=x ,即3==HB CH .……………………………………………7分 ∴62==HB CD ,62===HB AB EF . 在DEF Rt ∆中,︒=∠30F ,DF EF=︒30cos ,3423630cos ==︒=EF DF ,…………………9分∵CD DF CF −=,∴634−=−=CD DF CF .………………………………………………………………………10分 23.(本小题10分)解法一:(1)由题意得:%80201343⨯=++++x ,解得:5=x . ……………………………………………………………………………………………2分 ∴()213543220=+++++−=y .…………………………………………………………………4分 (2) 记“重量小于或等于29.7kg ”的两件产品为A 、B ,记“重量大于或等于30.3kg ”的两件产品为C 、D .画树状图如下:产品1 B D 产品2 整改费用:100 80 80 100 80 80 80 80 60 80 80 60(第22题图)EA BD C EF……………………………………………………………………………………………………………8分 所有机会均等的结果有12种,其中整改费用最低的结果有2种, ∴P (整改费用最低)61122==. ………………………………………………………………………10分 解法二:(1)同解法一;(2) 记“重量小于或等于29.7kg ”的两件产品为A 、B ,记“重量大于或等于30.3kg ”的两件产品为C 、D . 列表如下:……………………………………………………………………………………………………………8分所有机会均等的结果有12种,其中整改费用最低的结果有2种, ∴P (整改费用最低)61122==.………………………………………………………………………10分 24.(本小题12分)解:(1)由题意得:()4,0A ,()0,3B . 在AOB Rt ∆中,34tan ==∠OB OA ABO .………………………………………………………………2分 (2) FM DM ⊥,理由如下:…………………………………………………………………………3分 由折叠的性质得:EBF EDF ∠=∠. ∵OC 为AOB Rt ∆斜边AB 上的中线,∴BC AB OC ==21, ∴CBO COB ∠=∠,∴COB EDF ∠=∠.……………………………………………………………………………………5分 又∵ONF DNM ∠=∠,∴DNM ∆∽ONF ∆,…………………………………………………………………………………6分 ∴FN MN ON DN =,即FN ON MN DN =, 又∵MNF DNO ∠=∠,∴DNO ∆∽MNF ∆,…………………………………………………………………………………7分 ∴MFN DON ∠=∠,∴︒=∠+∠=∠+∠90DON COB MFN EDF ,∴()︒=∠+∠−︒=∠90180MFN EDF DMF ,∴FM DM ⊥.…………………………………………………………………………………………8分(3) ∵ABO MDF ∠=∠∴在DMF Rt ∆中,34tan tan =∠=∠ABO MDF ,………………………………………………9分 设t DM 3=()0>t ,则t MF 4=,t BF DF 5==, 当MN MD =时,MND MDN ∠=∠.又∵COB MDN ∠=∠,FNO MND ∠=∠,∴FNO COB ∠=∠,………………………………………10分 ∴t FN FO 53−==, ∴()310535−=−−=t t t DN .由DNO ∆∽MNF ∆得:MNDNFM OD =, 即tt t OD 33104−=, ∴()31034−=t OD .……………………………………………………………………………………11分在DOF Rt ∆中,由勾股定理得:222DF OF OD =+,即()()()22255331034t t t =−+⎥⎦⎤⎢⎣⎡−,解得:32151=t ,1032=t ,∴49=OD 或0(不合题意,舍去),∴点⎪⎭⎫⎝⎛49,0D . 综上所述,点D 的坐标为⎪⎭⎫⎝⎛49,0.……………………………………………………………………12分 (若有其它解法,请参照上述评分标准酌情给分) 25.(本小题14分)解:(1)∵︒=∠+∠+∠180BPC PBC PCB ,︒=∠135BPC ,∴︒=∠+∠45PBC PCB , 又∵︒=∠45MBN ,∴︒=∠+∠45PBC ABP ,∴ABP PCB ∠=∠.……………………………………………………………………………………1分 又∵︒=∠=∠135BPC BPA ,∴CPB ∆∽BPA ∆.……………………………………………………………………………………2分 (2)由(1)得:CPB ∆∽BPA ∆,∴AB BCPA BP BP PC ==. …………………………………………………………………………………3分 ∵BC AC ⊥, ∴︒=∠90ACB . 又︒=∠45MBN ,∴ACB ∆是等腰三角形. ………………………………………………………………………………4分(第24题图)∴ABBC=︒45cos ,即22===AB BC PA BP BP PC ,……………………………………………………5分 ∴212222=⨯=⋅PA BP BP PC ,即21=PA PC .…………………………………………………………6分 ∵︒=∠=∠135BPC BPA ,∴︒=⨯︒−︒=∠902135360APC . 在APC Rt ∆中,设()0>=t t PC ,则t PA 2=,由勾股定理,得:t AC 5=.∴555==tt AC PC .……………………………………………………………………………………7分 (3) 法一:由(1)知:CP BP BP AP =,即c b b a =,设x cb b a ==()0>x ,则cx b =,2cx a =.………8分 ∵20=−+c b a ,∴202=−+c cx cx ,即02012=−−+cx x (*)…………………………………………………10分 又∵b a 2≥,∴2≥ba,即2≥x , ∴方程(*)应有根2≥x ,……………………………………………………………………………11分∴080520141≥+=⎪⎭⎫ ⎝⎛−−−=∆cc , ∴280511cx ++−=,0280512<+−−=cx (舍去)由⎩⎨⎧≥≥∆201x ,,解得:4≤c . …………………………………………………………………………12分又∵c 为整数,∴=c 1,2,3,4.………………………………………………………………………………………13分 当=c 1,2,3时,方程(*)的根为无理数,此时b 不为整数,不合题意. 当4=c 时,2=x ,此时,16=a ,8=b .综上所述,16=a ,8=b ,4=c .…………………………………………………………………14分 法二:由(1)知:BP CP AP BP =,即bc a b =,设x b c a b ==,则ax b =,2ax c =.…………………8分 ∵20=−+c b a ,∴202=−+ax ax a ,即01202=−+−ax x (*)………………………………………………10分 又∵b a 2≥, ∴210≤<x ,即方程(*)应有根满足210≤<x .…………………………………………………11分∴⎪⎪⎩⎪⎪⎨⎧≤−+<≥−=⎪⎭⎫⎝⎛−−=∆21280510080512041a a a ,或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤−−<≥−=⎪⎭⎫ ⎝⎛−−=∆21280510080512041a a a , 解得:⎩⎨⎧=≥16,16a a 或⎩⎨⎧<≤≥2016,16a a ,∴2016<≤a …………………………………………………………………………………………12分又∵a 为整数,∴=a 16,17,18,19 .………………………………………………………………………………13分 当16=a 时,方程(*)化为:0412=+−x x ,解得:2121==x x . ∴8=b ,4=c .当=a 17,18,19时,方程(*)的根为无理数,此时b 不为整数,不合题意.综上所述,16=a ,8=b ,4=c .…………………………………………………………………14分(若有其它解法,请参照上述评分标准酌情给分)。
福建省泉州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2016九上·温州期末) 抛物线y=x2﹣4与y轴的交点坐标是()A . (0,﹣4)B . (﹣4,0)C . (2,0)D . (0,2)2. (2分) (2019九上·伍家岗期末) 下列二次函数所对应的抛物线中,开口程度与其它不一样的是()A . y=x2+2x﹣7B .C .D .3. (2分) (2019九上·南关期末) 如图,在△ABC中,∠C=90°,AB=13,AC=12,下列三角函数表示正确的是()A . =B . =C . =D . =4. (2分)(2020·韩城模拟) 如图,在长方形ABCD中,AB=6,BC=8,∠ABC的平分线交AD于点E,连接CE,过B点作BF⊥CE于点F,则BF的长为()A .B .C .D .5. (2分)(2019·嘉定模拟) 如图,在平行四边形ABCD中,设 , ,那么向量可以表示为. ()A .B .C .D .6. (2分)下列命题中真命题是()A . 同旁内角相等,两直线平行B . 两锐角之和为钝角C . 到角的两边距离相等的点在这个角的平分线上D . 直角三角形斜边上的中线等于斜边的一半二、填空题 (共12题;共12分)7. (1分) (2019九上·庆阳月考) 已知,则 ________.8. (1分) (2019九上·普陀期中) 已知是△ 的重心,设,,那么 =________(用、表示).9. (1分) (2019九上·道外期末) 二次函数y=x2+2的图象,与y轴的交点坐标为________.10. (1分)(2020·烟台) 二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a >1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是________.11. (1分) (2018九上·衢州期中) 飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是,在飞机着陆滑行中,最后4s滑行的距离是________m.12. (1分)已知A(﹣1,y1)、B(2,y2)、C(﹣,y3)在函数y=﹣2(x﹣1)2+1的图象上,则y1、y2、y3的大小关系是________.(用“<”连接)13. (1分)(2018·潮南模拟) 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是________.14. (1分)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是________cm.15. (1分)(2020·泰兴模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,点G是△ABC的重心,GH⊥BC,垂足是H,则GH的长为________.16. (1分)如图,已知,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD 和菱形PBFE.点P,C,E在一条直线上,,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,点M、N之间的距离最短为________.17. (1分)如图,①请你填写一个适当的条件:________,使AD∥BC.②若AD∥BC,△ABD是等腰三角形,当∠ABC=70°时,∠ADB=________°18. (1分)(2020·江苏模拟) 如图,点在正方形的边上,连接,设点关于直线的对称点为点,且点在正方形内部,连接并延长交边于点,过点作交射线于点,连接 .若,则的长为________.三、解答题 (共7题;共65分)19. (5分)(2018·怀化) 计算:2sin30°﹣(π﹣)0+| ﹣1|+()﹣120. (10分) (2016九下·宁国开学考) 已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21. (10分)(2020·邯郸模拟) 如图①,已知点、在直线上,且于点,且,以为直径在的左侧作半圆于点,且.(1)若半圆上有一点,则的最大值为________;(2)向右沿直线平移得到.①如图②,若截半圆的的长为,求的度数;②当半圆与的边相切时,求平移距离.22. (5分) (2019九上·成都开学考) 问题背景:如图1,等腰△ABC中,AB=AC ,∠BAC=120°,作AD⊥BC 于点D ,则D为BC的中点,∠BAD= ∠BAC=60°,于是 = = ;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D , E , C三点在同一条直线上,连接BD .①求证:△ADB≌△AEC;②请直接写出线段AD , BD , CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM ,作点C关于BM的对称点E ,连接AE并延长交BM于点F ,连接CE , CF .①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.23. (10分) x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.24. (10分)(2016·丹东) 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.25. (15分) (2020七下·江苏月考) 在平面直角坐标系中,对于点,若点的坐标为,则称点是的“ 演化点”.例如,点的“ 演化点”为,即 .(1)已知点的“ 演化点”是,则的坐标为________;(2)已知点,且点的“ 演化点”是,则的面积为________;(3)己知,,,,且点的“ 演化点”为,当时, ________.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共65分)19-1、答案:略20-1、答案:略20-2、答案:略21-1、22-1、答案:略23-1、23-2、23-3、24-1、24-2、答案:略24-3、答案:略24-4、答案:略25-1、25-2、25-3、。
泉州市2020年(春秋版)九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共23分)1. (3分)若∠A是锐角,且sinA=,则∠A等于()A . 60°B . 45°C . 30°D . 75°2. (2分) (2018九上·柯桥月考) 某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A .B .C .D . 不能确定3. (2分)如图,在□ABCD中,BE平分∠ABC,CF平分∠BCD,E,F在AD上,BE与CF相交于点G,若AB=7,BC=10,则△EFG与△BCG的面积之比为()A . 4:25B . 49:100C . 7:10D . 2:54. (2分)(2017·咸宁) 如图是某个几何体的三视图,该几何体是()A . 三棱柱B . 三棱锥C . 圆柱D . 圆锥5. (3分)(2019·秀洲模拟) 将抛物线 y=x2 向左平移1个单位,得到的抛物线是()A . y=x2+1B . y=x2-1C . y=(x+1)2D . y=(x-1)26. (3分)(2017·济宁模拟) 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A . 6cmB . 12cmC . 2 cmD . cm7. (2分)如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A . 10B . 11C . 12D . 138. (2分) (2017九上·亳州期末) 如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1 ,△2 ,△3(图中阴影部分)的面积分别是4,9和16,则△ABC的面积是()A . 49B . 64C . 100D . 819. (2分)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A . S△AFD=2S△EFBB . BF=DFC . 四边形AECD是等腰梯形D . ∠AEB=∠ADC10. (2分) (2019八下·正定期末) 某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能符合题意反映这一函数关系的大致图像是()A .B .C .D .二、填空题(每小题4分,共24分) (共6题;共14分)11. (4分)(2020·南开模拟) 在一个盒子中有4张形状,大小相同质地均匀的卡片,上面分别标着1,2,3,4这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之积是6的概率是________.12. (2分)(2019·梧州模拟) 如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径是6,若点P是⊙O 上的一点,=,则PA的长为________.13. (2分)(2020·吉林模拟) 如图,在▱ABCD中,AB=6,BC=6 ,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF ,当FG∥AC时,BF的长为________.14. (2分) (2018九上·杭州期中) 如图,在半径为5的圆O中,点P为弦AB上一点,AP=1,PB=7,则OP 的长为________.15. (2分)边长为3cm的等边三角形的周长为________ cm.16. (2分)已知下列函数①y=②y=-③y=+2,其中,图象通过平移可以得到函数y=+2x-3的图像的有________ .(填写所有正确选项的序号)三、解答题(共7题;共66分) (共7题;共34分)17. (6分)阅读材料,并回答下列问题:如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.(1)请你写出一种全等变换的方法(除翻折、平移外).________;(2)如图2,△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=3,则DC=________;(3)如图3,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE翻折,当点A落在四边形BCED内部变为F时,则∠F和∠BDF+∠CEF之间的数量关系始终保持不变,请你直接写出它们之间的关系式:________.18. (2分)(2017·丹东模拟) 某海域有A,B,C三艘船正在捕鱼作业,C船突然出现故障,向A,B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2) A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)19. (8分)(2019·潮南模拟) 请你依据如图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.20. (2分)(2017·兴化模拟) 如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,∠AEO=∠C,OE交BC于点F.(1)求证:OE∥BD;(2)当⊙O的半径为5,sin∠DBA= 时,求EF的长.21. (2分) (2016九上·兴化期中) 小明跳起投篮,球出手时离地面 m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?22. (2分)(2019·衡阳模拟) 如图,AB为半⊙O的直径,弦AC的延长线与过点B的切线交于点D,E为BD 的中点,连接CE.(1)求证:CE是⊙O的切线;(2)过点C作CF⊥AB,垂足为点F,AC=5,CF=3,求⊙O的半径.23. (12分)(2019·荆门模拟) 如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1 , 0),与x 轴正半轴交于点B(x2 , 0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.参考答案一、选择题(每小题3分,共30分) (共10题;共23分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共24分) (共6题;共14分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共7题;共66分) (共7题;共34分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
福建省泉州市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·青岛模拟) 下列说法正确的是()A . 为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B . 若甲组数据的方差s =0.03,乙组数据的方差是s =0.2,则乙组数据比甲组数据稳定C . 广安市明天一定会下雨D . 一组数据4、5、6、5、2、8的众数是52. (2分)已知x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,且+﹣2的值为整数,则整数k的最大值为()A . -2B . -3C . 2D . 33. (2分)已知点A(-1,5)在反比例函数y=的图象上,则该函数的解析式为()A . y=B . y=C . y=-D . y=5x4. (2分) (2020八下·西安月考) 如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE。
若AC=7,BC=4,则BD的长为()A . 2.5B . 1.5C . 2D . 15. (2分)(2017·柘城模拟) 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A .B .C .D .6. (2分)如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A . 70°B . 50°C . 40°D . 35°7. (2分)点A(x1 , y1)、B(x2 , y2)、C(x3 , y3)都在反比例函数的图象上,且x1<x2<0<x3 ,则y1、y2、y3的大小关系是()A . y3<y1<y2B . y1<y2<y3C . y3<y2<y1D . y2<y1<y38. (2分)若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则|b|﹣|a﹣b|等于()A . aB . ﹣aC . 2b+aD . 2b﹣a9. (2分)同一坐标系中,抛物线y=(x﹣a)2与直线y=a+ax的图象可能是()A .B .C .D .10. (2分) (2019八下·岑溪期末) 如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)11. (1分)(2019·哈尔滨) 同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为________。
福建泉州市城东九年级上学期期末数学模拟试卷一.选择题(每小题4分,满分40分)1.二次根式中的的取值范围是()A.<﹣2B.≤﹣2C.>﹣2D.≥﹣22.下列属于最简二次根式的是()A.B.C.D.3.若=,则的值是()A.1B.2C.3D.44.方程92=16的解是()A.B.C.D.5.下列事件中,随机事件是()A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字1,2,3的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,北京在大寒这一天的最低气温会在0℃以下6.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°7.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则=()A.1:1B.2:1C.2:3D.3:28.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为元.则有()A.(180+﹣20)(50﹣)=10890B.(﹣20)(50﹣)=10890C.(50﹣)﹣50×20=10890D.(+180)(50﹣)﹣50×20=108909.已知AD是△ABC的一条中线,E为AB边上一点,且AE:EB=2:3,连接CE交AD 于点F,则AF:FD=()A.1:1B.3:2C.4:3D.5:410.若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<4二.填空题(满分24分,每小题4分)11.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=.12.计算:(+1)(﹣1)=.13.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算C的长为步.16.已知关于的方程a2﹣b﹣c=0(a≠0)的系数满足4a﹣2b﹣c=0,且c﹣a﹣b=0,则该方程的根是.三.解答题(共9小题,满分86分)17.(8分)计算:(1)2﹣18+3﹣8(2)(+﹣1)(﹣+1)18.(8分)已知:关于的方程2﹣(3+1)+2+1=0.(1)请说明:此方程必有实数根;(2)若为整数,且该方程的根都是整数,写出的值.19.(8分)在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小.(1)在图中按要求画出△ABO的位似图形;(2)写出点A的对应点的坐标.20.(8分)为了测量白塔的高度AB,在D处用高为 1.5米的测角仪CD,测得塔顶A 的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)21.(8分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.22.(10分)某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):321233522424252344133251423124(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种合适的统计表或统计图整理表示上述数据;(2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息:①②(3)规定八年级男生“引体向上”4个及以上为合格.若学校准备对“引体向上”不合格的男生提出锻炼建议,试估计要对八年级多少名男生提出这项建议?23.(10分)关于的方程(﹣1)2﹣4﹣1=0有两个不相等的实数根,求的取值范围.24.(12分)如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A (2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=2时,求点E的坐标;(2)若AB平分∠EBP时,求t的值;(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.25.(14分)如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.参考答案一.选择题1.解:由题意,得2+4≥0,解得≥﹣2,故选:D.2.解:A、不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、不是最简二次根式,故此选项错误;D、不是最简二次根式,故此选项错误;故选:B.3.解:∵=,∴=y,∴===3,故选:C.4.解:∵92=16,∴2=,则=±,故选:C.5.解:A、是必然事件,故A不符合题意;B、是随机事件,故B符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选:B.6.解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.7.解:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2:1.故选:B.8.解:设房价定为元,根据题意,得(﹣20)(50﹣)=10890.故选:B.9.解:作DG∥CE交AB于G,如图,根据平行线分线段成比例定理,由DG∥CE得到=,而BD=DC,则BG=GE,于是由AE:EB=2:3得到AE:EG=4:3,∵EF∥DG,∴AF:FD=AE: EG=4:3.故选:C.10.解:∵tan45°=1,tan60°=,且锐角范围内tanα随∠α的增大而增大,∴tan45°<tan55°<tan60°,即1<a<,则1<a<2,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12.故答案为:12.12.解:(+1)(﹣1)=.故答案为:1.13.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为 6.2米.故答案为:6.2.14.解:列表如下:﹣2﹣112﹣22﹣2﹣4﹣12﹣1﹣21﹣2﹣122﹣4﹣22由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.15.解:DH=100,D=100,AH=15,∵AH∥D,∴∠CD=∠A,而∠CD=∠AHD,∴△CD∽△DAH,∴=,即=,∴C=.答:C的长为步.故答案为.16.解:∵a2﹣b﹣c=0(a≠0),把=2代入得:4a﹣2b﹣c=0,即方程的一个解是=2,把=﹣1代入得:c﹣a﹣b=0,即方程的一个解是=﹣1,故答案为:﹣1和2.三.解答题(共9小题,满分86分)17.解:(1)原式=8﹣6+9﹣2=2+7;(2)原式=[+(﹣1)][﹣(﹣1)]=()2﹣(﹣1)2=3﹣(2﹣2+1)=3﹣2+2﹣1=2.18.解:(1)当=0时,原方程为﹣+1=0,解得:=1,∴当=0时,关于的方程2﹣(3+1)+2+1=0有实数根;当≠0时,△=[﹣(3+1)]2﹣4(2+1)=2+2+1=(+1)2.∵(+1)2≥0,∴△≥0,∴关于的方程2﹣(3+1)+2+1=0有实数根.综上所述:对于任意值,方程2﹣(3+1)+2+1=0必有实数根;(2)2﹣(3+1)+2+1=0,即[﹣(2+1)](﹣1)=0,解得:1=1,2==2+.∵为整数,且该方程的根都是整数,∴=1或=﹣1.19.解:(1)如图所示,△A′B′O和△A″B″O即为所求;(2)点A的对应点A′的坐标为(﹣1,2)、A″的坐标为(1,﹣2).20.解:设AE=,在Rt△ACE中,CE==1.1,在Rt△AFE中,FE==0.55,由题意得,CF=CE﹣FE=1.1﹣0.55=12,解得:=,故AB=AE+BE=+1.5≈23米.答:这个电视塔的高度AB为23米.21.解:设小路的宽为米,由题意得,(5)2+(40+50)﹣2××5=×40×50解得,=2或=﹣8(不合题意,舍去)答:小路的宽为2米.22.解:(1)选择条形统计图测试成绩(个)测试成绩人数1 4210374653(2)获得的信息如:成绩为五个的有3人,占10%;成绩为2个的人数最多.(3)(4+10+7)÷30×150=105(名).23.解:∵关于的方程(﹣1)2﹣4﹣1=0有两个不相等的实数根,∴,解得:>﹣3且≠1.24.解:(1)当t=2时,PC=2,∵BC=2,∴PC=BC,∴∠PBC=45°,∴∠BAE=90°,∴∠AEB=45°,∴AB=AE=3,,∴点E的坐标是(5,0);(2)当AB平分∠EBP时,∠PBF=45°,则∠CBP=∠CPB=45°,,∴t=2;(3)存在,∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC,∵∠BAE=∠BCP=90°,∴△BCP∽△BAE,∴,∴,∴,∵若△POE∽△EAB,∴=∴=,∴t1=,t2=(舍去),∴P的坐标为(0,);当点P在y轴的负半轴上时,若△POE∽△EAB,则有=,无解,若△POE∽△BAE,则有:=,解得t=3+或3﹣(舍弃)∴P的坐标为(0,)或(0,﹣).25.解:(1)∵点A的坐标为(0,6),∴设直线AB的解析式为y=+6,∵点C(2,4)在直线AB上,∴2+6=4,∴=﹣1,∴直线AB的解析式为y=﹣+6;(2)由(1)知,直线AB的解析式为y=﹣+6,令y=0,∴﹣+6=0,∴=6,∴B(6,0),∴S△OBC=OB?y C=12,∵△OPB的面积是△OBC的面积的,∴S△OPB=×12=3,设P的纵坐标为m,∴S△OPB=OB?m=3m=3,∴m=1,∵C(2,4),∴直线OC的解析式为y=2,当点P在OC上时,=,∴P(,1),当点P在BC上时,=6﹣1=5,∴P(5,1),即:点P(,1)或(5,1);(3)∵△OBP是直角三角形,∴∠OPB=90°,当点P在OC上时,由(2)知,直线OC的解析式为y=2①,∴直线BP的解析式的比例系数为﹣,∵B(6,0),∴直线BP的解析式为y=﹣+3②,联立①②,解得,∴P(,),当点P在BC上时,由(1)知,直线AB的解析式为y=﹣+6③,∴直线OP的解析式为y=④,联立③④解得,,∴P(3,3),即:点P的坐标为(,)或(3,3).。
福建省泉州市2020年(春秋版)九年级上学期期末数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图是四届世界数学家大会的会标,其中是轴对称图形的是()A .B .C .D .2. (2分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A .B .C .D .3. (2分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A . 2B . 4C . 8D . 164. (2分) (2019八上·右玉期中) 如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()A . 80°B . 90°C . 100°D . 108°5. (2分) (2017九下·启东开学考) 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A .B .C .D .6. (2分)(2014·南宁) 在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A . 40cmB . 60cmC . 80cmD . 100cm7. (2分) (2018九上·雅安期中) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是()① ;② ;③若,则平分;④若,则A . ①③B . ②③C . ②④D . ③④8. (2分) (2017九上·河口期末) 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A . (5,2)B . (2,5)C . (2,﹣5)D . (5,﹣2)9. (2分)下列各函数中,y随x增大而增大的是()①y=-x+1;②y=-(x<0);③y=x2+1;④y=2x-3.A . ①②B . ②③C . ②④D . ①③10. (2分)文峰千家惠四月份的利润是25万元,预计六月份的利润将达到36万元,设平均每月增长的百分率为x,根据题意所列方程正确的是().A . 25(1+x)2=36-25B . 25(1+2x)=36C . 25(1+x)2=36D . 25(1+x2)=36二、填空题 (共8题;共20分)11. (1分) (2016九下·大庆期末) 已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.12. (1分)(2013·福州) 如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是________.13. (1分) (2019九上·台安月考) 如图已知等边,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交x轴于点得到第二个等边;过作交双曲线于点,过作交x轴于点,得到第三个等边;以此类推,…,则点的坐标为________.14. (1分)抛物线y=x2+mx+4与x轴仅有一个交点,则该交点的坐标是________.15. (1分)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=,则图中阴影部分的面积为________ .16. (1分)如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么________秒种后⊙P与直线CD相切.17. (1分)(2017·庆云模拟) 如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为________.18. (13分)用火柴棒摆出下列一组图形:(1)填写下表:图形编号123图形中的火柴棒数________________________(2)照这样的方式摆下去,写出摆第n个图形中的火柴棒数;(用含n的代数式表示)(3)如果某一图形共有2012根火柴棒,你知道它是第几个图形吗?三、解答题 (共5题;共43分)19. (10分)(2017·通州模拟) 在平面直角坐标系xOy中,直线y=2x+1与双曲线y= 的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y= 的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.20. (5分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数: .(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?21. (3分)(2019·宝鸡模拟) 小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的“工兵”、“连长”、“地雷”比较大小,共有6个棋子,分别为1个“工兵”,2个“连长”,3个“地雷”游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②“工兵”胜“地雷”,“地雷”胜“连长”,“连长”胜“工兵”;③相同棋子不分胜负.(1)若小方先摸,则小方摸到“排长”的事件是________;若小方先摸到了“连长”,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为________.(2)如果先拿走一个“连长”,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率________.22. (10分)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.23. (15分)(2014·福州) 如图,抛物线y= (x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、三、解答题 (共5题;共43分) 19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、。
福建省泉州市2020年(春秋版)九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·岑溪期末) 下列式子中为最简二次根式的是()A .B .C .D .2. (2分)一元二次方程x2+2x+1=0根的情况是()A . 有两个不相等的实数根;B . 有两个相等的实数根;C . 有一个实数根;D . 无实数根3. (2分)如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A . 7B . 14C . 21D . 284. (2分)(2018·浦东模拟) 如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A的余切值()A . 扩大为原来的两倍B . 缩小为原来的C . 不变D . 不能确定5. (2分)已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共根,则++的值为()A . 0B . 1C . 2D . 36. (2分)(2018·沈阳) 下列事件中,是必然事件的是()A . 任意买一张电影票,座位号是2的倍数B . 13个人中至少有两个人生肖相同C . 车辆随机到达一个路口,遇到红灯D . 明天一定会下雨7. (2分) (2016九上·龙海期中) 如图,D是△ABC的边BC上任一点,已知AB=6,AD=3,∠DAC=∠B.若△ABD 的面积为a,则△ACD的面积为()A . aB .C .D . a8. (2分)重庆一中研究性学习小组准备利用所学的三角函数的知识取测量南山大金鹰的高度.他们在B处测得山顶C的仰角是45°,从B沿坡度为1:的斜度前进38米到达大金鹰上的一个观景点D,再次测得山顶C 的仰角为60°,则大金鹰的高度AC为()米(结果精确到1米.参考数据≈1.41,≈1.73)A . 45B . 48C . 52D . 549. (2分)点M(-sin60°,cos60°)关于x轴对称的点的坐标是()A . (,)B . (-, -)C . (-,)D . (-, -)10. (2分))如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′,B′,A′,B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A . (, n)B . (m,n)C . (,)D . (m,)二、填空题 (共5题;共6分)11. (1分)(2016·包头) 若2x﹣3y﹣1=0,则5﹣4x+6y的值为________.12. (1分)方程的解是________ 。
2019-2020学年福建省泉州市南安市九年级(上)期末数学试卷
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(4分)下列实数中,介于与之间的是( )
A. B. C. D.π
2.(4分)下列计算正确的是 ( )
A. B.a+2a=3a C.(2a)3=2a3 D.a6÷a3=a2
3.(4分)为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从
市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为( )
A.1.7118×102 B.0.17118×107
C.1.7118×106 D.171.18×10
4.(4分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,
则三视图发生改变的是( )
A.主视图
B.俯视图
C.左视图
D.主视图、俯视图和左视图都改变
5.(4分)不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个
球,摸出蓝球的概率是0.6,则袋子中有红球( )
A.4个 B.6个 C.8个 D.10个
6.(4分)如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是( )