函数图像的变换及其应用.
- 格式:doc
- 大小:173.50 KB
- 文档页数:4
二次函数图像的变化规律及应用引言:二次函数是高中数学中的重要内容之一,它的图像呈现出一种独特的形态,具有丰富的变化规律和广泛的应用。
本文将从图像的变化规律和应用两个方面,对二次函数进行深入的探讨。
一、图像的变化规律1. 平移变换二次函数的图像可以通过平移变换而得到不同的形态。
平移变换是指在坐标平面上将图像整体向左、右、上、下平移的操作。
对于二次函数y=ax^2+bx+c,当平移向右时,a保持不变,b不变,c减小;当平移向左时,a保持不变,b不变,c增大;当平移向上时,a增大,b不变,c增大;当平移向下时,a减小,b不变,c减小。
通过平移变换,我们可以观察到二次函数图像在平面上的移动轨迹,进而掌握其变化规律。
2. 缩放变换缩放变换是指在坐标平面上将图像整体放大或缩小的操作。
对于二次函数y=ax^2+bx+c,当缩放因子为k时,a不变,b不变,c增大(或减小)k倍。
缩放变换可以改变二次函数图像的大小和形状,通过观察不同缩放因子下的图像,我们可以总结出二次函数图像的缩放规律。
3. 翻折变换翻折变换是指在坐标平面上将图像关于某一直线进行对称的操作。
对于二次函数y=ax^2+bx+c,当翻折轴为x轴时,a不变,b变号,c不变;当翻折轴为y轴时,a变号,b不变,c不变;当翻折轴为直线x=k时,a不变,b变号,c变号。
翻折变换可以改变二次函数图像的位置和形状,通过观察不同翻折轴下的图像,我们可以总结出二次函数图像的翻折规律。
二、图像的应用1. 最值问题二次函数的图像呈现出一个开口朝上或朝下的抛物线形态,通过观察图像的顶点,我们可以得出二次函数的最值。
当抛物线开口朝上时,顶点为最小值;当抛物线开口朝下时,顶点为最大值。
最值问题在实际应用中有广泛的应用,例如在物理学中,我们可以通过最值问题求解物体的最高点或最低点。
2. 零点问题二次函数的图像与x轴的交点称为零点,也叫根或解。
通过观察图像与x轴的交点,我们可以求解二次函数的零点。
三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。
下面将详细介绍三角函数图像变换的原理、方法和应用。
一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。
具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。
振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。
2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。
频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。
3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。
相位增加时,图像向右平移;相位减小时,图像向左平移。
二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。
例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。
2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。
例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。
3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。
例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。
此外,还可以结合使用上述方法,实现更复杂的图像变换。
例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。
三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。
以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。
高考数学中的函数图像变换及其应用高考数学作为广大学生面临的一大挑战,其中数学分值占比不容忽视,其中函数图像变换的相关知识成为了考生备考重点之一。
本文将介绍这些知识,并探讨其相关应用。
一、函数图像的平移平移是函数图像变换中最基本的一种,它是通过改变函数图像与坐标轴的相对位置来实现的。
其中,平移的方向与距离是决定平移效果的两个重要因素。
对于一般的函数y=f(x),将它的图像向右平移a个单位长度的方法如下:设新函数为y=f(x-a),则各个点的实际位置为(x+a,y),根据平移的原理,需要将这些点在坐标系中向左平移a个单位长度即可实现。
类似地,将函数图像向左平移a个单位长度的方法就是y=f(x+a),而将其上移或下移b个单位长度的方法分别为y=f(x)+b 和y=f(x)-b。
函数图像的平移主要应用于研究函数图像的周期性,以及改变其输出值区间、控制其渐进线等方面。
二、函数图像的伸缩伸缩也是函数图像变换中常用的一种方法,它是通过改变函数图像沿x、y轴的长度比例来实现的。
对于一般的函数y=f(x),将其图像沿x轴方向压缩k倍的方法如下:设新函数为y=f(kx),则每个点的实际位置为(x/k,y),因此只需将这些点在坐标系中沿x轴方向伸缩k倍即可。
类似地,函数图像沿y轴方向压缩k倍的方法为y=kf(x),而沿x、y轴方向伸缩k倍的方法分别为y=f(x/k)和y=kf(kx)。
函数图像的伸缩主要应用于研究函数图像的单调性、极值、导数等性质,以及折线图、曲线图的绘制等方面。
三、函数图像的旋转旋转是函数图像变换中相对复杂的一种,它是通过改变函数图像与坐标轴的相对位置和形状来实现的。
对于一般的函数y=f(x),将其图像沿原点逆时针旋转α角的方法如下:设新函数为y=f(xcosα+ysinα),则原函数中每个点的坐标(x,y)将变为(xcosα+ysinα,-xsinα+ycosα),按照旋转的原理,需要将这些点在坐标系中沿逆时针方向旋转α角度即可实现。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
芯衣州星海市涌泉学校2021届高三数学专题教案:函数图像的变换及应用一.知识梳理复习函数图像的变换:(1)、奇偶函数图象的对称性;(2)、假设f(x)满足f(a+x)=f(b -x)那么f(x)的图象以2a b x+=为对称轴;特例:假设f(a+x)=f(a -x)那么f(x)的图象关于x=a 对称。
(3)、假设f(x)满足f(a+x)=-f(b -x)那么f(x)的图象以(,0)2a b +为对称中心;特例:假设f(a+x)=-f(a -x)那么f(x)的图象以点〔a,0〕为对称中心。
(4)、假设f(x)满足f(a+x)+f(b-x)=c 那么f(x)的图象关于点(,)22a b c +中心对称。
二.例题讲解例1、求函数y=f 〔1-x 〕与函数y=f 〔x-1〕的图象对称轴方程?〔1〕.对于定义在R 上的函数)(x f ,有下述命题: ①假设)(x f 是奇函数,那么)1(-x f 的图像关于点)0,1(A 对称;②假设对R x ∈,恒有)1()1(-=+x f x f ,那么)(x f 的图像关于直线1=x 对称; ③假设函数)1(-x f 的图像关于直线1=x 对称,那么)(x f 为偶函数; ④函数)1(x f +与函数)1(x f -的图像关于直线1=x 对称.其中正确命题的序号为______________________.例2、设f(x)=x+1,求f(x+1)关于直线x=2对称的曲线的解析式。
例3、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
例3、设定义域为R 的函数⎩⎨⎧=≠-=1,01,||1|lg |)(x x x x f ,那么关于x 的方程0)()(2=++c x bf x f有7个不同实数解的充要条件是〔〕(A)0<b 且0>c(B)0>b 且0<c (C)0<b 且0=c (D)0≥b 且0=c 例4.函数)(x f 的图像与函数21++=x x y 的图像关于点)1,0(A 对称. 〔1〕求)(x f 的解析式;〔2〕假设xa x f x g +=)()(且)(x g 在区间]2,0(上为减函数,求正数a 的取值范围. 例5、函数4(1)|1|()2(1)x x f x x ⎧≠⎪-=⎨⎪=⎩〔1〕作出函数()y f x =的大致图像. 〔2〕〔考虑题〕假设关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x 、、,求222123x x x ++的值.三、课后习题:1、设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,求f(x)的解析式。
三角函数图像与变换一、引言三角函数是高中数学中的重要内容,它们在数学和物理等领域都有广泛的应用。
本文将从三角函数的图像出发,探讨其与变换的关系,并探讨它们在实际问题中的应用。
二、三角函数的基本图像1. 正弦函数的图像正弦函数是最基本的三角函数之一,它的图像呈现周期性的波动形态。
当自变量为0时,正弦函数的值为0;当自变量为90度(或π/2弧度)时,正弦函数的值为1;当自变量为180度(或π弧度)时,正弦函数的值为0;当自变量为270度(或3π/2弧度)时,正弦函数的值为-1;以此类推,正弦函数的图像在每个周期内都呈现出上升、下降、上升、下降的特点。
2. 余弦函数的图像余弦函数与正弦函数非常相似,它们的图像在形态上只有一个平移。
当自变量为0时,余弦函数的值为1;当自变量为90度(或π/2弧度)时,余弦函数的值为0;当自变量为180度(或π弧度)时,余弦函数的值为-1;当自变量为270度(或3π/2弧度)时,余弦函数的值为0;以此类推,余弦函数的图像也呈现出上升、下降、上升、下降的特点。
3. 正切函数的图像正切函数是另一个重要的三角函数,它的图像呈现出周期性的波动形态。
正切函数的图像在每个周期内都有一个渐进线,即在自变量接近90度(或π/2弧度)和270度(或3π/2弧度)时,函数值趋近于无穷大。
三、三角函数的变换1. 平移变换平移变换是指将函数的图像沿x轴或y轴方向移动一定的距离。
对于正弦函数和余弦函数,平移变换可以通过改变自变量的值来实现。
例如,将正弦函数的自变量增加π/4,可以使函数图像向左平移π/4个单位;将正弦函数的自变量减少π/4,可以使函数图像向右平移π/4个单位。
同样的,对于余弦函数,也可以通过改变自变量的值来实现平移变换。
2. 伸缩变换伸缩变换是指将函数的图像在x轴或y轴方向进行拉伸或压缩。
对于正弦函数和余弦函数,伸缩变换可以通过改变自变量的系数来实现。
例如,将正弦函数的自变量乘以2,可以使函数图像在x轴方向压缩一倍;将正弦函数的自变量除以2,可以使函数图像在x轴方向拉伸一倍。
函数图像的变换及其应用
执教:嘉定区教师进修学院 张桂明
教学目标:
1.熟练掌握常见函数图像的画法,记住它们的大致形状和准确位置. 2.掌握函数图像的几种类型的变换,能用图像变换法解决一些有关的函数问题.
3.通过对函数图像变换与应用问题的探究及解决,提高分析问题和解决问题的能力,体会数形结合的思想方法在解决函数与方程问题中的重要作用并能初步加以应用.
教学重点:
1.常见函数的图像及其画法.
2.函数图像的变换及变换后的对称性、单调性的变化. 教学难点:
应用数形结合的思想方法对问题进行分析思考,寻求解题策略. 教学过程: 一、引入课题
问题:设定义域为R 的函数⎩
⎨⎧=≠-=1,01
,||1|lg |)(x x x x f ,则关于x 的方程
0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )
(A) 0<b 且0>c (B) 0>b 且0<c (C) 0<b 且0=c (D) 0≥b 且0=c
二、知识回顾
1.函数图像的作法,你有哪些常用的方法?
2.请说出常见函数图像的形状、位置,作出它们的草图.
3.你会用哪些函数图像的变换方法来作函数的图像?在这些变换中,如果原来的函数图像具有某种对称性,那么变换后它们的对称性有什么变化?函数的单调性在变换后又有什么变化?
4.函数)(x f 的图像关于直线a x =成轴对称图形的充要条件是什么?函数
)(x f 的图像关于点),(b a 成中心对称图形的充要条件双是什么?
三、问题探究
1.若函数3)2(2+++=x a x y ,],[b a x ∈的图像关于直线1=x 对称,则
=b ______________.
2.已知函数|12|)(-=x x f 的图像与直线a y =有且仅有一个公共点,则实数
a 的取值范围是___________________.
3.已知函数2
22)(+=
x x x f ,R x ∈.
(1)求证:函数)(x f 的图像关于点)2
1
,21(A 对称;
(2)不使用计算器,试求)109
()108()102()101(f f f f ++++Λ的值.
4.讨论方程a x x =+-|3||4|2的实数解的情况.
四、方法小结
五、练习与作业
学生练习与作业
1.怎样变换函数x y =的图像,得到函数13+-=x y 的图像,并画出此函数的图像。
2.若函数|1|log 2-=ax y 的图像的对称轴是直线2=x ,则非零实数a 的值是________。
3.把下面不完整的命题补充完整,使之成为真命题:若函数x
x f 2)(=的图像与函数)(x g 的图像关于________________________对称,则=)(x g _________________________。
4.函数1
1
2+-=x x y 的图像关于点______对称,它的对称轴方程是_____________________。
5.不等式x x a log 2
<在)2
1
,
0(∈x 恒成立,则a 的取值范围是____________________。
6.函数b
x a
x f -=)(的图像如图所示,其中a 、b 为常数,
则下列结论正确的是( )
(A) 1>a ,0<b (B) 1>a ,0>b (C) 10<<a ,0>b (D) 10<<a ,0<b
7.设)(x f 是定义在R 上的奇函数,且)(x f y =的图像关于直线2
1
=
x 对称,则=++++)5()4()3()2()1(f f f f f ____________________.
8.57.设0>b ,二次函数12
2
-++=a bx ax y 的图像为下列之一:
则a 的值为( )
(A) 1 (B) 1- (C)
251-- (D) 2
5
1+-
9.若关于x 的一元二次方程07)(2
=-+--m x a m mx 有两个实数根1x 、2x ,且满足
10121<<<<-x x ,求实数m 的取值范围。
10.已知二次函数)(1x f y =的图像以原点为顶点且过点)1,1(,反比例函数)(2x f y =的图像与直线x y =的两个交点间的距离为8,)()()(21x f x f x f +=. (1)求函数)(x f 的表达式;
(2)证明:当3>a 时,关于x 的方程)()(a f x f =有三个实数解。