齿轮油泵建模设计开题报告
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
基于SOLIDWORKS的齿轮泵设计开题报告毕业论文,设计,开题报告题目名称:基于Solidworks的齿轮泵设计学生姓名专业机电技术教育班级一、选题的目的意义随着生产力和科技水平的日益提高~机械设计领域对机械设计过程的方便性快捷性和可视化提出了越来越高的要求~所以三维软件的应用已经成为机械设计的发展潮流。
Solidworks是美国Solidworks公司的一款高性能三维机械设计软件。
它能够提供从全相关零件设计到虚拟装配再到工作和加工模拟的全套设计~给机械设计提供了一个方便的可视化平台~是一款优秀的设计软件。
利用Solidworks可以更便利的完成此次设计。
此次设计可以展现Solidworks 的强大功能和技术特点~相比传统设计过程的巨大优势。
通过设计过程使我们认识到三维设计软件的应用的必然趋势~从而在软件的开发上投入的资金和精力~使我们的设计工作赶上世界潮流取得技术优势。
二、国内外研究现状目前~国内外不少研究机构及大型企业都在虚拟装配技术研究方面取得了很大的成就~如美国华盛顿大学与美国国家标准技术研究所合作开发了虚拟装配设计环境(Virtual Assembly Development Environment~VADE),德国Bielefeld大学致力于将虚拟现实交互技术与人工智能技术结合~开发了基于指示的虚拟装配系统CODY,浙江大学开发了基于拆卸的虚拟设计与虚拟装配系统(Virtual Design and Virtual AssemblySystem~VDVAS) ,清华大学提出并实现了一种并行环境下装配仿真系统(Assembly SiMuLation System,ASMLS)~该系统能在产品设计阶段实施数字化预装配以验证和改进装配工艺,西北工业大学提出了基于操作模型的装配仿真技术~将装配操作、装配工具、装配夹具等信息集成在一个统一的装配操作模型中~以实现高层次装配仿真。
上述关于虚拟装配的研究各具特色~但都不很成熟~集成虚拟装配环境,Integrated VirtualAssembly Environment, IVAE,是上海交通大学开发的一个虚拟装配环境。
三维设计技术课程设计说明书设计题目:齿轮泵的三维设计班级:2013级冶炼-2班设计人员(按贡献大小排序):吴迪张荣强陈伟朱宝指导教师:王葛2016年11月一、设计任务概述:本设计主要围绕齿轮泵这个实例展开。
液压油泵作为一种重要的液压元件,其规格和型号比较繁多,传统的开发过程繁琐,效率低下、Solidworks是一款快捷的制图软件,克服了以上的不足之处,大大提高了设计人员的开发速度,本文将着重就Solidworks的实体建模、虚拟装配、爆炸式图等功能进行齿轮泵的设计。
齿轮泵包含多个零部件,本设计巧妙的利用Solidworks这种综合运用多种建模方法和设计方法进行。
二、设计任务分工:查找资料:吴迪三维图设计:吴迪二维图设计:吴迪、张荣强说明书书写:吴迪、张荣强、陈伟、朱宝齿轮泵工作原理分析:吴迪设备的工作原理:外啮合齿轮泵是应用最广泛的一种齿轮油泵,一般齿轮泵通常指的就是外啮合齿轮泵。
它主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。
泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。
两个齿轮的轮轴分别装在两泵盖上的轴承孔内,主动齿轮轴伸出泵体,由电动机带动旋转。
齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。
当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵内;吸入液体分两路在齿槽内被齿轮推送到排出室。
液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。
主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。
泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。
三、设计过程概述:我们小组选择的三维设计模型是齿轮泵,齿轮泵结构简单,价格便宜;工作要求低,应用广泛;端盖和齿轮的各个齿间槽组成了许多固定的密封工作腔,只能用作定量泵。
主要步骤如下,首先要确定各个零部件的尺寸,然后先利用Solidworks软件进行绘制;首先要绘制出箱体的草图,拉伸出箱体,再在箱体上绘制草图将齿轮轴孔、螺钉孔、销钉孔绘出,然后保存;再进行端盖的绘制,端盖的绘制尺寸和箱体差不多,也是依次将齿轮轴孔、螺钉孔、销钉孔绘出,然后保存;最后就是螺钉销钉,锁紧螺栓,填料压筒的绘制,前三项按照标准尺寸在Toolbox中调出,最后一项利用拉伸以及拉伸切除按照所设计好尺寸进行绘制。
大排量齿轮泵的结构及性能优化研究的开题报告一、选题背景与意义大排量齿轮泵是工程机械、重型车辆等领域中广泛应用的一种液压元件。
其基本结构由齿轮、泵体、前盖板、后盖板、轴等组成。
其工作原理是通过齿轮在泵体内相互啮合,使得液体从吸入端被压入到压出端,从而产生流量和压力。
齿轮泵具有结构简单、可靠性高、适用于高粘度液体输送等特点。
但是,在高负荷、高速、高温、氧化等严酷工况下,大排量齿轮泵易产生噪音、振动和密封泄漏等问题,影响其工作效率、稳定性和寿命,也增加了维护成本。
因此,对大排量齿轮泵的结构和性能进行优化研究,具有现实意义和深远影响。
二、研究目标与内容本研究旨在对大排量齿轮泵的结构进行优化设计,提高其可靠性、稳定性、耐用性和性能。
具体研究目标和内容包括:1.对大排量齿轮泵的结构进行分析和评估,确定其主要问题和瓶颈。
2.针对所面临的问题和需求,采用CAD、CAE等技术手段,对齿轮、泵体、前后盖板、轴等关键组件进行结构优化设计。
3.通过实验和仿真分析,验证优化设计方案的可行性和效果,比较优化前后的性能差异。
4.从性能、可靠性、稳定性、耐用性、成本等方面进行全面评价,得出最佳方案。
三、研究方法和技术路线本研究的方法和技术路线主要包括以下几个步骤:1.文献调研和分析,了解国内外大排量齿轮泵的现状、发展趋势和研究成果,确定研究方向和目标。
2.基于SolidWorks和ANSYS等软件平台,建立大排量齿轮泵的三维模型,进行结构设计和优化。
3.采用流体仿真软件ANSYS Fluent等,对优化后的齿轮泵进行流场、压力、温度、噪音、振动等方面的模拟分析和优化。
4.通过实验室大排量齿轮泵台架,对齿轮泵的流量、压力、效率、噪音、振动等性能进行测试和验证。
5.借助MATLAB等软件平台,对测试结果进行数据处理、分析和对比,评价实验与仿真的吻合程度和优化设计效果。
四、研究预期成果通过本研究,可以实现以下预期成果:1.对已有大排量齿轮泵的结构和性能进行分析和研究,发现其优点和不足。
CBF-E齿轮泵的结构分析及改进设计的开题报告一、选题背景齿轮泵是一种常用的液压传动设备,具有结构简单、可靠性高、使用寿命长等优点。
然而,当前市场上常见的齿轮泵存在一些问题,如噪音大、压力波动等,影响了其使用效果。
因此需要对齿轮泵的结构进行分析,找出问题所在,提出改进措施,以提高齿轮泵的性能。
二、研究目的本文旨在对CBF-E齿轮泵的结构进行分析,发现问题所在,并提出相应的改进手段,以提高齿轮泵的性能和使用效果。
三、研究内容1. 对CBF-E齿轮泵的结构进行分析,找出问题所在;2. 通过MATLAB软件对齿轮泵的压力波动情况进行模拟和分析;3. 提出改进方案,包括:改变齿轮的结构、优化齿轮泵的尺寸、改进齿轮泵的精度等;4. 对改进方案进行实验验证,测试其性能和可行性。
四、预期成果1. 对CBF-E齿轮泵的结构进行分析,找出问题所在;2. 提出改进方案,改善齿轮泵的性能和使用效果;3. 实验验证改进方案的可行性;4. 为齿轮泵的设计和制造提供参考和借鉴。
五、研究方法1. 文献调研法:查阅齿轮泵相关文献,了解齿轮泵的结构和性能;2. 原理分析法:对CBF-E齿轮泵的结构和工作原理进行分析和研究;3. 数值分析法:利用MATLAB软件对齿轮泵的压力波动等特性进行数值模拟和分析;4. 实验验证法:对改进方案进行实验验证,测试其性能和可行性。
六、论文结构1. 绪论:介绍选题背景、研究目的和意义;2. 文献综述:对齿轮泵的研究现状进行回顾和分析;3. CBF-E齿轮泵的结构分析:对齿轮泵的结构和工作原理进行分析;4. 数值模拟分析:利用MATLAB软件对齿轮泵的压力波动等特性进行数值模拟和分析;5. 改进方案设计:基于分析和模拟结果,提出改进措施和方案;6. 实验验证:对改进方案进行实验验证,测试其性能和可行性;7. 结论与展望:总结本研究的成果,展望未来的研究方向。
1课题综述1.1背景液压泵是整个液压系统的动力源部分,它把机械能转化为液压能,在液压系统中起着关键作用。
内啮合齿轮泵结构紧凑、尺寸小、重量轻、噪声小,流量和压力脉动小[1]。
由于内啮合齿轮泵的内外齿轮转向相同,相对滑动速度小,因而磨损小,使用寿命长。
而且内啮合齿轮泵允许使用高转速,可以获得较大的容积效率,因此内啮合齿轮泵的应用相当广泛。
目前,内啮合齿轮泵与其他类型的泵相比排量偏小,当要选用大排量的内啮合齿轮泵时,多采用双联泵或改用其他形式的泵。
为了充分利用内啮合齿轮泵的优点,又能满足一些液压系统对大流量泵的需求,开展了大流量内啮合齿轮泵的研究。
1.2国内外现状近年来,各国都比较重视内啮合齿轮泵的发展,而国内,认为其制造工艺比较复杂,且对油泵噪声控制要求不高,故生产和应用较少,仅生产摆线内啮合齿轮泵。
近几年,通过引进国外先进技术开始了内啮合齿轮泵的研究与开发。
目前,国内主要是上海机床厂引进美国V1CKERS公司产品生产的GPA型内啮合齿轮泵,内外转子间用固定月牙块隔开,无间隙补偿,排量1.76~63mL/r,额定压力l0MPa,转速范围500~3000r/min。
上海航空发动机制造厂生产的NB 系列直线共轭内啮合齿轮泵,内外转子间用固定月牙块隔开,无间隙补偿,排量10~250mL/r,额定压力低压6.3MPa,中压12.5MPa,双级泵可达25MPa,额定转速1500r/min。
国际上,有德国VOITH公司产品,内外转子均为修正渐开线齿形,内外转子间用活动月牙块隔开,按出口压力分为中压泵21 MPa和高压泵33Mpa。
其中高压泵齿圈、齿轮端面都有间隙补偿,该泵机械效率、容积效率都比较高,排量3.5~250mL/r,转速范围400~3600r/min。
德国BOSCH公司生产的内啮合齿轮泵内外转子间用活动月牙块隔开,轴向端面间隙补偿,排量3.5~250mL/r,转速范围600~3200r/min。
还有日本的不二越公司、台湾全惫精机公司生产的中高压内啮合齿轮泵。
齿轮油泵开题报告一、选题背景及意义齿轮油泵是一种用于输送齿轮箱内润滑油的关键设备,其正常运行对保证机械设备的正常运转起到至关重要的作用。
齿轮油泵在工业生产中广泛应用,包括汽车、机床、冶金、石化等领域。
随着工业技术的不断发展,对齿轮油泵的性能和效率要求越来越高。
因此,深入研究齿轮油泵的工作原理、结构设计和性能评价,对提升其工作效率和可靠性具有重要意义。
二、研究目标1.分析齿轮油泵的工作原理和结构特点,了解其核心组成部件的作用与配合关系。
2.改进齿轮油泵的设计和制造技术,提高其工作效率和可靠性。
3.评估齿轮油泵的性能指标,包括流量、压力、能效等方面的研究。
三、研究方法和内容1.文献综述:通过阅读相关的国内外文献,了解齿轮油泵的发展历程、工作原理和结构设计等方面的研究成果。
2.理论分析:通过建立齿轮油泵的数学模型,分析其工作原理和性能特点,并探讨影响齿轮油泵性能的关键因素。
3.实验研究:设计并搭建齿轮油泵试验台,进行性能测试,包括流量、压力和能效等指标的测量。
4.数据处理与分析:对实验得到的数据进行处理和分析,评估齿轮油泵的性能指标,并与设计要求进行对比分析。
5.结果讨论与总结:根据实验结果和数据分析,对齿轮油泵的改进设计方案进行讨论,总结研究成果并提出下一步的研究方向。
四、研究计划及进度安排1.第一阶段:文献综述和理论分析(预计用时3个月)-阅读相关文献,了解齿轮油泵的工作原理和结构设计(1个月)-建立齿轮油泵的数学模型,分析其工作特点(2个月)2.第二阶段:实验研究和数据处理(预计用时6个月)-设计并搭建齿轮油泵试验台,进行性能测试(3个月)-测试数据处理和分析,评估齿轮油泵的性能指标(3个月)3.第三阶段:结果讨论与总结(预计用时3个月)-根据实验结果和数据分析,讨论齿轮油泵的改进设计方案(2个月)-总结研究成果并提出下一步的研究方向(1个月)五、预期成果与创新点1.在理论分析部分,通过建立齿轮油泵的数学模型,深入探讨齿轮油泵的工作原理和性能特点,为改进设计提供理论支撑。
cad齿轮油泵实验报告
摘要在高职教育中,实习是一个重要的实践性教学环节。
通过实习,可以使学生明确专业培养的目标,增强感性认识,并可从中进一步了解、巩固与深化已经学过的理论和方法,提高发现问题、分析问题以及解决问题的能力。
关键词齿轮油泵;零件图;装配图;方法和技巧在生产实践中,对原有机器或部件进行维修和技术改造,或者设计新产品和仿造原有设备时,往往要测绘有关机器或部件的一部分或全部,绘制出全部非标准零件的草图,再根据零件草图整理绘制出装配图和零件图,这个过程称为测绘。
下面介绍齿轮油泵的测绘。
一、齿轮油泵的工作原理齿轮泵是各种机械润滑和液压系统的输油装置。
齿轮泵一般由一对齿数相同的齿轮、传动轴、轴承、端盖和壳体组成。
图1为齿轮泵工作原理简图。
传动齿轮将运动和动力通过键和主动齿轮
二、齿轮油泵主要用于各种机械设备中的润滑系统中输送润滑油,适用于输送粘度为5X10-61.5X 10-3m2/s(5-1500cSt),温度在300°C以下的具有润滑性的油料。
不锈钢齿轮泵,可输送无润滑性的油料、饮料、低腐蚀性的液体。
配用铜齿轮可输送低内点液体,如汽油、苯等。
本系列不锈钢泵除配置普通电机外,还可根据用户需要配置同规格的防爆电机。
齿轮油泵适用范围在输油系统中可用作传输、增压泵;在燃油系统中可用作输送、加压、喷射的燃油泵;在一切工业领域中,均可作润滑油泵用。
齿轮泵参数化设计方法与制造技术研究的开题报告一、选题背景:随着工业自动化程度的日益提高,液压、气动、机械等领域对于齿轮泵的应用越来越广泛。
齿轮泵作为一种基础和多用途液压泵,广泛应用于各种机械液压系统中,其性能的优劣直接影响到机械系统的工作效率和可靠性。
目前,国内外对于齿轮泵的研究主要集中在其结构、性能和制造质量等方面,如何提高齿轮泵的性能,研究其制造技术以及参数化设计方法等问题已成为当前齿轮泵研究的热点。
二、研究内容:本文将重点研究齿轮泵参数化设计方法与制造技术,探讨齿轮泵性能的提高和制造质量的保障,具体研究内容包括以下几个方面:1、分析齿轮泵的工作原理和结构特点,深入研究齿轮泵的性能参数对于泵的工作效率和液压系统的稳定性的影响因素。
2、提出齿轮泵的参数化设计方法,探讨通过参数化设计实现齿轮泵的优化设计,提高其性能指标。
3、结合数值模拟软件,建立齿轮泵数值模型,对其流场和应力分布等进行数值模拟,通过模拟结果提高齿轮泵设计的准确性。
4、针对传统齿轮泵的制造工艺存在的问题,探究新型齿轮泵的制造技术,并进行制造工艺的研究和分析,提高齿轮泵的制造质量。
5、设计制造一种齿轮泵试验台,对齿轮泵进行实验研究,验证参数化设计方法和制造技术的有效性。
三、研究意义:本文将对齿轮泵的研究提供一种新的思路和方法,具有一定的理论指导和实践应用价值。
采用参数化设计方法和制造技术研究,可以有效提高齿轮泵的性能指标和制造质量,为其推广应用提供技术支持;同时设计制造的齿轮泵试验台,可以为齿轮泵研究提供实验验证条件,为其他相关领域的研究提供技术参考。
四、研究方法:1、文献资料法:通过查阅相关文献,了解齿轮泵的基本原理和研究现状,为后续研究提供理论基础和参考资料。
2、数值模拟法:通过建立齿轮泵的数值模型,对其内部流场和应力分布等进行数值模拟分析,探讨优化设计的方向和方法。
3、制造技术研究法:对于齿轮泵的制造技术进行研究,研究制造工艺和加工方式等,优化制造过程,提高制造质量。