精细化工生产技术
- 格式:docx
- 大小:71.79 KB
- 文档页数:6
什么是精细化工工艺技术精细化工工艺技术是指在化工生产过程中,通过科学的操作、控制和优化,实现产品性能和质量的精确控制和提升的一种技术体系。
它包括了在化工生产过程中运用的各种技术手段和工艺方法,用以提高产品的出色度、降低能耗和污染物排放。
精细化工工艺技术相对于传统化工工艺来说,其目标主要是追求产品在各个技术指标上的更高精确度和一致性。
它强调精细的操作和控制,以及先进的分离、纯化和回收等核心工艺,从而使得产品能够达到符合市场需求的精细水平。
精细化工工艺技术具有以下几个特点:首先,精细化工工艺技术是一种高度集成的技术体系。
在精细化工生产过程中,常常需要多种技术手段和工艺方法的综合运用,包括化学合成、分离提纯、反应控制、催化转化等。
这些技术手段和工艺方法相互协同、相互影响,共同构成了一个整体的技术体系。
其次,精细化工工艺技术是一种高度自动化的技术体系。
随着现代化工生产工艺的发展,越来越多的自动化设备和控制系统被引入到精细化工生产线中,以提高生产效率、降低劳动强度和减少操作失误。
自动化技术的应用不仅仅提高了工艺的可控性和一致性,也使得生产过程更加安全和环保。
再次,精细化工工艺技术是一种高度统计学的技术体系。
在精细化工生产中,难以避免一些随机因素的干扰和波动。
因此,采用统计学的方法来分析和处理这些因素是非常必要的。
统计学方法不仅能够准确评估产品性能和质量的变异程度,还可以帮助优化工艺参数和控制策略,从而提高产品的稳定性和一致性。
最后,精细化工工艺技术是一种高度环保和可持续发展的技术体系。
随着人们对环境保护意识的提高,化工行业不得不面对严格的环保要求和限制。
精细化工工艺技术通过减少废物和污染物的排放,提高资源利用率和能源效率,使得化工生产更加环保和可持续。
综上所述,精细化工工艺技术是在化工生产中实现产品性能和质量精确控制和提升的一种技术体系。
它集成了多种技术手段和工艺方法,强调精细的操作和控制,追求高度自动化、统计学、环保和可持续发展。
精细化工生产工艺调研报告精细化工生产工艺调研报告一、引言精细化工生产工艺是一种高度复杂和精细的工艺,作为化工行业的重要组成部分,它在药品、染料、颜料、香料以及其他化学制品的生产中扮演着重要角色。
本文将就精细化工生产工艺进行调研,并对其在制造业中的应用进行分析和总结。
二、概述精细化工生产工艺是指在有机合成及化学物理过程中,以高效、环保、资源节约为目标,通过精细控制反应条件、合理设计反应步骤和加工流程,生产出具有特殊功能和高附加值的化学产品。
其特点是反应温度、压力、物料纯度、流速、固体颗粒大小等各项参数要求非常严格,因此需要仔细调控和仿真模拟。
三、精细化工生产工艺的应用1. 药品制造精细化工生产工艺在药品制造中起到了举足轻重的作用。
通过控制反应条件,可以合成出高产率和无副产物的合成物,并保证质量的稳定性和纯度的高度。
此外,在药品制造过程中,还需要严格控制反应物和催化剂的浓度、温度、PH值等因素,以确保反应过程的可控性和稳定性。
2. 染料和颜料制备精细化工生产工艺在染料和颜料制备中也起到了至关重要的作用。
通过结构优化和反应条件调整,可以合成出高色度、高荧光和高光泽度的染料和颜料。
此外,精细化工工艺还可以通过改变反应条件,控制反应中的分子聚集程度和晶体结构,从而调节颜色的鲜艳度和升光效果。
3. 香料合成精细化工生产工艺还广泛应用于香料合成。
通过改变反应步骤和温度条件,可以合成具有特定香气和长效性的香料。
此外,在香料合成过程中,还可以通过精细调控反应的过程参数,如pH值、溶剂种类和溶剂浓度等,来控制香料的成分比例和纯度。
四、发展趋势1. 自动化控制技术随着自动化技术的不断发展,精细化工生产工艺的控制将越来越自动化。
通过使用先进的传感器、控制器和智能系统,可以实时监测和调节反应条件,提高生产效率和产品质量。
2. 模拟仿真技术模拟仿真技术在精细化工生产工艺中的应用也越来越广泛。
通过建立精细化工生产工艺的数学模型,并进行仿真模拟,可以提前预测和优化工艺参数,减少实验次数和时间,降低生产成本。
精细化工生产工艺技术精细化工生产工艺技术,是指对化工生产过程中的各个环节进行精细化管理和控制,以提高生产效率和产品质量。
精细化工生产工艺技术的发展,对于提高生产水平和降低生产成本具有非常重要的意义。
首先,精细化工生产工艺技术通过合理的工艺设计,可以提高产品的纯度和质量。
在化工生产中,杂质的存在会降低产品的纯度和质量,影响产品的市场竞争力。
通过使用先进的生产工艺技术,可以对生产过程中的各个环节进行精确控制,减少杂质的产生,从而提高产品的纯度和质量。
其次,精细化工生产工艺技术可以提高生产效率。
在传统的化工生产中,往往需要大量的人工操作和高强度的劳动,生产效率较低。
而通过采用自动化和智能化的生产工艺技术,可以减少人工操作,提高生产效率。
同时,精细化工生产工艺技术还可以对生产过程中的各个环节进行精确控制,避免废品和次品的产生,进一步提高生产效率。
再次,精细化工生产工艺技术可以降低生产成本。
在传统的化工生产中,往往需要大量的能源和原材料,成本较高。
而通过采用先进的生产工艺技术,可以减少能源和原材料的使用,降低生产成本。
同时,精细化工生产工艺技术还可以提高产品的利用率,减少废品和次品的产生,进一步降低生产成本。
最后,精细化工生产工艺技术对环境保护也具有重要意义。
在传统的化工生产中,往往会产生大量的废气、废水和固体废物,对环境造成严重污染。
而通过采用精细化工生产工艺技术,可以减少甚至消除废气、废水和固体废物的产生,降低对环境的污染。
总之,精细化工生产工艺技术的发展,对于提高生产水平、降低生产成本、改善产品质量和保护环境具有重要意义。
在未来的化工生产中,我们应该不断推进精细化工生产工艺技术的研发和应用,以实现化工产业的可持续发展。
国家开放大学《精细化工生产技术》形考任务1-4参考答案《精细化工生产技术》是中央广播电视大学开放教育应用化工技术专业(专科)的一门统设必修课,4学分,72学时,其中实训12学时,开设一学期。
课程代码:02460形考任务11.实验纯级别的试剂可以用来配置标准溶液。
A.正确B.错误2.表面张力使液体表面积永远趋于最小。
A.正确B.错误3.HLB值能反映出亲水基和亲油基之间在大小和力量上的平衡关系。
A.正确B.错误4.表面活性剂的稳泡性取决于表面膜的强度。
A.正确B.错误5.HLB值越大,其亲油性越好。
A.正确B.错误6.下列表面活性剂属于阴离子表面活性剂的是()。
A.N-酰基氨基羧酸盐B.脂肪醇聚氧乙烯醚C.脂肪胺盐D.咪唑啉乙酸钠7.下列表面活性剂属于两性离子表面活性剂的是()。
A.脂肪酸聚氧乙烯酯B.十二烷基甜菜碱C.十二烷基三甲基氯化铵D.脂肪醇硫酸酯盐8.下列属于非离子型表面活性剂的是()。
A.十二烷基硫酸钠B.十二烷基苯磺酸钠C.苯扎溴铵9.“精细化工”一词是由哪个国家最先提出的是()。
A.中国B.美国C.日本D.德国10.“精细化工”是什么年代开始重现的()?A.60年代B.70年代C.80年代D.90年代11.下列叙述中那一个不是精细化工的特点()?A.多品种,小批量B.多品种,大批量C.技术密集度高D.投资小,附加价值高,利润大12.根据我国“食品添加剂分类和代码(GB12493-1990)”中规定,食品添加剂按照其主要功能分为()类。
A.19B.20C.21D.2213.根据我国食品添加剂的规定,下面哪种物质不属于食品添加剂()。
①三聚氰胺、②苯甲酸钠、③烟酸克仑特罗(“瘦肉精”)④苏丹红、⑤酱油、⑥甘油、⑦白砂糖、⑧香辛料A.①③④B.①③④⑤C.①③④⑤⑦D.①③④⑤⑦⑧14.下面哪种防腐剂可用于绿色食品加工和保藏,是目前被认为最安全的食品防腐剂之一,是使用最多的防腐剂是()。
精细化工产品生产过程中的过程控制技术随着现代化工业的快速发展,精细化工产品生产过程中的过程控制技术已经逐渐成为了化工企业提高产品质量、降低生产成本、提高效益的关键技术。
本文将详细探讨精细化工产品生产过程中的过程控制技术,包括过程控制技术的定义、种类、重要性、应用范围以及未来发展动向等方面的问题。
一、过程控制技术的定义和种类过程控制技术是指通过采集、传输、处理工艺参数信息,实现对工艺过程的监控与控制。
主要包括传感器、信号处理、控制系统和人机界面等四大部分。
根据控制方法和应用范围不同,过程控制技术可分为以下几类。
1、PID控制PID控制是指通过比较测量值与设定值之间的误差,使用比例控制、积分控制和微分控制三种算法调整控制器输出信号,达到实现工艺过程控制的目的。
顾名思义,比例控制(P控制)主要用于调整误差量,积分控制(I控制)用于累加误差量,微分控制(D控制)用于稳定过程波动。
PID控制是目前最常用的控制方式,可以实现精准的控制效果。
2、模型预测控制模型预测控制是指基于过程模型,利用预测计算来预测未来的过程值,并根据预测结果和目标值之间的误差来调整控制器输出信号,达到对工艺过程的优化控制。
该方法适用于多变量、强非线性、强耦合的工艺过程控制。
3、模糊控制模糊控制是一种针对复杂系统的控制方法,它可以处理非线性和不确定性因素,并能够应对控制规则的复杂性。
通过利用模糊逻辑运算,将系统输入和输出之间的映射关系转化成数学模型,实现对复杂系统的控制。
二、精细化工产品生产过程中的过程控制技术的重要性精细化工产品主要指化学纯品、医药产品和高端化工中间体等高科技产品。
这些产品的生产过程要求精度高、工艺细节丰富、反应途径复杂,这就要求过程控制技术必须保证过程稳定、可重复并满足产品要求。
以下是精细化工产品生产过程中,过程控制技术的重要性。
1、提高产品质量过程控制技术可以实现对化工产品生产过程的实时监控和优化控制,及时发现和解决生产过程中的问题和失控点,减少不良品率和废品率,从而提高产品质量。
精细化工绿色合成技术引言随着全球环境问题的日益严峻,绿色合成技术在精细化工领域的应用变得越来越重要。
传统的化学合成方法往往伴随着大量的废弃物和有害物质的产生,对环境造成严重的污染。
而精细化工绿色合成技术以降低对环境的影响为目标,通过优化合成路线和改进催化剂设计等手段,实现了对目标化合物的高选择性、高效率合成。
本文将从合成路线优化和催化剂设计两个方面介绍精细化工绿色合成技术的相关进展。
合成路线优化合成路线优化是实现绿色合成的重要手段之一。
传统合成方法往往采用多步反应,需要大量的中间体和溶剂,产生废弃物量大且合成时间长。
而优化合成路线可以通过合并反应步骤、简化中间体的合成等手段,实现对废弃物的最小化排放。
例如,傅里叶-变换红外光谱仪(FTIR)的应用可实时监测和控制反应过程中的中间体生成和反应进程,从而指导合成路线的优化。
此外,还可以通过计算机辅助合成(Computer-Aided Synthesis, CAS)的方法,利用计算机模拟和计算化学方法筛选出最合适的合成路线。
这些方法的应用使得合成步骤减少,合成时间缩短,从而实现了绿色合成的目标。
催化剂设计催化剂是精细化工绿色合成中的关键因素之一。
传统的催化剂设计常常依赖于贵金属等昂贵的材料,不仅成本高昂,而且对环境有一定的危害。
而绿色合成技术的发展推动了催化剂设计的创新和改进。
近年来,基于可再生资源、无机氧化物以及有机小分子等材料的催化剂得到了广泛应用。
这些催化剂具有成本低、易于合成及回收利用等优点。
此外,还通过改变催化剂的活性位点以及调控催化剂的表面结构等方式,提高催化剂的选择性和活性,从而实现了对环境友好的绿色合成。
实例分析以精细化工中常见的醇类合成为例,绿色合成技术在提高合成效率和选择性方面具有显著优势。
传统的醇类合成方法往往采用氢化反应,需要大量的氢气和昂贵的贵金属催化剂,产生大量有毒有害的废弃物。
而绿色合成技术通过改进合成路线和催化剂设计,可以实现对醛类化合物的选择性还原,从而高效地制备醇类产物。
化工生产的新技术和新应用近年来,随着科技的不断进步和创新,化工生产呈现出了多种新技术和新应用。
这些新技术和新应用不仅改善了化工生产的效率和效益,同时也对环境保护、资源利用等方面做出了巨大的贡献。
一、新技术之生物技术生物技术是一种将生物体的一些特有能力或思维或组成部分或细胞进行修饰或改造,再以这些生物体为依据设计和制造新产品的技术。
在化工生产中,生物技术的应用十分广泛。
例如,生物反应器是加速化学反应的一种生物催化剂,可以在短时间内将一样物质转化为另一样物质,从而提高化工生产的效率和产量。
此外,许多化工制品的生产也借助了生物技术,例如发酵法制造乳酸、柠檬酸、酶以及细胞素等。
二、新技术之绿色化学绿色化学是一种具有生态化、社会化、经济化的新型化学,是尽可能地降低或避免对人类及环境造成的有害影响的一种化学。
绿色化学被认为是未来化学发展的重要方向之一。
利用绿色化学可以制造出环保型的化工原料和产品,例如利用可再生能源制造出可降解生物质塑料等。
此外,绿色化学还可以在化工生产过程中减少废物的产生,提高废物的利用率,从而达到环保和节能的目的。
三、新技术之高效分离在化工生产工艺中,分离是非常重要的一个步骤。
传统的分离技术一般采用凝固、蒸馏、萃取等方法,这些方法存在能耗高、工艺复杂等缺点。
而高效分离技术则能够在减少能源消耗的同时提高分离效率。
高效分离技术的应用非常广泛,比如在石油加工及化学品生产中,利用生物质多孔材料、化学吸收材料和离子交换材料等技术可以使各种化学混合物快速而彻底地被分离出来,从而达到提高产品质量和减少能源消耗的目的。
四、新技术之利用废物废物利用是指利用废弃物、废水、废气等废品所产生的资源,再生产新的物质或能量的过程。
传统的化工生产过程中几乎每一步都会产生废物,而利用废物可以避免浪费,降低能源消耗。
例如,一些生物质废弃物可以被利用来生产生物质能源,如用制糖废渣和燕麦壳等生物质材料发酵,可以生产出甲烷、乙醇等生物质能源;而利用锅炉烟气中含有的氧化铵来制备复合肥料,可以实现废物的利用和资源的再循环。
精细化工技术介绍精细化工技术是指将原材料通过精细化的工艺和设备进行加工,制备出高品质、高附加值的化工产品的技术领域。
随着科技的不断进步和化工行业的发展,精细化工技术在化工产业中扮演着越来越重要的角色。
本文将就精细化工技术的定义、发展历程、应用领域及未来发展方向等方面进行介绍。
一、精细化工技术的定义精细化工技术是指以原材料为基础,通过分子设计、精确控制工艺条件、高效能设备等手段,制备化学品和材料的高级加工技术。
其特点是生产技术越来越复杂,产品质量要求越来越高,生产过程越来越严格。
二、精细化工技术的发展历程精细化工技术起源于20世纪50年代,当时主要以有机合成化学品和染料为主。
到了70年代,先进的催化剂、反应工程和分离技术的发展使得精细化工技术取得了长足的进步,石油化工、无机化工、医药化工等领域的发展也推动了精细化工技术的进步。
20世纪80年代后,精细化工技术开始向功能性和高附加值化学品、特种化学品、生物化工品方面发展,如医药中间体、功能性高分子材料、农药、染料等。
三、精细化工技术的应用领域1. 医药化工领域:医药中间体、生物技术产品等;2. 农药领域:杀虫剂、杀菌剂、除草剂等;3. 染料领域:高性能染料、功能性染料等;4. 高分子领域:功能性高分子材料、高性能树脂等;5. 特种化学品领域:光电材料、电子化学品、表面活性剂等;6. 食品添加剂领域:甜味剂、防腐剂、色素等。
精细化工技术的应用领域非常广泛,涉及到生物科技、医药、农业、材料科学等多个方面。
四、精细化工技术的未来发展方向1. 高效环保:精细化工技术的未来发展将更注重降低能耗、减少废物排放,加强废弃物的资源化利用;2. 信息化智能化:借助大数据、人工智能等技术,提高生产的智能化水平,实现生产过程的实时监控和优化;3. 新材料开发:发展高性能、多功能性的新材料,拓展材料在光电、电子、医药等领域的应用;4. 生物化工技术:发展生物催化、生物转化等技术,推动绿色生物化工技术的发展。
精细化工生产技术摘要:近年来聚苯胺因其优良的性能而备受关注,其合成方法和复合材料的性能一直是聚苯胺研究的重要内容。
本文主要介绍聚苯胺的合成方法以及对聚苯胺的掺杂机理研究现状进行综述关键词:聚苯胺,合成,掺杂机理一.聚苯胺的结构聚苯胺早在1834年即被Runge[1]发现,并在本世纪被Willstatter[2]]称为“苯胺黑”。
对于聚苯胺的结构,科学家们提出过许多模型,现已公认的是1987年MacDiarmid[9]提出的:即结构式中含有“苯-苯”连续的还原单元和含有“苯-醌”交替的氧化单元,如下图所示:本征态聚苯胺结构为:其中x表示聚合度,y值表征PANI的氧化还原程度,其值可在0~1之间变化,不同的y值对应于不同的结构、颜色和电导率,详见表1-22、聚苯胺的用途2.1 聚苯胺在金属防腐方面的应用金属腐蚀给国民经济带来了巨大的损失,由腐蚀引起的破坏事例遍及所有使用金属的场合。
据统计,每年由于腐蚀而报废的金属设备和材料相当于金属年产量的1/3,造成的损失非常巨大[3]。
1985年,DeBerry[4]发现,在酸性介质中用电化学法合成的聚苯胺膜能使不锈钢表面活性钝化而防腐,这一特点引起了人们的关注,从此人们在腐蚀防护领域开始了导电高分子膜的应用研究。
其防腐机理为:聚苯胺使金属和聚苯胺膜界面处形成一层金属氧化膜,该金属的电极电位处于钝化区,从而得到保护。
聚苯胺的氧化还原电位比铁高,当两者相互接触时,在水和氧的参与下发生氧化还原反应,在界面处形成一层致密的金属氧化膜。
2. 2 聚苯胺在二次电池方面的应用由于聚苯胺具有良好可逆的电化学氧化还原性能,因而适宜做电极材料,制造可以反复充放电的二次电池。
Kitani[5]发现用电化学合成的聚苯胺制成的蓄电池在1.0~1.7V之间以1mA/cm2进行充放电时,充放电效率可达100%,充电容量为40Ah/kg,可循环2000次以上。
以化学合成的聚苯胺为正极组成全固态锂电池在2.5~4.0V之间的充放电效率可达95%,循环次数可超过200次。
此外也有研究用聚苯胺的复合腊制备的二次电池,其电池容量密度可达120Ah/kg,可循环200次以上。
2.3 聚苯胺导电纤维的应用用聚苯胺制备导电纤维,不仅导电性优良持久,而且通过改变掺杂酸的浓度,很轻易调节纤维的电导率,这是其它纤维所不具备的优良性质。
在普通纤维中混用极少量的导电纤维,就能赋予纤维制品充分的抗静电性能,而且抗静电性能不会受到环境湿度的影响。
刘维锦等[6]以还原式聚苯胺为成纤高聚物,N-甲基吡咯烷酮为纺丝溶剂,采用湿法纺丝制得聚苯胺纤维。
在完成整个纺丝过程后,再对纤维进行氧化掺杂,赋予其导电性。
该法制得的聚苯胺导电纤维的比电阻为1.05×10-2Ω•cm。
2.4 聚苯胺在电磁屏蔽材料方面的应用随着电器制品和电子器件的商业应用、军事应用和科学应用的迅速增长,电磁干扰也称作电磁环境污染问题日渐严重,电磁干扰屏蔽日益受到关注。
导电聚苯胺具有重量轻、韧性好、易加工和电导率易于调节的优势,是一种优良的电磁屏蔽材料。
CottevieilleD [7]等,在频率范围10MHz~1GHz之间,用高导电率的聚苯胺作屏蔽材料,可得到20dB以上的屏蔽效力。
高导电聚苯胺薄膜的厚度超过20μm时,其屏蔽效力大于40dB,可以满足民用标准。
但用导电聚苯胺作电磁屏蔽材料时,目前存在的关键问题是聚苯胺的电导率还不够高。
因此,提高聚苯胺的电导率是今后的主要研究目标[8]。
2.5 聚苯胺在抗静电方面的应用常用的抗静电剂有复合型导电高分子材料和表面活性剂等。
前者因其力学性能差、不耐腐蚀等缺点很难长期有效。
而后者的抗静电性则强烈的依靠于环境的湿度等,耐久性也不好。
聚苯胺电导率可在10-5~105S/m范围内调节,与其它高分子材料的相容性大于金属和炭黑,并且有好的稳定性和耐腐蚀性等,因此有望成为新的抗静电材料。
高分子材料的相容性大于金属和炭黑,并且有好的稳定性和耐腐蚀性等,因此有望成为新的抗静电材料。
聚苯胺的合成研究发现,聚苯胺的结构和物理化学性能强烈地依赖于合成方法和条件。
3、聚苯胺的合成方法主要有化学氧化聚合、电化学聚合法。
3.1 化学氧化聚合法聚苯胺的化学氧化聚合法,是在酸性水溶液中用氧化剂使苯胺单体氧化聚合。
化学氧化法能够制备大批量的聚苯胺,也是最常用的一种制备聚苯胺的方法。
化学氧化法合成聚苯胺主要受反应介质酸的种类及浓度、氧化剂的种类及浓度、单体浓度和反应温度、反应时间等因素的影响。
质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。
3.2 电化学聚合法电化学法制备聚苯胺是在含苯胺的电解质溶液中,选择适当的电化学条件,使苯胺在阳极上发生氧化聚合反应,生成粘附于电极表面的聚苯胺薄膜或是沉积在电极表面的聚苯胺粉末。
操作过程如下:氨与氢氟酸反应制得电解质溶液,以铂丝为对电极,铂微盘电极为工作电极,Cu/CuF2为参比电极,在含电解质和苯胺的电解池中,以动电位扫描法进行电化学聚合,反应一段时间后,聚苯胺便牢固地吸附在电极上,形成坚硬的聚苯胺薄膜。
电化学方法合成的聚苯胺纯度高,反应条件简单且易于控制。
但电化学法只适宜于合成小批量的聚苯胺。
4、聚苯胺的掺杂机理复合材料的合成方法大致可分为:共聚法、共混法、“现场”吸附聚合法以及电化学合成法四种。
4.1 共聚法该法是合成包含导电共轭链段的接枝或嵌段共聚物,也是获得可溶性导电高分子的一种方法。
这种共聚物在溶液中因界面活性能够形成胶束,导电链段(硬段)处于核心,其含量多少决定共聚物在溶液中的凝聚性。
用共聚改性的方法虽然可以在一定程度上改善聚苯胺的力学性能和加工性能,但同时使聚合物的导电性能下降,改善的效果并不明显,报道的研究成果也较少。
4.2 溶液共混法溶液共混法有两种实施方法:(1)通过选用恰当的功能质子酸,使掺杂PANI与聚合物共溶于特定的有机溶剂中,通过溶液共混方法制备聚苯胺导电材料,其关键是掺杂剂和溶剂的选择。
(2)将本征态聚苯胺和聚合物分别溶于有机溶剂中,按一定比例混合浇铸,得到本征态聚苯胺/聚合物薄膜,再将此薄膜浸于酸溶液中掺杂,从而得到导电复合膜。
在第一种方案中导电性能的掺杂剂功能质子酸中的功能基团、基体聚合物、溶剂、加工方法和所得共混材料的相结构的影响。
第二种实施方法在酸溶液掺杂过程中,掺杂介质对掺杂效率有明显的影响。
溶液共混法分散均匀、使用方便、能够制得电导率较透明材料。
但是导电聚苯胺在常用有机溶剂中溶解度小,需要耗费大量有机溶剂,容易造成环境污染。
4.3.“现场”吸附聚合法该方法是将苯胺单体吸附在非导电聚合物基材上,通过引发聚合苯胺单体在基材表面形成导电薄膜,从而获得功能性聚苯胺复合材料。
例如,将纤维、纺织品、塑料等基材浸在新配制的过硫酸铵与苯胺的酸性水溶液混合物中,使苯胺在基材的表面发生氧化聚合反应,聚苯胺可均匀地“沉积”在基材表面,形成良好的致密膜,以制成导电材料。
复合材料的力学性能以及热力学性能主要由基材性能决定,这就为根据实际需要合成出具有不同热、力学性能的聚苯胺复合材料提供了可能。
4.4电化学合成法电化学方法通常用来制备膜制品。
其方式有两种:一种是二段法,即在电解质溶液中,在预先覆有绝缘高分子膜的电极上电解聚苯胺单体。
第二种是一段法,即将聚苯胺单体、支撑高分子一起溶于电解液中,一次电解得到所需复合膜。
用电化学制备复合膜,不仅可以避免使用强烈的氧化剂和有害的掺杂剂,而且可以控制其膜结构。
5、结论近年来随着气体传感器的广泛应用和气敏元件性能的需求,聚苯胺已成为一种新兴的导电高分子材料而受到广大科研工作者的青睐。
虽然聚苯胺的基础研究和掺杂机理的研究已经取得一定的成果,但是仍有很多问题亟待解决:聚苯胺的掺杂机制、导电机制以及进一步提高聚苯胺的性能。
所以对聚苯胺这个新兴的导电高分子材料,仍需科研工作者投入大量精力去研究!6、参考文献[1] Y. Sakai, Y. Sadaoka, M. Matsuguchi, in: Proceedings of the 3rd East Asia Conference on Chemical Sensors, Seoul, South Korea, 1997, p. 85.[2] J.J. Miasik, A. Hooper, B.C. Tofield, J. Chem. Soc., Faraday Trans. 82 (1) (1986) 1117.[3] D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors, Review, Anal. Chim. Acta 475 (2003)1–15.[4] K. Zakrzewska, Mixed oxides as gas sensors, ThinSolid Films 391(2001)229–238.[5] S.C. Chang, J.R. Stetter, C.S. Cha, Amperometric gas sensors, review,Talanta 40 (4) (1993) 461–477.[6] I. Lundstr¨om, C. Sevensson, A. Spetz, H. Sundgren, F. Winquist,From hydrogen sensors to olfactory images–twenty years with catalytic field-effect devices, Sens. Actuators B 13/14 (1993) 16–23.[7] D.J. Strike, M.G.H. Meijerink, M. Koudelka-Hep, Electronic noses–a mini review, Fresn. J. Anal. Chem. 364 (1999) 499–505.[8] P. Warneck, Chemistry of the Natural Atmosphere, Academic Press Inc., 1998.[9] 徐浩,延卫,冯江涛,聚苯胺的合成与聚合机理研究进展,化工进展,2008,27,10,1561—1568[10] 杨兰生,许锦茂,单中强等,导电聚合物聚苯胺的化学合成,研究论文,2,11,7—12[11] 刘丹丹,林平,夏林,导电聚苯胺的研究进展及应用开发前景,合成材料老化与应用,2004,33,3,43—47[12] 王辉,郑建邦,吴洪才,电化学法制备聚苯胺/聚乙烯醇导电膜的性能,半导体光电,2000,21,1,53—55。