无缝线路相关知识
- 格式:ppt
- 大小:956.50 KB
- 文档页数:21
无缝线路一、无缝线路㈠概述:为满足高稳定性的需求,高速铁路采用无缝线路。
无缝线路结构有两种主要型式:一种是日本铁路所采用的,在单元轨条之间设置一组正反向伸缩调节器;另一种是法国、德国等欧洲铁路所采用的超长无缝线路。
我国高速铁路无缝线路结构以超长无缝线路作为主要结构型式,但在长大桥上铺设无缝线路,为减少桥梁和轨道所受纵向力,宜设置伸缩调节器。
㈡类型:1、根据应力方式的不同:①温度应力式:是由一根焊接长钢轨及其两端2-4根标准轨组成,并采用普通接头的形式。
②放散温度应力式:分为定期放散式和自动放散式无缝线路。
2、根据长度的不同:①普通无缝线路:设缓冲区而使焊接长钢轨的长度限制在1-2km 以内的无缝线路。
②区间无缝线路:使焊接长钢轨的长度由普通无缝线路的1-2km 延长至两个相邻车站站端道岔之间长度的无缝线路。
③跨区间无缝线路:使用无缝道岔将焊接长钢轨穿越车站,从而使一条焊接长钢轨将多个区间无缝线路连接成一体的无缝线路。
㈢无缝线路的基本原理无缝线路铺设后,随着轨温的变化,长钢轨由于热胀冷缩不能实现,因而在其内部产生应力,称为温度应力,特别是在轨温很高或很低时,钢轨内将产生巨大的温度应力。
对整个钢轨断面而言,由轨温变化而产生的力,相应地称为温度力。
钢轨的自由伸缩量:一根不受任何限制可以自由伸缩的钢轨,当轨温变化时,其自由伸缩量可按下式计算:α∆l〃L〃t∆=式中:l∆——钢轨的自由伸缩量(mm);α——钢轨的线膨胀系数,α=0.0118mm/m℃,即每米长的钢轨,当轨温变化1℃时,钢轨将伸缩0.0118mm;L——钢轨长度(m);t∆——轨温变化幅度(℃)。
【例3-1】若钢轨长度为 1000m,轨温变化为 20℃,则其自由伸缩量为:l =0.0118〓1000〓20=236(mm)。
㈣位移观测桩:㈤无缝线路验收标准1、管内无砟轨道无缝线路锁定轨温是25℃;允许〒5℃;2、相邻单元轨节的锁定轨温不大于5℃;3、同一单元轨节左右股锁定轨温不大于3℃;4、同一区间内单元轨节的最高与最低实际锁定轨温之差不大于10℃;5、加焊钢轨长度:正线不小于24m,道岔侧股及到发线不得小于12m;6、线路锁定后,位移观测桩最大位移量不大于10mm或者锁定轨温变化不大于5℃。
无缝线路知识点总结一、概念无缝线路(Seamless Rail)的概念最早出现在城市交通规划领域。
它是指各种交通方式之间具有良好的衔接和互联性,让乘客能够在不同的交通工具之间实现“无缝”的转换和连接。
这种交通系统的特点是,不同的交通工具之间的运营模式有机组合,可以实现更加便捷、高效的出行体验。
无缝线路系统的设计理念是让出行者在城市中能够轻松、流畅地进行出行。
无论是通过地铁、公交车、出租车或共享单车等交通方式,都能够无缝地衔接,并从中获得最佳的出行体验。
这种综合性的交通系统可以实现不同出行方式之间的互联互通,更好地满足城市居民的出行需求。
二、发展历程无缝线路的发展历程可以追溯到19世纪末、20世纪初的城市交通规划和建设阶段。
当时,基于城市化的快速发展和出行需求的增加,人们开始思考如何通过不同的交通方式实现城市交通的快捷和便利。
逐步形成了地铁、公交车等交通方式的运营体系,并在不同交通工具之间进行衔接和互联。
20世纪90年代以来,随着城市交通的快速发展和信息技术的应用,无缝线路的概念逐渐被提出并开始得到实践。
一些先进的城市开始将地铁、公交车、出租车和共享单车等交通方式结合起来,构建完善的无缝线路系统。
这些城市的做法不仅受到了国内外业界的广泛关注,也为其他城市提供了借鉴和参考。
近年来,随着城市交通规划和建设的不断深化和完善,越来越多的城市开始关注如何构建无缝线路系统,提升城市交通运营的效率和品质。
一些国内城市如上海、深圳、广州等,也在不断推动无缝线路系统的建设,取得了一定的成果和经验。
三、特点1. 多样性:无缝线路系统具有多样性和综合性的特点,可以融合地铁、公交车、出租车、共享单车等多种交通方式,在城市中实现多向度、多维度的出行选择。
2. 互联互通:不同的交通工具之间通过互联互通的衔接,可以实现无缝的转换和连接。
出行者可以通过一张交通卡或手机APP,实现不同交通方式的无缝衔接,提高出行效率和便捷性。
3. 便捷高效:无缝线路系统的运营模式具有便捷高效的特点,出行者可以根据自身的出行需求和目的地选择最佳的交通方式,实现出行的高效和便捷。
第一章无缝线路概述第一节无缝线路的基本概念一、无缝线路的定义钢轨连续焊接的轨道结构。
二、无缝线路与普通线路的区别普通线路有接头轨缝,随温度升降钢轨能伸缩,钢轨内积存的温度力较小。
无缝线路则不同,钢轨很长,仅能在长轨两端有些伸缩,中间区段不能热胀冷缩,当温度上升,而钢轨不能自由伸长时,将承受很大的温度压力;当温度下降,而钢轨不能缩短时,将承受很大的温度拉力。
所以无缝线路的钢轨比普通线路的钢轨要承受更大的温度力。
三、无缝线路的优点与普通线路比较,无缝线路在相当长的一段线路上消灭了钢轨接头,因而具有行车平稳、旅客舒适、节省接头材料、降低维修费用(线路养护维修工作量能节省60-70%)、延长线路设备和机车车辆使用寿命等优点,可以适应高速行车的要求,是铁路轨道的发展方向。
四、无缝线路的分类1、按铺设长度分类:普通无缝线路:长度1-2km,有缓冲区、伸缩区、固定区三部分组成。
全区间无缝线路:铺在线路上的长钢轨长度贯穿整个区间,两端与咽喉道岔的缓冲轨焊联的无缝线路。
跨区间无缝线路(也称超长无缝线路):铺在线路上的长钢轨长度贯穿全区段的各个区间,与站区无缝道岔焊联成一体的无缝线路。
第二节无缝线路基本原理一、温度力无缝线路的类型分为温度应力式和放散温度应力式两种。
在我国铁路上所铺设的无缝线路,除特大桥梁的个别梁跨外,一般均为温度应力式无缝线路。
温度应力式无缝线路,由固定区、伸缩区和缓冲区三部分构成。
固定区(每段无缝线路的中间部分)不因轨温变化而伸缩;伸缩区(长轨条两端部分)允许有一定量的伸缩;缓冲区(两段长轨条之间的标准轨部分)钢轨的伸缩量也比普通线路小。
由于固定区钢轨不能伸缩,在轨温不断变化的条件下,长轨条内部经常积蓄一定的温度力。
特别是最高轨温和最低轨温时,固定区内的长轨条将积蓄巨大的温度力。
在一股钢轨上承受的温度力为:tF E P t ∆=α式中t P ——温度力(N);E ——钢轨钢的弹性模量,E=2.1×107N/2cm ; α——钢轨钢的线膨胀系数,α=0.0000118;△t ——轨温升(降)度数(℃);F ——钢轨断面积(2cm )。
无缝线路的知识点梳理总结无缝线路的知识点梳理总结无缝线路(seamless routing)是指在计算机网络中,当一条物理链路发生故障时,网络能够自动将数据流量切换到其他可用路径上,以确保网络通信的可靠性和连续性。
无缝线路的实现依靠路由协议和相关技术,本文将对无缝线路的相关知识点进行梳理总结。
一、无缝线路的基本原理无缝线路的基本原理是通过建立多条可用路径,当某条路径发生故障时,可以快速切换到其他可用路径,使网络服务不中断。
为实现这一目标,需要引入以下几个关键技术:1. 冗余路径:要实现无缝线路,必须建立多条冗余路径,可以是物理链路的冗余或者逻辑路径的冗余。
这样,当某条路径发生故障时,可以切换到其他可用路径,避免中断网络通信。
2. 快速切换:当发生故障时,需要尽快切换到其他可用路径。
为了实现快速切换,可以使用静态路由或动态路由的方式,在路由表中保存多条路径信息,当发生故障时,路由协议可以根据预先设定的优先级和路径状态进行路径切换。
3. 路由协议:路由协议是实现无缝线路的关键。
常见的路由协议有RIP、OSPF、BGP等。
这些协议可根据网络中设备的状态信息,自动更新路由表,选择最优路径,实现无缝线路。
二、无缝线路的优缺点无缝线路的实现带来了一些明显的优点和一些潜在的缺点。
1. 优点:(1)提高网络的可靠性:通过建立冗余路径和实现快速切换,无缝线路可以显著提高网络的可靠性和容错性。
当某条路径发生故障时,可以快速切换到其他可用路径,避免网络中断。
(2)提高网络的可用性:无缝线路可以提高网络的可用性,确保网络服务的连续性。
即使发生故障,网络可以继续运行,用户感知不到中断。
(3)提高网络的性能:通过路由协议选择最优路径,无缝线路可以优化网络的性能。
当发生故障时,可以根据预设的优先级和路径状态选择最佳替代路径,避免网络拥堵和性能下降。
2. 缺点:(1)部署复杂:无缝线路需要在网络中部署多条冗余路径和相关设备,增加了网络的复杂性。
无缝线路的知识点总结归纳无缝线路的知识点总结归纳导语:在现代社会中,无缝线路已经成为人们生活和工作中必不可少的一部分。
它不仅可以实现人与人之间的高效通信,还可以支持各种大型网络和云计算应用。
本文旨在总结和归纳无缝线路的相关知识点,帮助读者深入了解和应用这一技术。
第一部分:无缝线路的基础概念1. 什么是无缝线路?无缝线路是一种能够实现用户间通信并在网络故障时自动切换到备用路由的通信系统。
它可以在不中断服务的情况下实现数据传输,并能够提供高可靠性和容错能力。
2. 无缝线路的组成无缝线路由路由器、交换机、光纤等组成。
路由器负责将数据包转发到目标地址,交换机则提供高速数据转发和连接多个用户,而光纤则作为数据的物理介质进行传输。
3. 无缝线路的工作原理无缝线路的工作原理基于路由表和转发表的匹配。
路由器通过比对数据包的目标地址,找到符合条件的转发规则,并将数据包发送到相应的目标地址。
当网络发生故障时,无缝线路会自动切换到备用路由,以保证数据传输的连续性和可靠性。
第二部分:无缝线路的应用1. 企业网络无缝线路可以在企业网络中实现跨网络的通信和数据传输。
它可以提供高速、可靠的连接,支持企业内部的各种应用和系统之间的数据交换。
2. 通信网络无缝线路在通信网络中扮演着关键的角色。
它可以实现电话、视频、互联网等各种通信方式的无缝切换和传输,提供高质量的通信服务。
3. 云计算和大数据无缝线路为云计算和大数据应用提供了高速、可扩展和可靠的网络连接。
它可以支持各种虚拟化技术,实现数据中心之间的快速数据传输和资源共享。
第三部分:无缝线路的优缺点1. 优点a. 高可靠性:无缝线路可以通过备用路由在网络故障时自动切换,保证数据传输的连续性。
b. 高效性:无缝线路提供了高速、低延迟的数据传输,支持大规模的数据交换和通信。
c. 容错能力:无缝线路可以通过多路径转发数据,避免单点故障导致的数据丢失。
d. 可扩展性:无缝线路可以根据需求扩展带宽和连接数,满足不断增长的数据传输需求。
第一节无缝线路的基本概念无缝线路:是把钢轨焊接起来的线路,又称焊接长钢轨线路。
无缝线路轨条长度不应短于200m,特殊地段不应短于150m。
长钢轨:焊轨工厂将焊接钢轨按工厂承轨台的可容长度,焊成长250~500m的长轨,这种厂焊钢轨叫做长钢轨。
长轨条:将工厂焊好的长钢轨运抵铺轨工地,在工地用小型气压焊机按设计长度把它焊接起来,这种在工地焊联起来的钢轨叫做长轨条。
单元轨条:一个封锁点内铺设的长轨条叫单元轨条。
无缝线路的优点:因减少了接头,所以减少了接头扣件的费用,降低了维修的工作量,提高了设备的使用寿命,增加了旅客的舒适感。
第二节无缝线路的分类一、按钢轨受力情况可分为温度应力式无缝线路和放散应力式无缝线路。
(一)温度应力式无缝线路:一般由固定区、伸缩区和缓冲区三部分构成。
1、结构形式:在长轨之间用几根普通标准长度的钢轨连接,以便于调节轨缝,这一区段叫缓冲区;长轨本身仅在两端约数十米长度范围内容许伸缩,容许伸缩的段落叫伸缩区;长轨中间不能伸缩的部分叫固定区。
固定区长度不得短于50m。
伸缩区长度一般为50~100m。
——|———|—————|———|—————|———|——缓冲区伸缩区固定区伸缩区缓冲区2、缓冲区和伸缩区的设置条件:缓冲区和伸缩区不应设置在道口或不作单独设计的桥上。
有碴桥跨度不大于16m时,伸缩区可设置在桥上,但轨条接头必须在护轨范围以外。
3、缓冲区的作用:⑴保护绝缘接头;⑵便于调节长轨伸缩;⑶便于放散应力;⑷使长轨的伸缩不直接影响道岔。
(二)放散应力式无缝线路:1、分类:自动放散和定期放散2、缺点:由于每年放散应力工作量太大,这种形式的无缝线路有被淘汰的趋势。
二、按结构可分为全区间无缝线路和跨区间无缝线路。
(一)全区间无缝线路:两相邻车站咽喉道岔之间的无缝线路,取消了缓冲区,其长轨条贯穿整个区间,这样的无缝线路叫做全区间无缝线路。
(二)跨区间无缝线路:全区间无缝线路上的长轨条与车站内的道岔和线路全部焊联成一体,道岔焊成无缝道岔。
无缝线路基础知识及应力放散第一部分无缝线路基础知识一、无缝线路的定义在线路上,钢轨接头的数量是由钢轨长度决定的。
我国钢轨标准长度为12.5m 和 25m,这样,每千米线路上就要有160个或80个接头。
为消灭或减少线路上的接头轨缝,把许多根标准长度的钢轨一根接一根连续地焊接起来,成为一定长度的长钢轨线路,这就是无缝线路。
无缝线路是一种新型的轨道结构,通常在工厂内将标准长度的钢轨用气压焊或电阻焊的方法焊成250—500m长的轨条,再用四层自动装卸列车运到铺设工地,而后又将数根轨条用铝热焊或移动气压焊接成数千米长的长轨条,铺设在线路上成为无缝线路。
我国铁路规定,无缝线路上的钢轨焊接长度至少有 300m。
二、无缝线路的焊接方法(1) 气压焊:气压焊是用乙快、氧焰将轨端加热到 1200 ℃,然后停火,并用焊机自动加压,将两根钢轨熔接。
(2) 接触焊(又叫电阻焊): 接触焊是将两根待焊的钢轨固定在焊机的两个相对夹钳内,轨端通以强大电流,由于对接钢轨之间有极大电阻,因而产生大量的热量。
当轨端加热到1250℃时,断开电流,在继续施加压力的情况下,使轨头挤出凸起而焊在一起(此法在工厂使用 )。
(3) 铝热焊:铝热焊是铁的氧化物被铝还原成铁水,同时产生巨大的热量,把高温铁水浇入焊缝进行焊接的方法一般用于维修现场焊接,焊接强度低于钢轨母材。
(4) 小型气压焊:小型气压焊原理与气压焊相同,目前各铁路局大修部门的工地焊接都采用此种焊接方法,焊接强度高于铝热焊。
三、无缝线路的优点无缝线路与普通线路相比较,钢轨接头的数量大大减少。
接头的减少改善了列车运行条件,使列车行车平稳,旅客舒适,又能节省大量接头材料, 降低维修费用,延长线路设备和机车车辆的使用寿命,能适应高速行车需要,是铁路轨道发展方向之一。
四、无缝线路的分类无缝线路按其承受的温度应力情况,分为温度应力式、定期放散温度应力式和自动放散温度应力式三种。
(1) 温度应力式。