电气试验工(整理完毕)高级技师.doc

  • 格式:doc
  • 大小:88.00 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多。

4. 试验变压器的输出电压波形为什么会畸变?如何改善?

答案:答:电压波形畸变的可能原因是调压器和高压试验变压器的特性引起的,这是因为试验变压器在试品放电前实际上几乎是工作在空载状态,此时只有励磁电流ie通过变压器的一次侧。当变压器铁心工作在饱和状态时,励磁电流是非正弦的,含有3、5次等谐波分量,因而是尖顶波形。变压器的磁化特性曲线(Φ~i曲线),由于它的起始部分及饱和部分是非线性的,因此即使正弦电压作用到一次侧,其磁通为正弦的,但励磁电流仍为非正弦的。

如果计及磁化曲线的磁滞回线,励磁电流波形将左右不对称。这一非正弦的励磁电流将流过调压器的漏抗,产生非正弦的电压降,因此在试验变压器的一次电压变为非正弦,其中含有调压器漏抗压降中的高次谐波(主要是3次谐波),于是试验变压器的高压输出电压就被畸变了。试验变压器的铁心愈饱和(即电压愈接近额定值),调压器的漏抗愈大,波形畸变就愈严重。由于移圈式调压器漏抗大,因此当用它调压时,波形畸变颇为严重。实际运行表明,波形畸变在输出电压较低时也同样严重,

这是因为此时移圈式调压器本身漏抗最大,使非正弦漏抗压降在试验变压器一次电压中占很大的比重。

为了改善试验变压器的输出电压波形,可以在它的一次并联适当数值的电容器、滤波装置或在高压侧接电容电感串联谐振电路,如图F-3所示。

图F-3

对100kV的试验变压器,在其一次侧及移圈调压器之间并联16?F的电容后,其电压波形可以得到很大的改善,基本上满足要求。

对150kV、25kV A的试验变压器,对3次谐波可取C3=250?F,L3=4.58mH;对5次谐波,可取C5=110?F,L5=3.66mH构成谐振电路,使谐波分量被低阻抗分路。

5. 高压电流互感器末屏引出结构方式对末屏的介质损耗因数有何影响?

答案:答:高压电流互感器末屏引出的结构方式有两种;一种是从二次接线板(环氧酚醛层压玻璃布板)上引出,另一种是利用一个绝缘小瓷套管,从油箱底座上引出,如图F-6所示。

现场测试表明,电流互感器的末屏引出结构方式对其介质损耗因数测量结果影响较大。由二次接线的环氧玻璃布板上直接引出的末屏介质损耗因数一般都较大,最大可达8%左右,即使合格的也在1%~1.5%之间;由绝缘小瓷套管引出的末屏介质损耗因数一般都较小,在1%以下,最小的在0.4%左右。

图F-6

(a)二次接线板引出;(b)绝缘小瓷套管引

对于由二次接线板上直接引出的末屏介质损耗因数不合格

的电流互感器,可采取更换二次接线板的方法。但是,有的更换了二次接线板后,末屏介质损耗合格,在1%~1.5%之间,而有的更换了二次接线板后,介质损耗因数反第7 页共8 页

而增大。对于这种情况,应将其末屏改为由绝缘小瓷套管引出至箱壳,这样更换后的末屏介质损耗因数可达1%以下。

两种末屏引出结构方式对末屏介质损耗因数影响如此之大,主要是与末屏引出的绝缘结构材料有关。电流互感器的末屏对二次绕组及地之间,可以看成一个等效电容,它由油纸、变压器油和环氧玻璃布板或小瓷套管并联组成。末屏介质损耗因数的大小与上述并联绝缘介质的性能如其tanδ和电容量C有很大关系。

若将环氧玻璃布板和瓷套管的tanδ和C进行对比,环氧玻璃布板结构方式在20℃、50Hz下的tanδ和C较瓷套管方式在20℃、50Hz下的tanδ和C大。根据电介质理论,绝缘介质的tanδ大、C大,必然使末屏介质损耗因数大。此外,环氧玻璃布板是由电工用无碱玻璃布浸以环氧酚醛树脂经热压而成,其压层间难免出现一些微小的气泡和杂质,有的甚至出现夹层和裂纹,这种有缺陷的环氧玻璃布板不但会影响末屏介质损耗因数,导致其增大,而且会影响到末屏对二次及地的绝缘电阻的降低,有的甚至降到1000MΩ以下而不合格。

采用绝缘小瓷套管的末屏引出方式,不但能保证电流互感器的末屏介质损耗因数在合格的范围内,而且能够提高末屏对地的绝缘水平。一般说来,末屏对地绝缘电阻可达5000MΩ以上,末屏对地的1min工频耐压可由2kV提高到5kV。

6. 为什么温差变化和湿度增大会使高压互感器的tanδ超

标?如何处理?

答案:答:互感器外部主要有底座、储油柜和接有一次绕组出线的大瓷套和二次绕组出线的小瓷套。当它们内部和外部的温度变化时,tanδ也会变化,因此tanδ值与温度有一定的关系。当大小瓷套在湿度较大的空气中,使瓷套表面附上了肉眼看不见的小水珠,这些小水珠凝结在试品的大小瓷套上,造成了试品绝缘电阻降低和电容量减小。对电容量较大的U字形

电容式互感器,电容改变的相当大,导致出现负tanδ值。

如果想降低tanδ值,一是按照技术条件和标准要求,在规定的温度和湿度情况下测量tanδ值。二是在实际温度下想办法排除大小瓷套上的水分,使试品恢复原来本身实际的电容量和绝缘电阻,以达到测出试品的tanδ值的真实数据。

处理方法有:化学去湿法、红外线灯泡照

射法、烘房加热法等。

若采用上述方法处理后,个别试品tanδ值仍降不下来,就要从试品的制造工艺和干燥水平上找原因。根据经验,如果是电流互感器,造成tanδ值偏大的主要原因有试品包扎后时间过长,试品吸尘、吸潮或有碰伤等现象。电容式结构的试品,还可能出现电容屏断裂或地屏接触不良或断开现象,造成tanδ值偏大或测不出来。如果是电压互感器,主要是由于试品的胶木支撑板干燥不透或有开裂现象,造成tanδ值偏大。因为胶木支撑板的好坏,直接影响试品的tanδ值。

7. 为什么油纸电容型套管的tanδ一般不进行温度换算?

有时又要求测量tanδ随温度的变化?

答案:答:油纸电容型套管的主绝缘为油纸绝缘,其tanδ与温度的关系取决于油与纸的综合性能。良好绝缘套管在现场测量温度范围内,其tanδ基本不变或略有变化,且略呈下降趋势。因此,一般不进行温度换算。

对受潮的套管,其tanδ随温度的变化而有明显的变化,绝缘受潮的套管的tanδ随温度升高而显著增大。

基于上述,当tanδ的测量值与出厂值或上次测试值比较有明显增长或接近于要求值时,应综合分析tanδ与温度、电压的关系,当tanδ随温度增加明显增大或试验电压从10kV升到Um

/,tanδ增量超过±0.3%时,不应继续运

行。

鉴于近年来电力部门频繁发生套管试验合格而在运行中爆炸的事故以及电容型套管tanδ的要求值提高到0.8%~1.0%,现场认为再用准确度较低的西林电桥(绝对误差为|?tanδ|≤0.3%)进行测量值得商榷,建议采用准确度高的测量仪器

电气试验工(整理完毕)高级技师

,其测量误差应达到|?tanδ|≤0.1%,以准确测量小介质损耗因数tanδ。

8. 为什么要对变压器类设备进行交流感应耐压试验?如何获得中频率的电源?