当前位置:文档之家› 电力变压器差动保护

电力变压器差动保护

电力变压器差动保护
电力变压器差动保护

将元件两端电流互感器按差接法连接,正常运行或外部故障时,流入继电器的电流为两侧电流差,接近零;内部故障时,流入继电器的电流为两侧电流和,其值为短路电流,继电器动作。将此原理应用于变压器,即为变压器差动保护

1.母联死区保护的概念

对于双母线或单母线分段,在母联单元上只安装一组TA情况下,母联TA与母联断路器之间(K点)故障称为死区故障。当K点发生故障,II母判为区内故障,I母判为区外故障,II母保护动作并跳开母联断路器后,K点故障仍然存在于I母,未能彻底切除故障。

双母线保护装置具有"母联死区保护"功能。死区故障时,I母或II母保护动作后,发令切除该段母线上所有运行单元(包括母联开关),同时保护程序继续判别大差是否返回、母联TA上故障电流是否消失。若经过延时(确保母联断路器可靠跳闸),大差未返回、母联TA仍有故障电流,则启动母联死区保护,发令动作于另一段母线保护的出口,从而彻底切除死区故障。双母线母联单元热备用状态,即母联的两隔离刀闸闭合而母联断路器断开时,在死区发生故障,若母线保护按母联隔离刀闸状态计算两小差,则将造成故障母线判为区外,而非故障母线判为区内。为解决此问题,将母联断路器辅助接点(常开接点)接入保护装置,作为判定母联单元"断"或"联"运行方式的依据。母联断路器的辅助接点未闭合时,母线保护按双母线分列运行时的保护逻辑判别及出口。I母小差及II母小差判据中不计入母联电流。此时,若发生死区故障,故障母线判为区内而正确迅速动作,非故障母线则判为区外可靠不动作。母联断路器的辅助接点闭合后,母线保护则按常规双母线并列运行时的保护逻辑判别及出口。

2、电容式电压互感器(CVT)的简单结构和特点

电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保护等的电压源的电压互感器,电容式电压互感器还可以将载波频率耦合到输电线用于长途通信、远方测量、选择性的线路高频保护、遥控、电传打字等。因此和常规的电磁式电压互感器相比,电容式电压互感器器除可防止因电压互感器铁芯饱和引起铁磁谐振外,在经济和安全上还有很多优越之处。

电容式电压互感器主要由电容分压器和中压变压器组成。电容分压器由瓷套和装在其中的若干串联电容器组成,瓷套内充满保持0.1MPa正压的绝缘油,并用钢制波纹管平衡不同环境以保持油压,电容分压可用作耦合电容器连接载波装置。中压变压器由装在密封油箱内的变压器,补偿电抗器和阻尼装置组成,油箱顶部的空间充氮。一次绕组分为主绕组和微调绕组,一次侧和一次绕组间串联一个低损耗电抗器。由于电容式电压互感器的非线性阻抗和固有的电容有时会在电容式电压互感器内引起铁磁谐振,因而用阻尼装置抑制谐振,阻尼装置由电阻和电抗器组成,跨接在二次绕组上,正常情况下阻尼装置有很高的阻抗,当铁磁谐振引起过电压,在中压变压器受到影响前,电抗器已经饱和了只剩电阻负载,使振荡能量很快被降低。

3、在综合重合闸装置中。通常采用两种重合闸时间,即“短延时”和“长延时”.这是

为什么?

这是为了使三相重合和单相重合的重合时间可以分别进行整定。因为由于潜供电流的影响,一般单相重合的时间要比三相重合的时间长。另外可以在高频保护投入或退出运行时,采用不同的重合闸时间。当高频保护投入时,重合闸时间投“短延时”;当高频保护退出运行时,重合闸时间投“长延时”。

4、电压切换回路在安全方面应注意哪些问题?手动和自动切换方式各有什么优缺点?

在设计手动和自动电压切换回路时,都应有效地防止在切换过程中对一次侧停电的电压

互感器进行反充电。电压互感器的二次反充电,可能会造成严重的人身和设备事故。为此,切换回路应采用先断开后接通的接线。在断开电压回路的同时,有关保护的正电源也应同时断开。电压回路切换采用手动方式和自动方式,各有其优缺点。手动切换,切换开关装在户内,运行条件好,切换回路的可靠性较高。但手动切换增加了运行人员的操作工作量,容易发生误切换或忘记切换,造成事故。为提高手动切换的可靠性,应制定专用的运行规程,对操作程序作出明确规定,由运行人员执行。自动切换可以减轻运行人员的操作工作量,也不容易发生误切换和忘记切换的事故。但隔离开关的辅助触点,因运行环境差,可靠性不高,经常出现故障,影响了切换回路的可靠性。为了提高自动切换的可靠性,应选用质量好的隔离开关辅助触点,并加强经常性的维护。

5、跳闸位置继电器与合闸位置继电器有什么作用?

它们的作用如下:

1)可以表示断路器的跳、合闸位置如果是分相操作的,还可以表示分相的跳、合闸信号。

2)可以表示断路器位置的不对应或表示该断路器是否在非全相运行壮态。

3)可以由跳闸位置继电器的某相的触点去启动重合闸回路。

4)在三相跳闸时去高频保护停信。

5)在单相重合闸方式时,闭锁三相重合闸。

6)发出控制回路断线信号和事故音响信号。

6、简述微机保护投运前为什么要用系统工作电压及负荷电流进行检验。

利用系统工作电压及负荷电流进行检验是对装置交流二次回路接线是否正确的最后—次检验,因此事先要做出检验的预期结果,以保证装置检验的正确性。

(1)检验交流电压、电流的相序:通过打印的采样报告来判断交流电压、电流的相序是否正确,零序电压、零序电流应为零。

(2)测定负荷电流相位:根据打印的采样报告,分析各相电流对电压的相位,是否与反应—次表计值换算的角度与幅值相—致。

(3)检验3U回路。

1)L、N线检查:主要依靠校对导线来确定。

2)检查电压互感器开口三角的接线是否符合保护装置的极性要求。对于新建变电站,应在屋外电压互感器端子箱和保护屏端子排处,分别测定二次和三次绕组的各同名相电压,以此来判断极性端。然后在电压互感器端子箱处,引出S—N电压加到微机保护3Uo 绕组上,打印采样值,判断3U。的极性是否正确。对于已运行的变电站,可参照已运行的,且零序功率方向元件正确动作过的电压互感器开口三角的接线进行核对。或者在L、N线校对导线正确,L线无断线的基础上,把S端用电缆芯临时引至微机保护屏上代替L端,参照上法检验。

(4)检验3I。回路:在3I。回路通一个IA电流,若3I。与IA的采样值的相位与幅值相同,说明3I。回路正确。

7、三相重合闸起动回路中的同期继电器常闭触点回路中,为什么要串接检线路有电压常开触点?

三相检同期重合闸起动回路中串联KV常开触点,目的是为了保证线路上确有电压才进行检同期重合,另外在正常情况下,由于某种原因在检无压重合方式下,因为断路器自动脱落,线路有电压无法进行重合,此时,如果串有KV常开触点的检同期起动回路与检无压起动回路并联工作,就可以靠检同期起动回路纠正这一误跳闸。

8、继电保护装置中的作为电流线性变换成电压的电流互感器和电抗变压器,其主要区别有哪些?前者如何使I1与U2:同相?后者如何使I1与U2达到所需要的相位?

主要区别在铁芯结构上,TA无气隙,而DKB有气隙,开路励磁阻抗TA大而DKB小;在一次电流和二次电压相位上,TA同相,DKB一次电流落后二次电压90°;TA二次电压取自负荷电阻R上的压降,为达到同相可并适当的电容,DKB可在二次线圈上并联可变电阻,靠改变电阻获得所需的相位。

9、什么叫电压互感器反充电?对保护装置有什么影响?

通过电压互感器二次侧向不带电的母线充电称为反充电。如220kV电压互感器,变比为2200,停电的一次母线即使未接地,其阻抗(包括母线电容及绝缘电阻)虽然较大,假定为1MΩ,但从电压互感器二次测看到的阻抗只有1000000/(2200)2=0.2Ω,近乎短路,故反充电电流较大(反充电电流主要决定于电缆电阻及两个电压互感器的漏抗),将造成运行中电压互感器二次侧小开关跳开或熔断器熔断,使运行中的保护装置失去电压,可能造成保护装置的误动或拒动。

文章转载来自北极星电力招聘网,旨在抛砖引玉供广大网友分享交流。

一、电力系统继电保护的概念与作用

1.电力系统故障和不正常运行

故障:短路和断线(断相)

短路:

大电流接地系统d(3)、d(2)、d(1)、d(1。1)

小电流接地系统d(3)、d(2)、d(1。1)

断相:

单相断线和两项断线(不要与PT二次断线混淆)

其中最常见且最危险的是各种类型的短路。其后果:

1I增加危害故障设备和非故障设备;

2U降低影响用户正常工作;

3破坏系统稳定性,使事故进一步扩大(系统震荡,互解)

I2(I0)旋转电机产生附加发热I0—相邻通讯系统

故障特征:

I增加、U降低、Z降低

接地故障、断线有零序

不对称故障有负序

不正常运行状态:

电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。

如:小电流接地系统d(1)、过负荷、过电压、频率降低、系统震荡等。

2.继电保护的作用:

要求能区分故障和正常运行、判断故障设备(区内还是区外故障)

两个作用:故障

不正常运行状态

故障和不正常运行状态—>事故(P1),不可能完全避免且传播很快(光速)

要求:几十毫秒内切除故障人(×),继电保护装置(√)

任务:P2.被形象的比喻为“静静的哨兵”

二、继电器继电器动作:继电器返回:

继电特性:

三、继电保护的基本原理、构成与分类:

1.基本原理:

为区分系统正常运行状态与故障或不正常运行状态——找差别:特征。

①增加故障点与电源间—>过电流保护

②U降低—>低电压保护

③变化;正常:20°左右—>短路:60°~85°—>方向保护.

④;模值减少—>阻抗保护

⑤—>——〉电流差动保护

⑥I2、I0序分量保护等。

另非电气量:瓦斯保护,过热保护

原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征(差别),即可找出一种原理,且差别越明显,保护性能越好。

2.构成

以过电流保护为例:

正常运行:Ir=IfLJ不动

故障时:Ir=Id>IdzLJ动—>SJ动(延时)—>XJ动—>信号

TQ动—>跳闸

一般由测量元件、逻辑元件和执行元件三部分组成。

(1)测量元件

作用:测量从被保护对象输入的有关物理量(如电流、电压、阻抗、功率方向等),并与已给定的整定值进行比较,根据比较结果给出“是”、“非”、“大于”、“不大于”等具有“0”或“1”性质的一组逻辑信号,从而判断保护是否应该启动。

(2)逻辑元件

作用:根据测量部分输出量的大小、性质、输出的逻辑状态、出现的顺序或它们的组合,使保护装置按一定的布尔逻辑及时序逻辑工作,最后确定是否应跳闸或发信号,并将有关命令传给执行元件。

逻辑回路有:或、与、非、延时启动、延时返回、记忆等。

(3)执行元件:

作用;根据逻辑元件传送的信号,最后完成保护装置所担负的任务。如:故障时→跳闸;不正常运行时→发信号;正常运行时→不动作。

3.分类:

几种方法如下:

(1)按被保护的对象分类:输电线路保护、发电机保护、变压器保护、电动机保护、母线保护等;

(2)按保护原理分类:电流保护、电压保护、距离保护、差动保护、方向保护、零序保护等;

(3)按保护所反应故障类型分类:相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等;

(4)按继电保护装置的实现技术分类:机电型保护(如电磁型保护和感应型保护)、整流型保护、晶体管型保护、集成电路型保护及微机型保护等;

(5)按保护所起的作用分类:主保护、后备保护、辅助保护等;

主保护满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。

?回复

?1楼

?2013-03-03 20:24

?举报|

?

?绝世火云

?铁杆会员

8

后备保护主保护或断路器拒动时用来切除故障的保护。又分为远后备保护和近后备保护两种。

①远后备保护:当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护。

②近后备保护:当主保护拒动时,由本电力设备或线路的另一套保护来实现后备的保护;当

断路器拒动时,由断路器失灵保护来实现后备保护。

辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护。

3.电保护包括继电保护技术和继电保护装置。

*继电保护技术是一个完整的体系,它主要由电力系统故障分析、继电保护原理及实现、继电保护配置设计、继电保护运行及维护等技术构成。

*继电保护装置是完成继电保护功能的核心。P1

继电保护装置就是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

四、对继电保护的基本要求:对动作于跳闸的继电保护,在技术上一般应满足四个基本要求:选择性、速动性、灵敏性、可靠性。即保护四性。

(一)选择性:P4

选择性是指电力系统发生故障时,保护装置仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。

例:

当d1短路时,保护1、2动→跳1DL、2DL,有选择性

当d2短路时,保护5、6动→跳5DL、6DL,有选择性

当d3短路时,保护7、8动→跳7DL、8DL,有选择性

若保护7拒动或7DL拒动,保护5动→跳5DL(有选择性)

若保护7和7DL正确动作于跳闸,保护5动→跳5DL,则越级跳闸(非选择性)

小结:选择性就是故障点在区内就动作,区外不动作。当主保护未动作时,由近后备或远后备切除故障,使停电面积最小。因远后备保护比较完善(对保护装置DL、二次回路和直流电源等故障所引起的拒绝动作均起后备作用)且实现简单、经济,应优先采用。

(二)速动性:

快速切除故障。1提高系统稳定性;2减少用户在低电压下的动作时间;3减少故障元件的损坏程度,避免故障进一步扩大。

t-故障切除时间;

tbh-保护动作时间;

tDL-断路器动作时间;

一般的快速保护动作时间为0.06~0.12s,最快的可达0.01~0.04s。

一般的断路器的动作时间为0.06~0.15s,最快的可达0.02~0.06s。

(三)灵敏性:P5

指在规定的保护范围内,对故障情况的反应能力。满足灵敏性要求的保护装置应在区内故障时,不论短路点的位置与短路的类型如何,都能灵敏地正确地反应出来。

通常,灵敏性用灵敏系数来衡量,并表示为Klm。

对反应于数值上升而动作的过量保护(如电流保护)

对反应于数值下降而动作的欠量保护(如低电压保护)

其中故障参数的最小、最大计算值是根据实际可能的最不利运行方式、故障类型和短路点来

计算的。

在《继电保护和安全自动装置技术规程(DL400-91)》中,对各类保护的灵敏系数Klm的要求都作了具体规定(参见附录2,P231)。

(四)可靠性:P5

指发生了属于它改动作的故障,它能可靠动作,即不发生拒绝动作(拒动);而在不改动作时,他能可靠不动,即不发生错误动作(简称误动)。

影响可靠性有内在的和外在的因素:

内在的:装置本身的质量,包括元件好坏、结构设计的合理性、制造工艺水平、内外接线简明,触点多少等;

外在的:运行维护水平、调试是否正确、正确安装

上述四个基本要求是分析研究继电保护性能的基础,也是贯穿全课程的一个基本线索。在它们之间既有矛盾的一面,又有在一定条件下统一的一面。

四、发展:原理:随电力系统的发展和科学技术的进步而发展

过电流保护(最早熔断器)电流差动保护方向性电流保护

(1901年)(1908年)(1910年)

距离保护高频保护微波保护行波保护、光纤保护

(1920年)(1927年)(50年代)(70年代诞生、50年代有设想)

结构型式:

机电型电子型微机型(华北电力大学80年代)数字式

(电磁型、感应型、电动型)晶体管

集成电路

20世纪50年代60年代末提出70年代后半期出样机

记住,永远不要对父母说这十句话!

1.好了,好了,知道,真啰嗦!(可怜天下父母心,父母的“啰嗦”其实是一种幸福。)

2.有事吗,没事?那挂了啊。(父母打电话,也许只想说说话,我们能否明白他们的用意,不要匆忙挂了电话!)

3.说了你也不懂,别问了!(他们只是想和我们说说话。)

4.跟你说了多少次不要你做,做又做不好。(一些他们已经力不能及的事,我们因为关心而制止,但不要这样让他们觉得自己很无用。)

5.你们那一套,早就过时了。(父母的建议,也许不能起到作用,可我们是否能换一种回应的方式?)

6.叫你别收拾我的房间,你看,东西找都找不到!(自己的房间还是自己收拾好,不收拾,也不要拂了老人的好意。)

7.我要吃什么我知道,别夹了!(盼着我们回家的父母总想把所有关心融在特意做的菜里,我们默默领情就好。)

8.说了别吃这些剩菜了,怎么老不听啊!(他们一辈子的节约习惯,很难改,让他们每次尽量少做点菜就好。)

9.我自己有分寸,不要老说了,烦不烦。(他们只是担心你吃亏。)

10.这些东西说了不要了,堆在这里做什么啊!(人老了都会念旧……)

当你还在襁褓时,她便天天抱着你,哄你入睡;当你到少年时代,她便天天念叨着你,夜夜帮你捻着棉被;当你终于离开家,远行他方,她便天天牵挂着你。

有时候,我们总是在抱怨母亲的唠叨、念叨,总是在心烦她那些说了无数遍的关心话语。都说儿女是父母前辈子欠下的债,这句话不假。让我们感恩于心,让我们感恩父母那些点滴的关怀。

如果有一天,你发现母亲煮的菜太咸太难吃,如果有一天,你发现父母经常忘记关电器;

如果有一天,你发现父亲的花草树木已渐荒废,如果有一天,你发现家中的地板衣柜经常沾满灰尘;

如果有一天,你发现父母不再爱吃青脆的蔬果,如果有一天,你发现父母爱吃煮得烂烂的菜;

如果有一天,你发现吃饭时间他们老是咳个不停,千万别误以为他们感冒或着凉(那是吞咽神经老化的现象);

如果有一天,你发觉他们不再爱出门……也许是因为身体一天不如一天……

每个人都会老,父母会比我们先老。当父母不能照顾自己的时候,很多事情做得不好的时候,请不要嫌弃他们,并请维持他们的“自尊心”.

当他们不爱洗澡时,请抽空定期帮他们洗身体,因为纵使他们自己洗也不可能洗干净;

当我们享受美食的时候,请替他们准备大小适当、容易咀嚼的一小碗。他们不爱吃,可能是因为牙齿咬不动了。

曾经听到过这样一个说法:其实,每位母亲都是一位漂亮的仙女,她们有一件非常美丽的衣裳。可是当她决定做某个孩子母亲的时候,当她准备呵护某个生命的时候,就会褪去这件美丽的衣裳,变成一名普通的女子,一辈子,平淡无奇。

配电变压器的保护措施及其注意事项(2021新版)

配电变压器的保护措施及其注意事项(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0166

配电变压器的保护措施及其注意事项 (2021新版) 配电变压器是配电系统中根据电磁感应定律变换交流电压和电流而传输交流电能的一种静止电器。通常安装在电线杆、台架或配电所中,一般将6~10千伏电压降至400伏左右输入用户。变压器运行是否正常直接影响用户生产和生活用电,并关系到用电设备的安全。为了保证用户用上优质、安全电,必须保证配变运行正常。因此我们有必要从保护配置技术角度和日常运行管理两大方面来谈谈配电变压器的保护措施及其注意事项: 一、保护配置技术方面 1、装设避雷器保护,防止雷击过电压:配变的防雷保护,采用装设无间隙金属氧化物避雷器作为过电压保护,以防止由高低压线路侵入的高压雷电波所引起的变压器内部绝缘击穿,造成短路,杜

绝发生雷击破坏事故。采用避雷器保护配变时,一是要通过正常渠道采购合格产品,安装投运前经过严格的试验达到运行要求再投运;二是对运行中的设备定期进行预防性试验,对于泄漏电流值超过标准值的不合格产品及时加以更换;三是定期进行变压器接地电阻检测,对100KVA及以上的配电变压器要求接地电阻必须在4Ω以内,对100KVA以下的配电变压器,要求接地电阻必须在10Ω以内。如果测试值不在规定范围内,应采取延伸接地线,增加接地体及物理、化学等措施使其达到规定值,每年的4月份和7月份进行两次接地电阻的复测,防止焊接点脱焊、环境及其它因素导致接地电阻超标。如果变压器接地电阻超标,雷击时雷电流不能流入大地,反而通过接地线将雷电压加在配电变压器低压侧再反向升压为高电压,将配变烧毁;四是安装位置选择应适当,高压避雷器安装在靠配变高压套管最近的引线处,尽量减小雷电直接侵入配变的机会,低压避雷器装在靠配变最近的低压套管处,以保证雷电波侵入配变前的正确动作,按电气设备安装规范标准要求安装,防止盲目安装而失去保护的意义。

变压器纵联差动保护

第四节变压器纵联差动保护 一、变压器纵联差动保护的原理 纵联差动保护是反应被保护变压器各端流入和流出电流的相量差。对双绕组变压器实现纵差动保护的原理接线如下图所示。 为了保证纵联差动保护的正确工作,应使得在正常运行和外部故障时,两个二次电流相等,差回路电流为零。在保护范围内故障时,流入差回路的电流为短路点的短路电流的二次值,保护动作。应使 或 结论: 适当选择两侧电流互感器的变比。 纵联差动保护有较高的灵敏度。 二、变压器纵联差动保护在稳态情况下的不平衡电流及减小不平衡电流的措施 在正常运行及保护范围外部短路稳态情况下流入纵联差动保护差回路中的电流叫稳态不平衡电流I bp。 1.由变压器两侧电流相位不同而产生的不平衡电流 思考:由于变压器常常采用Y,dll的接线方式, 因此, 其两侧电流的相位差30o。此时,如果两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,会有一个差电流流入继电器。如何消除这种不平衡电流的影响?

解决办法:通常都是将变压器星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形。 2.由两侧电流互感器的误差引起的不平衡电流 思考:变压器两侧电流互感器有电流误差△I,在正常运行及保护范围外部故障时流入差回路中的电流不为零,为什么? 为什么在正常运行时,不平衡电流也很小? 为什么当外部故障时,不平衡电流增大? 原因:电流互感器的电流误差和其励磁电流的大小、二次负载的大小及励磁阻抗有关,而励磁阻抗又与铁芯特性和饱和程度有关。 当被保护变压器两侧电流互感器型号不同,变比不同,二次负载阻抗及短路电流倍数不同时都会使电流互感器励磁电流的差值增大。 减少这种不平衡电流影响的措施: (1)在选择互感器时,应选带有气隙的D级铁芯互感器,使之在短路时也不饱和。 (2)选大变比的电流互感器,可以降低短路电流倍数。 (3)在考虑二次回路的负载时,通常都以电流互感器的10%误差曲线为依据,进行导线截面校验,不平衡电流会更小。最大可能值为: 3.由计算变比与实际变比不同而产生的不平衡电流 思考:两侧的电流互感器、变压器是不是一定满足 或的关系? 原因:很难满足上述关系。 减少这种不平衡电流影响的措施: 利用平衡线圈W ph来消除此差电流的影响。 假设在区外故障时,如下图所示,则差动线圈中将流过电流(),由它所产生的磁势为W cd()。为了消除这个差动电流的影响,通常都是将平衡线圈W ph接入二次电流较小的一侧,应使 W cd()=W ph 4.带负荷调变压器的分接头产生的不平衡电流 思考:在电力系统中为什么采用带负荷调压的变压器会产生不平衡电流?

变压器安全防护措施标准版本

文件编号:RHD-QB-K7070 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 变压器安全防护措施标 准版本

变压器安全防护措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、编制依据 1、《建筑施工安全检查标准》 2、施工组织设计及施工图纸等。 二、工程概况 本工程为生活辅助楼,该楼建筑面积5555平方米,使用一台QTZ40塔机垂直运输,临时施工的变压器及供电线路均在该塔机工作半径。变电器靠近围墙在生活辅助楼与侯工楼之间位置,供电线路总长72米,线高10.5米。 三、防护材料 杉木竿:12根,每根12米长,8根作为变压器

四周的立竿,4根作为斜支撑。 木方:50根,每根4米长,用于变压器四周及上口横竿。 竹胶板:50块,每块尺寸为 1220mm*2440mm,用于变压器上口水平方向及周围的防护。并在靠近东侧处制作木门,方便进入检查维修。 竹竿462根,每根8米长,320根作为供电线路,剩余作为斜撑和横担。 竹片:880块,每块尺寸为 1000mm*1000mm,线路上方采用双层布置总计使用480块,剩余作为东侧里面的防护。 五、安全防护施工方法 在变压器未通电之前,我们提前先将变压器进行防护,在距变压器四周1.5米的地方立8根杉木竿,

杉木竿的埋地深度不得小于1米,地面以上10米。立竿埋好后,变压器四周水平方向用木方设置横竿,横竿用铁钉固定在四周的立竿上,横竿与横竿之间的间距为0.8米。横竿设置完毕后,在变压器相邻边用竹胶板进行封闭,竹胶板用铁钉固定在横竿上,板与板之间不得留有空隙,要做到全封闭。其它三面用竹片固定在横竿上,固定时必须牢固、可靠。变压器上口采用双层竹胶板进行水平方向全封闭防护,竹胶板用铁钉固定在横竿上,水平方向防护层上下两道,间距为500mm。 为了防护体的整体稳固性,在防护体四角必须加设4根斜支撑,以免防止防护体造成倾斜的可能。 在靠近东侧处制作木门,方便进入检查维修,悬挂警示标志。 供电线路采用内双外单的3排竹竿防护架,竹

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

电力变压器差动保护原理与研究

变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 1)励磁涌流 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同

电力变压器的防火防爆措施详细版

文件编号:GD/FS-4997 (解决方案范本系列) 电力变压器的防火防爆措 施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

电力变压器的防火防爆措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 电力变压器是电力系统中输配电力的主要设备。电力变压器主要是将电网的高压电降低为可以直接使用的6000伏(V)或380伏(V)电压,给用电设备供电。如变压器内部发生过载或短路,绝缘材料或绝缘油就会因高温或电火花作用而分解,膨胀以至气化,使变压器内部压力急剧增加,可能引起变压器外壳爆炸,大量绝缘油喷出燃烧,油流又会进一步扩大火灾危险。 运行中防火爆炸要注意: (1)不能过载运行:长期过载运行,会引起线圈发热,使绝缘逐渐老化,造成短路。 (2)经常检验绝缘油质:油质应定期化验,不合

格油应及时更换,或采取其它措施。 (3)防止变压器铁芯绝缘老化损坏,铁芯长期发热造成绝缘老化。 (4)防止因检修不慎破坏绝缘,如果发现擦破损伤,就及时处理。 (5)保证导线接触良好,接触不良产生局部过热。 (6)防止雷击,变压器会因击穿绝缘而烧毁。 (7)短路保护:变压器线圈或负载发生短路,如果保护系统失灵或保护定值过大,就可能烧毁变压器。为此要安装可靠的短路保护。 (8)保护良好的接地。 (9)通风和冷却:如果变压器线圈导线是A级绝缘,其绝缘体以纸和棉纱为主。温度每升高8℃其绝缘寿命要减少一半左右;变压器正常温度90℃以下运

电力变压器保护毕业设计

毕业设计 设计题目电力变压器保护设计系(部)电力工程系 学科专业供用电技术 班级 姓名 学号 指导教师 二〇一六年四月二十三日

工程学院毕业设计任务书

工程学院毕业设计成绩表

摘要 电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。 本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。 关键词电力系统故障,变压器,继电保护,整定计算

ABSTRACT The transformer is the essential equipment in the electrical power system.Its breakdown might bring the serious influence to the power supply reliability and the system safely operation.At the same time the large capacity power transformer is the extremely precious equipment.Therefore.We must install the reliable relay protection installment according to the transformer capacity rankand the important degree. The article is about the relay protection of the transformer.I had consulted many experts and teachers before I finished the article.At the same time the massive specialized materials was consulted by me. It is not diffcult to understand the logical organiztion of the article for readers.And the article will bring the usful help to the comrades who is working as a electrical engineer. Keywords Power System Fault Condition, Power Transformer, Relay

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

变压器的纵差动保护原理及整定方法

热电厂主变压器的纵差动保护原理及整定方法 浙江旺能环保股份有限公司 作者:周玉彩 一、构成变压器纵差动保护的基本原则 我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。例如在图1中,应使 图 '2I =''2I = 。 同的。这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。 二、变压器纵差动保护的特点 变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流 变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。因此必须想办法解决。为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。经分析得出,励磁涌流具有以下特点: (1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。 根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器; ?1′′ n ?1′

变压器纵差动保护动作电流的整定原则是什1

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。 电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障 一般不到10%。因此,在由继电保护动作切除短路故障之后,电弧将瞬间熄灭, 绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅 提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水 平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保护又分为 近后备和远后备两种:(1)近后备保护是当主保护拒动时,由本线路或设备的 另一套保护来切除故障以实现的后备保护(2)远后备保护是当主保护或断路器 拒动时,由前一级线路或设备的保护来切除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备保护退出 运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。

(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分) 当主保护或其断路器拒动时,由相邻上一元件的保护起后备作用称为远后备。(2分)对继电保护装置有哪些基本要求? 答:根据继电保护装置在电力系统中所担负的任务,继电保护装置必须满足以下四个基本要求:选择性、快速性、灵敏性、可靠性。 微机保护硬件系统通常包括哪几部分? 答:(1)数据采集单元,即模拟量输入系统; (2)数据处理单元,即微机主系统; (3)数字量输入/输出接口,即开关输入输出系统; (4)通信接口。 为什么差动保护不能代替瓦斯保护? 答:瓦斯保护能反应变压器油箱内部的任何故障,如铁芯过热烧伤,油面降低等,但差动保护对此反应。又如变压器绕组发生少数线匝的匝短路,虽然短路匝内 短路电流很大会造成局部绕组严重过热产生强烈的油流向油枕方向冲击,但相 电流上却并不大,因此差动保护没有反应。但瓦斯保护对此却能灵敏地反应, 这就是差动保护不能代替瓦斯保护的原因。

变压器纵差保护中不平衡电流的克服方法

变压器纵差保护中不平衡电流的克服方法 纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。 1.变压器纵差保护基本原理 纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。 当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,

因为外部短路电流大,非凡是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 2.纵差保护不平衡电流分析 2.1稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变

电力变压器保护设计规范说明

电力变压器保护设计规范说明 电力变压器保护设计规范(GB/T50062—2008) 4·0·1电压为3~110kV,容量为63MV·A及以下的电力变压器,对下列故障及异常运行方式,应装设相应的保护装置: 1,绕组及其引出线的相问短路和在中性点直接接地或经小电阻接地侧的单相接地短路。2,绕组的匝间短路。 3,外部相间短路引起的过电流。 4,中性点直接接地或经小电阻接地的电力网中外部接地短路引起的过电流及中性点过电压。5,过负荷。 6,油面降低。 7,变压器油温过高、绕组温度过高、油箱压力过高、产生瓦斯或冷却系统故障。 4.0.2容量为0.4MV·A及以上的车间内油浸式变压器、容量为0.8MV·A及以上的油浸式变压器,以及带负荷调压变压器的充油调压开关均应装设瓦斯保护,当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。 瓦斯保护应采取防止因震动、瓦斯继电器的引线故障等引起瓦斯保护误动作的措施。当变压器安装处电源侧无断路器或短路开关时,保护动作后应作用于信号并发出远跳命令,同时应断开线路对侧断路器。 4.0.3对变压器引出线、套管及内部的短路故障,应装设下列保护作为主保护,且应瞬时动作于断开变压器的各侧断路器,并应符合下列规定: 1,电压为10kV及以下、容量为10MV·A以下单独运行的变压器,应采用电流速断保护。 2,电压为10kV以上、容量为10MV·A及以上单独运行的变压器,以及容量为6.3MV·A及以上并列运行的变压器,应采用纵联差动保护。 3,容量为10MV·A以下单独运行的重要变压器,可装设纵联差动保护。 4,电压为10kV的重要变压器或容量为2MV·A及以上的变压器,当电流速断保护灵敏度不符合要求时,宜采用纵联差动保护。 5,容量为0.4MV·A及以上、一次电压为10kV及以下,且绕组为三角一星形连接的变压器,可采用两相三继电器式的电流速断保护。 4.0.4变压器的纵联差动保护应符合下列要求: 1,应能躲过励磁涌流和外部短路产生的不平衡电流。 2,应具有电流回路断线的判别功能,并应能选择报警或允许差动保护动作跳闸。 3,差动保护范围应包括变压器套管及其引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。但在63kV或110kV电压等级的终端变电站和分支变电站,以及具有旁路母线的变电站在变压器断路器退出工作由旁路断路器代替时,纵联差动保护可短时利用变压器套管内的电流互感器,此时套管和引线故障可由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 4.0.5对由外部相间短路引起的变压器过电流,应装设下列保护作为后备保护,并应带时限动作于断开相应的断路器,同时应符合下列规定: 1,过电流保护宜用于降压变压器。 2,复合电压启动的过电流保护或低电压闭锁的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。 4.0.6外部相间短路保护应符合下列规定:

电力变压器继电保护设计方案

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 2014511057_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期 2017.6.12-2017.6.23__

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数如下:S N =31.5MVA ;电压为110±4×2.5%/38.5±2×2.5%/11 kV ;接线为Y N /y/d 11(Y 0/y/Δ-12-11);短路电压U HM (%)=10.5,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV 侧的中性点只有一台接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条6.5km 长的110kV 高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)

电力变压器安全运行措施范本

整体解决方案系列 电力变压器安全运行措施(标准、完整、实用、可修改)

编号:FS-QG-63152电力变压器安全运行措施 Measures for safe operation of power transformers 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 随着社会不断进步、用电量迅速增长,为了安全供电、提高供电可靠性,满足社会用电需求,对于变压器的安全运行,更显得意义重要。 现就以下几个方面论述如下: 1、合理选址变压器安全运行,需要有良好的外部环境。其安装选址要避免低洼、潮湿、高温、灰尘和腐蚀性气体的影响,尽量选择自然通风良好的地方,以提高散热条件和避免易燃易爆气体的影响。 2、合理选择变压器的保护方式在电力系统中,继电保护应具有可靠性、快速性、灵敏性和选择性。变压器是电网中主要元件之一,应根据负荷的重要性和变压器自身价值等方面,综合选择所需的继电保护方式。变压器保护有变压器自身故障保护和外部电路故障保护。而变压器自身故障分为油

箱内和油箱外故障两种。 以下介绍几种保护方式: (1)瓦斯保护。瓦斯保护有轻瓦斯保护和重瓦斯保护,轻瓦斯动作于信号,重瓦斯动作于电源侧断路器跳闸。在变压器开始带负荷运行的一星期内,应把重瓦斯保护从跳闸切换为信号。要把重瓦斯保护从跳闸功换为信号,要选择一只电阻代替中间继电器的电压线圈,而该电阻的阻值,应能使信号继电器的灵敏度大于1.4,并要检验长期流过电流信号继电器的电流是否小于电流信号继电器的额定电流。故此,代替中间继电器线圈的电阻R1阻值应满足:1.4Idz (2)电流速断保护。电流速断适用于10MVA以下,没有差动保护,且过流保护时限大于0.5秒的故障保护,其保护动作时限取零秒,继电器动作电流IDZ.J:IDZJ=(KJXKk/K)×ID.DZ其中:KJX是电流互感器接线系数;KK是可靠系数,取1.2--1.3;ID.DZ是被保护变压器副边出口三相最大短路电流;K是电流互感器额定变比。 (3)差动保护。差动保护的原理,是当变压器发生内部或外部故障时,流入变压器的电流与流出变压器的电流出现异

变压器的保护配置

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器

电力变压器中纵差保护的运用分析

电力变压器中纵差保护的运用分析 发表时间:2018-01-28T19:09:00.293Z 来源:《电力设备》2017年第28期作者:秦振华1 张英杰2 张学忠3 巩翔宇3 邵淑敏2 [导读] 摘要:变压器纵联差动保护的目的就是保护变压器本体、各侧引线和套管,并躲开励磁涌流、区外故障引起的穿越性电流的影响。(1河南省机场集团有限公司河南省 450000;2河南森源电气股份有限公司河南省 461500; 3国网河南省电力公司周口供电公司河南省 466000) 摘要:变压器纵联差动保护的目的就是保护变压器本体、各侧引线和套管,并躲开励磁涌流、区外故障引起的穿越性电流的影响。本文笔者对纵联差动保护的原理以及纵联差动保护不平衡电流的原因及其减少的措施进行了探讨。 关键词:纵联差动保护;变压器;不平衡 通常情况下来说,可以把变压器的故障大致的分成内部的故障与外部的故障两个大类。内部的故障一般是指的变压器绕组发生或出现相间短路或者匝间短路,又或者是中性点接地侧单相接地短路等故障。而变压器的最经常遇到的外部故障是指的,引出线绝缘套管的地方出现了故障,它很有可能将会引起引出线相间短路故障或者是接地(对变压器外壳)短路故障。 根据上述可能发生的故障及不正常工作情况,变压器一般应装设下列保护装置:1)瓦斯保护;2)纵联差动保护;3)电流速断保护;4)过电流保护;5)过负荷保护。而纵联差动保护用来防御变压器内部故障及引出线套管的故障。容量在10 000kV?A及以上单台运行的变压器和容量在6 300kV?A及以上并列以运行的变压器,都应装设纵联差动保护。 1 电力变压器纵差保护的基本原理 纵差保护全称纵联差动保护,变压器的纵联差动保护防御的是油箱外面套管和引出线等的故障。在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相反,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,起到保护作用。 2 纵差保护中常见问题 (1)首先有必要一提的是最常见的问题便是安装过程中出现的问题;目前常见的电流互感器,出厂时都在外壳上明确标注P1、P2;抽头S1、S2;意思是当CT一次侧的电流由P1流向P2时,二次侧感应电流的方向为S1到S2。差动装置取的是保护区域两端的两个CT的二次侧感应电流进行计算,此时就一定要注意差动保护装置本身的固有特性:是180度接线还是0度接线。所谓180度接线要求,就是对两端两个CT进入保护装置的电流求和,和为零时不动作;0度接线要求就是对两端两个CT进入保护装置的电流求差值,差值为零时不动作。安装作业人员甚至一些设计人员常常由于对该原理的模糊导致对于发电机的差动保护习惯性设置为0接线,对变压器采用180接线;这就与很有可能与差动保护装置本身的计算属性要求不符,继而造成差动保护的误动作。虽然现在的自适应接线方式的差动保护装置很好的解决了这个问题,但这种装置电厂普及度不高,极易出现问题,这就要求现场人员在施工过程中要严格校验。 (2)差动继电器的电流回路接线问题,现在电力变压器主要分为干式变压器和油浸式变压器两类,在变压器的规格参数中有一项被称之为联接组标号。也就是平时说的接线方式。暂以常规的Dyn11来阐明差动继电器电流回路接线问题。根据基础电路理论,角型接法的线电压比星型接法的相电压超前30度,所以就变压器自身来说高压侧的电流会超前低压侧30度。那么如果两侧的CT采用相同的接线方式的话,在高压侧CT处产生的二次电流也会比低压侧CT产生的二次电流在相位上相差30度,那么正常运行时也就可能超过保护定值造成误动。对此问题现在普遍采用改变CT二次绕组接线方式的办法来解决。以Dyn11为例来说明,高压侧采用三角形接线,那么高压侧对应的CT 的二次绕组就采用星型接线;低压侧采用星型接线,那么低压侧对应的二次绕组就采用角型接线;这样一次侧虽然高压侧的感应的线电压虽然会比低压侧感应的相电压超前30度;但由于接线方式,星型接法的CT的感应电流会比角型接法的CT的感应电流滞后30度。这样流入差动保护装置的两组电流就刚好可达到相位一致的状态。 (3)励磁涌流的问题,当变压器合闸时或外区域故障时,可能产生很大的电流,然后很快返回到正常的空载电流值,这个冲击电流称之为励磁涌流,励磁涌流对变压器并无危险,因为这个冲击电流存在的时间很短。解决方法最主要的的是如何识别涌流、利用涌流中的一些特性来构成差动保护的闭锁条件,找到准确、可靠的闭锁判据。间断角原理就是利用短路电流波形是连续变化的,而励磁涌流波形是具有明显的间断角特征作为鉴别涌流的判据。该方法是以精确测量间断角为基础的,间断角的测量必须考虑电流互感器传变对励磁涌流的影响,尤其当电流互感器饱和后对二次电流波形的影响。同时还受到采样率、采样精度的影响及硬件的限制,因此这种原理在变压器差动保护中的应用效果曾不十分理想。但是随着人们在这方面的研究的深入细致和进行了大量的试验工作,恢复间断角的算法被提出来,改进后应用效果还比较理想。关于二次谐波法,目前常采用二次谐波构成差动保护的闭锁条件来防止涌流误动。二次谐波制动目前也有几种方案,最常用的是三相“或”的闭锁方式,只要判断出一相差流中的二次谐波的含量满足涌流制动的条件,即闭锁使保护指令不能发出。这种原理的保护在现场应用的效果还是比较理想,基本能够有效的区别变压器真正故障和空载合闸或外部故障切除后电压恢复时的涌流。涌流中的三次谐波成分也比较大,仅次于二次谐波,但是三次谐波不能作为涌流的特征量来组成差动保护的制动或闭锁部分。如果以直流分量来构成差动保护的闭锁条件的话,变压器内部短路时势必会延缓保护的动作速度,并且三相涌流中往往有一相为周期性电流,即它不含有直流分量,这时还必须增大差动保护的动作电流来躲过这种周期性涌流,这又使保护的灵敏度降低。 (4)差动保护定值的问题,目前的差动保护装置定值包含差动速段投退定值;差动速断电流定值;比率差动投退定值;比率差动门槛电流定值;拐点1/2电流定值;折线1/2斜率系数定值;CT断线闭锁投退定值;差动平衡系数定值;启动时间定值;差动延时时间定值。以下主要对差动平衡系数、差动速断定值、比率差动保护定值进行说明: ①差动平衡系数:用于补偿差动回路电流平衡,以选择的基准值进行折算。 Kphl=In1/In2其中In为额定电流, 计算方法如下:In=Pn /√3Un*Kl 式中:Pn—额定容量。Un—各侧额定电压。Kl—电流互感器变比。 ②差动速断定值:整定原则为躲开外部故障时最大不平衡电流即:Isd=Kr*In1式中:In1为高压侧额定电流;Kr为相对于额定电流的励磁涌流倍数,可根据系统阻抗和CT特性来整定,一般取6~10Ie。 ③比率差动保护定值:包括差动电流门槛定值Icd、第一拐点定值Ir1、第二拐点定值Ir2、比率制动第一段折线斜率K1、第二段折线斜

相关主题
文本预览
相关文档 最新文档